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    The Author's Preface



    
        
            SINCE the ancients (as we are told by Pappus),
            made great account of the science of mechanics in the investigation
            of natural things : and the moderns, laying aside substantial forms
            and occult qualities, have endeavoured to subject the phenomena of
            nature to the laws of mathematics, I have in this treatise
            cultivated mathematics so far as it regards philosophy. The ancients
            considered mechanics in a twofold respect ; as rational, which
            proceeds accurately by demonstration ; and practical. To practical
            mechanics all the manual arts belong, from which mechanics took its
            name. But as artificers do not work with perfect accuracy, it comes
            to pass that mechanics is so distinguished from geometry, that what
            is perfectly accurate is called geometrical , what is less so, is
            called mechanical. But the errors are not in the art, but in the
            artificers. He that works with less accuracy is an imperfect
            mechanic ; and if any could work with perfect accuracy, he would be
            the most perfect mechanic of all ; for the description if right
            lines and circles, upon which geometry is founded, belongs to
            mechanics. Geometry does not teach us to draw these lines, but
            requires them to be drawn ; for it requires that the learner should
            first be taught to describe these accurately, before he enters upon
            geometry ; then it shows how by these operations problems may be
            solved. To describe right lines and circles are problems, but not
            geometrical problems. The solution of these problems is required
            from mechanics ; and by geometry the use of them, when so solved, is
            shown ; and it is the glory of geometry that from those few
            principles, brought from without, it is able to produce so many
            things. Therefore geometry is founded in mechanical practice, and is
            nothing but that part of universal mechanics which accurately
            proposes and demonstrates the art of measuring. But since the manual
            arts are chiefly conversant in the moving of bodies, it comes to
            pass that geometry is commonly referred to their magnitudes, and
            mechanics to their motion. In this sense rational mechanics will be
            the science of motions resulting from any forces whatsoever, and of
            the forces required to produce any motions, accurately proposed and
            demonstrated. This part of mechanics was 
            cultivated by the ancients in the five powers which relate to manual
            arts, who considered gravity (it not being a manual power), ho
            Otherwise than as it moved weights by those powers. Our design not
            respecting arts, but philosophy, and our subject not manual but
            natural powers, we consider chiefly those things which relate to
            gravity, levity, elastic force, the resistance of fluids, and the
            like forces, whether attractive or impulsive ; and therefore we
            offer this work as the mathematical principles of philosophy ; for
            all the difficulty of philosophy seems to consist in this from the
            phenomena of motions to investigate the forces of nature, and then
            from these forces to demonstrate the other phenomena ; and to this
            end the general propositions in the first and second book are
            directed. In the third book we give an example of this in the
            explication of the System of the World : for by the propositions
            mathematically demonstrated in the former books, we in the third
            derive from the celestial phenomena the forces of gravity with which
            bodies tend to the sun and the several planets. Then from these
            forces, by other propositions which are also mathematical, we deduce
            the motions of the planets, the comets, the moon, and the sea. I
            wish we could derive the rest of the phenomena of nature by the same
            kind of reasoning from mechanical principles; for I am induced by
            many reasons to suspect that they may all depend upon certain forces
            by which the particles of bodies, by some causes hitherto unknown,
            are either mutually impelled towards each other, and cohere in
            regular figures, or are repelled and recede from each other; which
            forces being unknown, philosophers have hitherto at tempted the
            search of nature in vain ; but I hope the principles here laid down
            will afford some light either to this or some truer method of
            philosophy. In the publication of this work the most acute and
            universally learned Mr. Edmund Halley not only assisted me with his
            pains in correcting the press and taking care of the schemes, but it
            was to his solicitations that its becoming public is owing ; for
            when he had obtained of me my demonstrations of the figure of the
            celestial orbits, he continually pressed me to communicate the same
            to the Royal Society, who afterwards, by their kind encouragement
            and entreaties, engaged me to think of publishing them. But after I
            had begun to consider the inequalities of the lunar motions, and had
            entered upon some other things relating to the laws and measures of
            gravity, and other forces ; and the figures that would be described
            by bodies attracted according to given laws ; and the motion of
            several bodies moving among themselves; the motion of bodies in
            resisting mediums; the forces, densities, and motions, of mediums ;
            the orbits of the comets, and such like ; 
            deferred that publication till I had made a search into those
            matters, and could put forth the whole together. What relates to the
            lunar motions (being imperfect), I have put all together in the
            corollaries of Prop. 66, to avoid being obliged to propose and
            distinctly demonstrate the several things there contained in a
            method more prolix than the subject deserved, and interrupt the
            series of the several propositions. Some things, found out after the
            rest, I chose to insert in places less suitable, rather than change
            the number of the propositions and the citations. I heartily beg
            that what I have here done may be read with candour; and that the
            defects in a subject so difficult be not so much reprehended as
            kindly supplied, and investigated by new endeavours of my readers.
        

        Isaac Newton.

        Cambridge, Trinity College May 8, 1688.

    

    
        
            In the second edition the second section of the first book was
            enlarged. In the seventh section of the second book the theory of
            the resistances of fluids was more accurately investigated, and
            confirmed by new experiments. In the third book the moon's theory
            and the praecession of the equinoxes were more fully deduced from
            their principles ; and the theory of the comets was confirmed by
            more examples of the calculation of their orbits, done also with
            greater accuracy.
        

    

    
        
            In this third edition the resistance of mediums is somewhat more
            largely handled than before; and new experiments of the resistance
            of heavy bodies falling in air are added. In the third book, the
            argument to prove that the moon is retained in its orbit by the
            force of gravity is enlarged on ; and there are added new
            observations of Mr. Pound's of the proportion of the diameters of
            Jupiter to each other : there are, besides, added Mr. Kirk's
            observations of the comet in 1680 ; the orbit of that comet computed
            in an ellipsis by Dr. Halley ; and the orbit of the comet in 1723
            computed by Mr. Bradley.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Chapter 1



    
        
        Definitions.

    

    
        Definition i.

            
                
                    The quantity of matter is the measure of the same, arising
                    from its density and bulk conjunctly.
                
            

        

        
            THUS air of a double density, in a double space, is quadruple in
            quantity ; in a triple space, sextuple in quantity. The same thing
            is to be understood of snow, and fine dust or powders, that are
            condensed by compression or liquefaction and of all bodies that are
            by any causes whatever differently condensed. I have no regard in
            this place to a medium, if any such there is, that freely pervades
            the interstices between the parts of bodies. It is this quantity
            that I mean hereafter everywhere under the name of body or mass. And
            the same is known by the weight of each body ; for it is
            proportional to the weight, as I have found by experiments on
            pendulums, very accurately made, which shall be shewn hereafter.
        

    

    
        Definition ii.

            
                
                The quantity of motion is the measure of the same, arising
                from the velocity and quantity of matter conjunctly.
                
            

        

        
            The motion of the whole is the sum of the motions of all the parts;
            and therefore in a body double in quantity, with equal velocity,
            the motion is double ; with twice the velocity, it is quadruple,
        

    

    
        Definition iii.

            
                The vis insita, or innate force of matter,
                is a power of resisting, by which every body, as much as in it
                lies, endeavours to persevere in its present stale, whether it be
                of rest, or of moving uniformly forward in a right line.
            

        

        
            This force is ever proportional to the body whose force it is ; and
            differs nothing from the inactivity of the mass, but in our manner
            of conceiving  it. A body, from the
            inactivity of matter, is not without difficulty put out of its state
            of rest or motion. Upon which account, this vis insita,
            may, by a most significant name, be called vis inertia, or
            force of inactivity. But a body exerts this force only, when another
            force, impressed upon it, endeavours to change its condition ; and
            the exercise of this force may be considered both as resistance and
            impulse ; it is resistance, in so far as the body, for maintaining
            its present state, withstands the force impressed; it is impulse, in
            so far as the body, by not easily giving way to the impressed force
            of another, endeavours to change the state of that other. Resistance
            is usually ascribed to bodies at rest, and impulse to those in
            motion; but motion and rest, as commonly conceived, are only
            relatively distinguished ; nor are those bodies always truly at
            rest, which commonly are taken to be so.
        

    

    
        Definition iv.

            
                
                    An impressed force is an action exerted upon a body, in order
                    to change its state, either of rest, or of moving uniformly
                    forward in a right line.
                
            

        


        
            This force consists in the action only; and remains no longer in
            the body, when the action is over. For a body maintains every new
            state it acquires, by its vis inertiae only. Impressed
            forces are of different origins as from percussion, from pressure,
            from centripetal force.
        

    

    
        Definition v.

            
                
                    A centripetal force is that by which bodies are drawn or
                    impelled, or any way tend, towards a point as to a centre.
                
            

        


        
            Of this sort is gravity, by which bodies tend to the centre of the
            earth magnetism, by which iron tends to the loadstone ; and that
            force, what ever it is, by which the planets are perpetually drawn
            aside from the rectilinear motions, which otherwise they would
            pursue, and made to revolve in curvilinear orbits. A stone, whirled
            about in a sling, endeavours to recede from the hand that turns it ;
            and by that endeavour, distends the sling, and that with so much the
            greater force, as it is revolved with the greater velocity, and as
            soon as ever it is let go, flies away. That force which opposes
            itself to this endeavour, and by which the sling perpetually draws
            back the stone towards the hand, and retains it in its orbit,
            because it is directed to the hand as the centre of the orbit, I
            call the centripetal force. And the same thing is to be understood
            of all bodies, revolved in any orbits. They all endeavour to recede
            from the centres of their orbits ; and wore it not for the
            opposition of a contrary force which restrains them to, and detains
            them in their orbits, which I therefore call centripetal, would fly
            off in right lines, with an uniform motion. A projectile, if it was
            not for the force of gravity, would not deviate towards the earth,
            but would  go off from it in a right line,
            and that with an uniform motion, if the resistance of the air was
            taken away. It is by its gravity that it is drawn aside perpetually
            from its rectilinear course, and made to deviate towards the earth,
            more or less, according to the force of its gravity, and the
            velocity of its motion. The less its gravity is, for the quantity of
            its matter, or the greater the velocity with which it is projected,
            the less will it deviate from a rectilinear course, and the farther
            it will go. If a leaden ball projected from the top of a mountain by
            the force of gunpowder with a given velocity, and in a direction
            parallel to the horizon, is carried in a curve line to the distance
            of two miles before it falls to the ground ; the same, if the
            resistance of the air were taken away, with a double or decuple
            velocity, would fly twice or ten times as far. And by increasing the
            velocity, we may at pleasure increase the distance to which it might
            be projected, and diminish the curvature of the line, which it might
            describe, till at last it should fall at the distance of 10, 30, or
            90 degrees, or even might go quite round the whole earth before it
            falls ; or lastly, so that it might never fall to the earth, but go
            forward into the celestial spaces, and proceed in its motion in
            infinitum. And after the same manner that a projectile, by the force
            of gravity, may be made to revolve in an orbit, and go round the
            whole earth, the moon also, either by the force of gravity, if it is
            endued with gravity, or by any other force, that impels it towards
            the earth, may be perpetually drawn aside towards the earth, out of
            the rectilinear way, which by its innate force it would pursue; and
            would be made to revolve in the orbit which it now describes ; nor
            could the moon with out some such force, be retained in its orbit.
            If this force was too small, it would not sufficiently turn the moon
            out of a rectilinear course : if it was too great, it would turn it
            too much, and draw down the moon from its orbit towards the earth.
            It is necessary, that the force be of a just quantity, and it
            belongs to the mathematicians to find the force, that may serve
            exactly to retain a body in a given orbit, with a given velocity ;
            and vice versa, to determine the curvilinear way, into which a body
            projected from a given place, with a given velocity, may be made to
            deviate from its natural rectilinear way, by means of a given force.
        


        
            The quantity of any centripetal force may be considered as of three
            kinds; absolute, accelerative, and motive.
        

    

    
        Definition vi.

            
                
                    The absolute quantity of a centripetal force is the measure
                    of the same proportional to the efficacy of the cause that
                    propagates it from the centre, through the spaces round about.
                
            

        

        
            Thus the magnetic force is greater in one load-stone and less in
            another according to their sizes and strength of intensity.
        

         

    

    
        Definition vii.

            
                
                    The accelerative quantity of a centripetal force is the
                    measure, of the same, proportional to the velocity which it
                    generates in a given time.
                
            

        

        
            Thus the force of the same load-stone is greater at a less
            distance, and less at a greater : also the force of gravity is
            greater in valleys, less on tops of exceeding high mountains ; and
            yet less (as shall hereafter be shown), at greater distances from
            the body of the earth ; but at equal distances, it is the same
            everywhere ; because (taking away, or allowing for, the resistance
            of the air), it equally accelerates all falling bodies, whether
            heavy or light, great or small.
        

    

    
        Definition viii.

            
                
                    The motive quantity of a centripetal force, is the measure of
                    the same proportional to the motion which it generates in a
                    given time.
                
            

        

        
            Thus the weight is greater in a greater body, less in a less body ;
            and in the same body, it is greater near to the earth, and less at
            remoter distances. This sort of quantity is the centripetency, or
            propension of the whole body towards the centre, or, as I may say,
            its weight ; and it is always known by the quantity of an equal and
            contrary force just sufficient to hinder the descent of the body.
        


        
            These quantities of forces, we may, for brevity's sake, call by the
            names of motive, accelerative, and absolute forces ; and, for
            distinction's sake, con sider them, with respect to the bodies that
            tend to the centre ; to the places of those bodies ; and to the
            centre of force towards which they tend ; that is to say, I refer
            the motive force to the body as an endeavour and propensity of the
            whole towards a centre, arising from the propensities of the several
            parts taken together ; the accelerative force to the place of the
            body, as a certain power or energy diffused from the centre to all
            places around to move the bodies that are in them : and the absolute
            force to the centre, as endued with some cause, without which those
            motive forces would not be propagated through the spaces round about
            ; whether that cause be some central body (such as is the
            load-stone, in the centre of the magnetic force, or the earth in the
            centre of the gravitating force), or anything else that does not yet
            appear. For I here design only to give a mathematical notion of
            those forces, without considering their physical causes and seats.
        


        
            Wherefore the accelerative force will stand in the same relation to
            the motive, as celerity does to motion. For the quantity of motion
            arises from the celerity drawn into the quantity of matter : and the
            motive force arises from the accelerative force drawn into the same
            quantity of matter. For the sum of the actions of the accelerative
            force, upon the several ; articles of the body, is the motive force
            of the whole. Hence it is, that near the 
            surface of the earth, where the accelerative gravity, or force
            productive of gravity, in all bodies is the same, the motive gravity
            or the weight is as the body : but if we should ascend to higher
            regions, where the accelerative gravity is less, the weight would be
            equally diminished, and would always be as the product of the body,
            by the accelerative gravity. So in those regions, where the
            accelerative gravity is diminished into one half, the weight of a
            body two or three times less, will be four or six times less.
        


        
            I likewise call attractions and impulses, in the same sense,
            accelerative, and motive ; and use the words attraction, impulse or
            propensity of any sort towards a centre, promiscuously, and
            indifferently, one for another ; considering those forces not
            physically, but mathematically : wherefore, the reader is not to
            imagine, that by those words, I anywhere take upon me to define the
            kind, or the manner of any action, the causes or the physical reason
            thereof, or that I attribute forces, in a true and physical sense,
            to certain centres (which are only mathematical points) ; when at
            any time I happen to speak of centres as attracting, or as endued
            with attractive powers.
        

    

    
        Scholium.

        

        
            Hitherto I have laid down the definitions of such words as are less
            known, and explained the sense in which I would have them to be
            under stood in the following discourse. I do not define time, space,
            place and motion, as being well known to all. Only I must observe,
            that the vulgar conceive those quantities under no other notions but
            from the relation they bear to sensible objects. And thence arise
            certain prejudices, for the removing of which, it will be convenient
            to distinguish them into absolute and relative, true and apparent,
            mathematical and common.
        


        
            I. Absolute, true, and mathematical time, of itself, and from its
            own nature flows equably without regard to anything external, and by
            another name is called duration : relative, apparent, and common
            time, is some sensible and external (whether accurate or unequable)
            measure of duration by the means of motion, which is commonly used
            instead of true time ; such as an hour, a day, a month, a year.
        


        
            II. Absolute space, in its own nature, without regard to anything
            external, remains always similar and immovable. Relative space is
            some movable dimension or measure of the absolute spaces ; which our
            senses determine by its position to bodies ; and which is vulgarly
            taken for immovable space ; such is the dimension of a
            subterraneous, an aereal, or celestial space, determined by its
            position in respect of the earth. Absolute and relative space, are
            the same in figure and magnitude ; but they do not remain always
            numerically the same. For if the earth, for instance, moves, a space
            of our air, which relatively and in respect of the earth remains
            always the same, will at one time be one part of the absolute space
            into which  the air passes ; at another time
            it will be another part of the same, and so, absolutely understood,
            it will be perpetually mutable.
        


        
            III. Place is a part of space which a body takes up, and is
            according to the space, either absolute or relative. I say, a part
            of space ; not the situation, nor the external surface of the body.
            For the places of equal solids are always equal ; but their
            superfices, by reason of their dissimilar figures, are often
            unequal. Positions properly have no quantity, nor are they so much
            the places themselves, as the properties of places. The motion of
            the whole is the same thing with the sum of the motions of the parts
            ; that is, the translation of the whole, out of its place, is the
            same thing with the sum of the translations of the parts out of
            their places ; and therefore the place of the whole is the same
            thing with the sum of the places of the parts, and for that reason,
            it is internal, and in the whole body.
        


        
            IV. Absolute motion is the translation of a body from one absolute
            place into another ; and relative motion, the translation from one
            relative place into another. Thus in a ship under sail, the relative
            place of a body is that part of the ship which the body possesses ;
            or that part of its cavity which the body fills, and which therefore
            moves together with the ship : and relative rest is the continuance
            of the body in the same part of the ship, or of its cavity. But
            real, absolute rest, is the continuance of the body in the same part
            of that immovable space, in which the ship itself, its cavity, and
            all that it contains, is moved. Wherefore, if the earth is really at
            rest, the body, which relatively rests in the ship, will really and
            absolutely move with the same velocity which the ship has on the
            earth. But if the earth also moves, the true and absolute motion of
            the body will arise, partly from the true motion of the earth, in
            immovable space ; partly from the relative motion of the ship on the
            earth ; and if the body moves also relatively in the ship ; its true
            motion will arise, partly from the true motion of the earth, in
            immovable space, and partly from the relative motions as well of the
            ship on the earth, as of the body in the ship ; and from these
            relative motions will arise the relative motion of the body on the
            earth. As if that part of the earth, where the ship is, was truly
            moved toward the east, with a velocity of 10010 parts; while the
            ship itself, with a fresh gale, and full sails, is carried towards
            the west, with a velocity expressed by 10 of those parts ; but a
            sailor walks in the ship towards the east, with 1 part of the said
            velocity ; then the sailor will be moved truly in immovable space
            towards the east, with a velocity of 10001 parts, and relatively on
            the earth towards the west, with a velocity of 9 of those parts.
        


        
            Absolute time, in astronomy, is distinguished from relative, by the
            equation or correction of the vulgar time. For the natural days are
            truly unequal, though they are commonly considered as equal, and
            used for a measure of time ; astronomers correct this inequality for
            their more accurate deducing of the celestial motions. It may be,
            that there is no such thing as an equable motion, whereby time may H
            accurately measured. All  motions may be
            accelerated and retarded; but the true, or equable, progress of
            absolute time is liable to no change. The duration or perseverance
            of the existence of things remains the same, whether the motions are
            swift or slow, or none at all : and therefore it ought to be
            distinguished from what are only sensible measures thereof ; and out
            of which we collect it, by means of the astronomical equation. The
            necessity of which equation, for deter mining the times of a
            phaenomenon, is evinced as well from the experiments of the pendulum
            clock, as by eclipses of the satellites of Jupiter.
        


        
            As the order of the parts of time is immutable, so also is the
            order of the parts of space. Suppose those parts to be moved out of
            their places, and they will be moved (if the expression may be
            allowed) out of themselves. For times and spaces are, as it were,
            the places as well of themselves as of all other things. All things
            are placed in time as to order of succession ; and in space as to
            order of situation. It is from their essence or nature that they are
            places ; and that the primary places of things should be moveable,
            is absurd. These are therefore the absolute places ; and
            translations out of those places, are the only absolute motions.
        


        
            But because the parts of space cannot be seen, or distinguished
            from one another by our senses, therefore in their stead we use
            sensible measures of them. For from the positions and distances of
            things from any body considered as immovable, we define all places ;
            and then with respect to such places, we estimate all motions,
            considering bodies as transferred from some of those places into
            others. And so, instead of absolute places and motions, we use
            relative ones; and that without any inconvenience in common affairs
            ; but in philosophical disquisitions, we ought to abstract from our
            senses, and consider things themselves, distinct from what are only
            sensible measures of them. For it may be that there is no body
            really at rest, to which the places and motions of others may be
            referred.
        


        
            But we may distinguish rest and motion, absolute and relative, one
            from the other by their properties, causes and effects. It is a
            property of rest, that bodies really at rest do rest in respect to
            one another. And therefore as it is possible, that in the remote
            regions of the fixed stars, or perhaps far beyond them, there may be
            some body absolutely at rest ; but impossible to know, from the
            position of bodies to one another in our regions whether any of
            these do keep the same position to that remote body; it follows that
            absolute rest cannot be determined from the position of bodies in
            our regions.
        


        
            It is a property of motion, that the parts, which retain given
            positions to their wholes, do partake of the motions of those
            wholes. For all the parts of revolving bodies endeavour to recede
            from the axis of motion ; and the impetus of bodies moving forward,
            arises from the joint impetus of all the parts. Therefore, if
            surrounding bodies are moved, those that are relatively at rest
            within them, will partake of their motion. Upon which account, the
            true and absolute motion of a body cannot be 
            determined by the translation of it from those which only seem to
            rest ; for the external bodies ought not only to appear at rest, but
            to be really at rest. For otherwise, all included bodies, beside
            their translation from near the surrounding ones, partake likewise
            of their true motions ; and though that translation were not made
            they would not be really at rest, but only seem to be so. For the
            surrounding bodies stand in the like relation to the surrounded as
            the exterior part of a whole does to the interior, or as the shell
            does to the kernel ; but, if the shell moves, the kernel will also
            move, as being part of the whole, without any removal from near the
            shell.
        


        
            A property, near akin to the preceding, is this, that if a place is
            moved, whatever is placed therein moves along with it ; and
            therefore a body, which is moved from a place in motion, partakes
            also of the motion of its place. Upon which account, all motions,
            from places in motion, are no other than parts of entire and
            absolute motions ; and every entire motion is composed of the motion
            of the body out of its first place, and the motion of this place out
            of its place ; and so on, until we come to some immovable place, as
            in the before-mentioned example of the sailor. Where fore, entire
            and absolute motions can be no otherwise determined than by
            immovable places : and for that reason I did before refer those
            absolute motions to immovable places, but relative ones to movable
            places. Now no other places are immovable but those that, from
            infinity to infinity, do all retain the same given position one to
            another ; and upon this account must ever remain unmoved ; and do
            thereby constitute immovable space.
        


        
            The causes by which true and relative motions are distinguished,
            one from the other, are the forces impressed upon bodies to generate
            motion. True motion is neither generated nor altered, but by some
            force impressed upon the body moved : but relative motion may be
            generated or altered without any force impressed upon the body. For
            it is sufficient only to impress some force on other bodies with
            which the former is compared, that by their giving way, that
            relation may be changed, in which the relative rest or motion of
            this other body did consist. Again, true motion suffers always some
            change from any force impressed upon the moving body ; but relative
            motion docs not necessarily undergo any change by such forces. For
            if the same forces are likewise impressed on those other bodies,
            with which the comparison is made, that the relative position may be
            pre served, then that condition will be preserved in which the
            relative motion consists. And therefore any relative motion may be
            changed when the true motion remains unaltered, and the relative may
            be preserved when the true suffers some change. Upon which accounts;
            true motion does by no means consist in such relations.
        


        
            The effects which distinguish absolute from relative motion arc,
            the forces of receding from the axis of circular motion. For there
            are no such forces in a circular motion purely relative, but in a
            true and absolute circular motion., they are greater or less,
            according t the quantity of the  motion. If
            a vessel, hung: by a long cord, is so often turned about that the
            cord is strongly twisted, then filled with water, and held at rest
            together with the water ; after, by the sudden action of another
            force, it is whirled about the contrary way, and while the cord is
            untwisting itself, the vessel continues for some time in this motion
            ; the surface of the water will at first be plain, as before the
            vessel began to move : but the vessel; by gradually communicating
            its motion to the water, will make it begin sensibly to revolve, and
            recede by little and little from the middle, and ascend to the sides
            of the vessel, forming itself into a concave figure (as I have
            experienced), and the swifter the motion becomes, the higher will
            the water rise, till at last, performing its revolutions in the same
            times with the vessel, it becomes relatively at rest in it. This
            ascent of the water shows its endeavour to recede from the axis of
            its motion ; and the true and absolute circular motion of the water,
            which is here directly contrary to the relative, discovers itself,
            and may be measured by this endeavour. At first, when the relative
            motion of the water in the vessel was greatest, it produced no
            endeavour to recede from the axis ; the water showed no tendency to
            the circumference, nor any ascent towards the sides of the vessel,
            but remained of a plain surface, and therefore its true circular
            motion had not yet begun. But afterwards, when the relative motion
            of the water had decreased, the ascent thereof towards the sides of
            the vessel proved its endeavour to recede from the axis ; and this
            endeavour showed the real circular motion of the water perpetually
            increasing, till it had acquired its greatest quantity, when the
            water rested relatively in the vessel. And therefore this endeavour
            does not depend upon any translation of the water in respect of the
            ambient bodies, nor can true circular motion be defined by such
            translation. There is only one real circular motion of any one
            revolving body, corresponding to only one power of endeavouring to
            recede from its axis of motion, as its proper and adequate effect ;
            but relative motions, in one and the same body, are innumerable,
            according to the various relations it bears to external bodies, and
            like other relations, are altogether destitute of any real effect,
            any otherwise than they may perhaps partake of that one only true
            motion. And therefore in their system who suppose that our heavens,
            revolving below the sphere of the fixed stars, carry the planets
            along with them ; the several parts of those heavens, and the
            planets, which are indeed relatively at rest in their heavens, do
            yet really move. For they change their position one to another
            (which never happens to bodies truly at rest), and being carried
            together with their heavens, partake of their motions, and as parts
            of revolving wholes, endeavour to recede from the axis of their
            motions.
        


        
            Wherefore relative quantities are not the quantities themselves,
            whose names they bear, but those sensible measures of them (either
            accurate or inaccurate), which are commonly used instead of the
            measured quantities themselves. And if the meaning of words is to he
            determined by their  use, then by the names
            time, space, place and motion, their measures are properly to be
            understood ; and the expression will be unusual, and purely
            mathematical, if the measured quantities themselves are meant. Upon
            which account, they do strain the sacred writings, who there
            interpret those words for the measured quantities. Nor do those less
            defile the purity of mathematical and philosophical truths, who
            confound real quantities themselves with their relations and vulgar
            measures.
        


        
            It is indeed a matter of great difficulty to discover, and
            effectually to distinguish, the true motions of particular bodies
            from the apparent ; be cause the parts of that immovable space, in
            which those motions are performed, do by no means come under the
            observation of our senses. Yet the thing is not altogether desperate
            : for we have some arguments to guide us, partly from the apparent
            motions, which are the differences of the true motions ; partly from
            the forces, which are the causes and effects of the true motions.
            For instance, if two globes, kept at a given distance one from the
            other by means of a cord that connects them, were revolved about
            their common centre of gravity, we might, from the tension of the
            cord, discover the endeavour of the globes to recede from the axis
            of their motion, and from thence we might compute the quantity of
            their circular motions. And then if any equal forces should be
            impressed at once on the alternate faces of the globes to augment or
            diminish their circular motions, from the increase or decrease of
            the tension of the cord, we might infer the increment or decrement
            of their motions : and thence would be found on what faces those
            forces ought to be impressed, that the motions of the globes might
            be most augmented ; that is, we might discover their hinder-most
            faces, or those which, in the circular motion, do follow. But the
            faces which follow being known, and consequently the opposite ones
            that precede, we should likewise know the determination of their
            motions. And thus we might find both the quantity and the
            determination of this circular motion, even in an immense vacuum,
            where there was nothing external or sensible with which the globes
            could be compared. But now, if in that space some remote bodies were
            placed that kept always a given position one to another, as the
            fixed stars do in our regions, we could not indeed determine from
            the relative translation of the globes among those bodies, whether
            the motion did belong to the globes or to the bodies. But if we
            observed the cord, and found that its tension was that very tension
            which the motions of the globes required, we might conclude the
            motion to be in the globes, and the bodies to be at rest ; and then,
            lastly, from the translation of the globes among the bodies, we
            should find the determination of their motions. But how we are to
            collect the true motions from their causes, effects, and apparent
            differences ; and, vice versa, how from the motions, either true or
            apparent, we may come to the knowledge of their causes and effects,
            shall be explained more at large in the following tract. For to this
            end it was that I composed it.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Chapter 2




    Axioms, or Laws of Motion.



    
        Law I.

            
                
                    Every body perseveres in its state of rest, or of uniform
                    motion in a right line, unless it is compelled to change that
                    state by forces impressed thereon.
                
            

        

        
            Projectiles
            persevere in their motions, so
            far as they are not retarded by the resistance of the air, or
            impelled downwards by the force of gravity. A top, whose parts by
            their cohesion are perpetually drawn aside from rectilinear motions,
            does not cease its rotation, otherwise than as it is retarded by the
            air. The greater bodies of the planets and comets, meeting with less
            resistance in more free spaces, preserve their motions both
            progressive and circular for a much longer time.
        

    

    
        Law ii.

            
                
                    The alteration of motion is ever proportional to the motive
                    force impressed; and is made in the direction of the right line
                    in which that force is impressed.
                
            

        

        
            If any force generates a motion, a double force will generate
            double the motion, a triple force triple the motion, whether that
            force be impressed altogether and at once, or gradually and
            successively. And this motion (being always directed the same way
            with the generating force), if the body moved before, is added to or
            subducted from the former motion, according as they directly
            conspire with or are directly contrary to each other; or obliquely
            joined, when they are oblique, so as to produce a new motion
            compounded from the determination of both.
        

    

    
        Law iii.

            
                
                    To every action there is always opposed an equal reaction: or
                    the mutual actions of two bodies upon each other are always
                    equal, and directed to contrary parts.
                
            

        

        
            Whatever draws or presses another is as much drawn or pressed by
            that other. If you press a stone with your finger, the finger is
            also pressed by the stone. If a horse draws a stone tied to a rope,
            the horse (if I may so say) will be equally drawn back towards the
            stone: for the distended rope, by the same endeavour to relax or
            unbend itself, will draw the horse as much towards the stone, as it
            does the stone towards the horse, and will obstruct the progress of
            the one as much as it advances that of the other. 
            If a body impinge upon another, and by its force change the motion of
            the other, that body also (because of the equality of the mutual
            pressure) will undergo an equal change, in its own motion, towards
            the contrary part. The changes made by these actions are equal, not
            in the velocities but in the motions of bodies; that is to say, if
            the bodies are not hindered by any other impediments. For, because
            the motions are equally changed, the changes of the velocities made
            towards contrary parts are reciprocally proportional to the bodies.
            This law takes place also in attractions, as will be proved in the
            next scholium.
        

    

    
        Corollary I.

            
                
                    A body by two forces conjoined will describe the diagonal of
                    a parallelogram, in the same time that it would describe the
                    sides, by those forces apart.
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            If a body in a given time, by the force M impressed apart in the
            place A, should with an uniform motion be carried from A to B; and
            by the force N impressed apart in the same place, should be carried
            from A to C; complete the parallelogram ABCD, and, by both forces
            acting together, it will in the same time be carried in the diagonal
            from A to D. For since the force N acts in the direction of the line
            AC, parallel to BD, this force (by the second law) will not at all
            alter the velocity generated by the other force M, by which the body
            is carried towards the line BD. The body therefore will arrive at
            the line BD in the same time, whether the force N be impressed or
            not; and therefore at the end of that time it will be found
            somewhere in the line BD. By the same argument, at the end of the
            same time it will be found somewhere in the line CD. Therefore it
            will be found in the point D, where both lines meet. But it will
            move in a right line from A to D, by Law I.
        

    

    
        Corollary ii.

            
                
                    And hence is explained the composition of any one direct
                    force AD, out of any two oblique forces AC and CD; and, on the
                    contrary, the resolution of any one direct force AD into two
                    oblique forces AC and CD: which composition and resolution are
                    abundantly confirmed from mechanics.
                
            

        

        
            As if the unequal radii OM and ON drawn from the centre O of any
            wheel, should sustain the weights A and P by the cords MA and NP;
            and the forces of those weights to move the wheel were required.
            Through the centre O draw the right line KOL, meeting the cords
            perpendicularly in K and L; and from the centre O, with OL the
            greater of the distances 
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            OK and OL, describe a circle, meeting the cord MA in D: and drawing
            OD, make AC parallel and DC perpendicular thereto. Now, it being
            indifferent whether the points K, L, D, of the cords be fixed to the
            plane of the wheel or not, the weights will have the same effect
            whether they are suspended from the points K and L, or from D and L.
            Let the whole force of the weight A be represented by the line AD,
            and let it be resolved into the forces AC and CD; of which the force
            AC, drawing the radius OD directly from the centre, will have no
            effect to move the wheel: but the other force DC, drawing the radius
            DO perpendicularly, will have the same effect as if it drew
            perpendicularly the radius OL equal to OD; that is, it will have the
            same effect as the weight P, if that weight is to the weight A as
            the force DC is to the force DA; that is (because of the similar
            triangles ADC, DOK), as OK to OD or OL. Therefore the weights A and
            P, which are reciprocally as the radii OK and OL that lie in the
            same right line, will be equipollent, and so remain in equilibrio;
            which is the well known property of the balance, the lever, and the
            wheel. If either weight is greater than in this ratio, its force to
            move the wheel will be so much greater.
        

        
            If the weight p, equal to the weight P, is partly
            suspended by the cord Np, partly sustained by the oblique
            plane pG; draw pH, NH, the former perpendicular
            to the horizon, the latter to the plane pG; and if the
            force of the weight p tending downwards is represented by
            the line pH, it may be resolved into the forces pN,
            HN. If there was any plane pQ, perpendicular to the cord pN,
            cutting the other plane pG in a line parallel to the
            horizon, and the weight p was supported only by those
            planes pQ, pG, it would press those planes
            perpendicularly with the forces pN; HN; to wit, the plane
            pQ with the force pN, and the plane pG
            with the force HN. And therefore if the plane pQ was taken
            away, so that the weight might stretch the cord, because the cord,
            now sustaining the weight, supplies the place of the plane that was
            removed, it will be strained by the same force pN which
            pressed upon the plane before. Therefore, the tension of this
            oblique cord pN will be to that of the other perpendicular
            cord PN as pN to pH. And therefore if the weight
            p is to the weight A in a ratio compounded of the
            reciprocal ratio of the least distances of the cords PN, AM, from
            the centre of the wheel, and of the direct ratio of pH to
            pN, the weights will have the same effect towards moving
            the wheel, and will therefore sustain each other; as any one may
            find by experiment.
        

        
            But the weight p pressing upon those two oblique planes,
            may be considered as a wedge between the two internal surfaces of a
            body split by it; and hence the forces of the wedge and the mallet
            may be determined; for because the force
            with which the weight p presses the plane pQ is
            to the force with which the same, whether by its own gravity, or by
            the blow of a mallet, is impelled in the direction of the line pH
            towards both the planes, as pN to pH; and to the
            force with which it presses the other plane pG, as pN
            to NH. And thus the force of the screw may be deduced from a like
            resolution of forces; it being no other than a wedge impelled with
            the force of a lever. Therefore the use of this Corollary spreads
            far and wide, and by that diffusive extent the truth thereof is
            farther confirmed. For on what has been said depends the whole
            doctrine of mechanics variously demonstrated by different authors.
            For from hence are easily deduced the forces of machines, which are
            compounded of wheels, pullies, levers, cords, and weights, ascending
            directly or obliquely, and other mechanical powers; as also the
            force of the tendons to move the bones of animals.
        

    

    
        Corollary iii.

            
                
                    The quantity of motion, which is collected by taking the sum
                    of the motions directed towards the same parts, and the
                    difference of those that are directed to contrary parts, suffers
                    no change from the action of bodies among themselves.
                
            

        

        
            For action and its opposite re-action are equal, by Law III, and
            therefore, by Law II, they produce in the motions equal changes
            towards opposite parts. Therefore if the motions are directed
            towards the same parts, whatever is added to the motion of the
            preceding body will be subducted from the motion of that which
            follows; so that the sum will be the same as before. If the bodies
            meet, with contrary motions, there will be an equal deduction from
            the motions of both; and therefore the difference of the motions
            directed towards opposite parts will remain the same.
        

        
            Thus if a spherical body A with two parts of velocity is triple of
            a spherical body B which follows in the same right line with ten
            parts of velocity, the motion of A will be to that of B as 6 to 10.
            Suppose, then, their motions to be of 6 parts and of 10 parts, and
            the sum will be 16 parts. Therefore, upon the meeting of the bodies,
            if A acquire 3, 4, or 5 parts of motion, B will lose as many; and
            therefore after reflexion A will proceed with 9, 10, or 11 parts,
            and B with 7, 6, or 5 parts; the sum remaining always of 16 parts as
            before. If the body A acquire 9, 10, 11, or 12 parts of motion, and
            therefore after meeting proceed with 15, 16, 17, or 18 parts, the
            body B, losing so many parts as A has got, will either proceed with
            1 part, having lost 9, or stop and remain at rest, as having lost
            its whole progressive motion of 10 parts; or it will go back with 1
            part, having not only lost its whole motion, but (if I may so say)
            one part more; or it will go back with 2 parts, because a
            progressive motion of 12 parts is taken off. And so the sums of the
            conspiring motions 15+1, or 16+0, and the differences of the
            contrary motions 17−1 and 18−2, will always
            be equal to 16 parts, as they were before the meeting and reflexion
            of the bodies. But, the motions being known with which the bodies
            proceed after reflexion, the velocity of either will be also known,
            by taking the velocity after to the velocity before reflexion, as
            the motion after is to the motion before. As in the last case, where
            the motion of the body A was of 6 parts before reflexion and of 18
            parts after, and the velocity was of 2 parts before reflexion, the
            velocity thereof after reflexion will be found to be of 6 parts; by
            saying, as the 6 parts of motion before to 18 parts after, so are 2
            parts of velocity before reflexion to 6 parts after.
        

        
            But if the bodies are either not spherical, or, moving in different
            right lines, impinge obliquely one upon the other, and their motions
            after reflexion are required, in those cases we are first to
            determine the position of the plane that touches the concurring
            bodies in the point of concourse, then the motion of each body (by
            Corol. II) is to be resolved into two, one perpendicular to that
            plane, and the other parallel to it. This done, because the bodies
            act upon each other in the direction of a line perpendicular to this
            plane, the parallel motions are to be retained the same after
            reflexion as before; and to the perpendicular motions we are to
            assign equal changes towards the contrary parts; in such manner that
            the sum of the conspiring and the difference of the contrary motions
            may remain the same as before. From such kind of reflexions also
            sometimes arise the circular motions of bodies about their own
            centres. But these are cases which I do not consider in what
            follows; and it would be too tedious to demonstrate every particular
            that relates to this subject.
        

    

    
        Corollary iv.

            
                
                    The common centre of gravity of two or more bodies does not
                    alter its state of motion or rest by the actions of the bodies
                    among themselves; and therefore the common centre of gravity of
                    all bodies acting upon each other (excluding outward actions and
                    impediments) is either at rest, or moves uniformly in a right line.
                
            

        

        
            For if two points proceed with an uniform motion in right lines,
            and their distance be divided in a given ratio, the dividing point
            will be either at rest, or proceed uniformly in a right line. This
            is demonstrated hereafter in Lem. XXIII and its Corol., when the
            points are moved in the same plane; and by a like way of arguing, it
            may be demonstrated when the points are not moved in the same plane.
            Therefore if any number of bodies move uniformly in right lines, the
            common centre of gravity of any two of them is either at rest, or
            proceeds uniformly in a right line; because the line which connects
            the centres of those two bodies so moving is divided at that common
            centre in a given ratio. In like manner the common centre of those
            two and that of a third body will be either at rest or moving
            uniformly in a right line because at that centre the distance
            between the common centre of the two bodies,
            and the centre of this last, is divided in a given ratio. In like
            manner the common centre of these three, and of a fourth body, is
            either at rest, or moves uniformly in a right line; because the
            distance between the common centre of the three bodies, and the
            centre of the fourth is there also divided in a given ratio, and so
            on in infinitum. Therefore, in a system of bodies where
            there is neither any mutual action among themselves, nor any foreign
            force impressed upon them from without, and which consequently move
            uniformly in right lines, the common centre of gravity of them all
            is either at rest or moves uniformly forward in a right line.
        

        
            Moreover, in a system of two bodies mutually acting upon each
            other, since the distances between their centres and the common
            centre of gravity of both arc reciprocally as the bodies, the
            relative motions of those bodies, whether of approaching to or of
            receding from that centre, will be equal among themselves. Therefore
            since the changes which happen to motions are equal and directed to
            contrary parts, the common centre of those bodies, by their mutual
            action between themselves, is neither promoted nor retarded, nor
            suffers any change as to its state of motion or rest. But in a
            system of several bodies, because the common centre of gravity of
            any two acting mutually upon each other suffers no change in its
            state by that action: and much less the common centre of gravity of
            the others with which that action does not intervene; but the
            distance between those two centres is divided by the common centre
            of gravity of all the bodies into parts reciprocally proportional to
            the total sums of those bodies whose centres they are: and therefore
            while those two centres retain their state of motion or rest, the
            common centre of all does also retain its state: it is manifest that
            the common centre of all never suffers any change in the state of
            its motion or rest from the actions of any two bodies between
            themselves. But in such a system all the actions of the bodies among
            themselves either happen between two bodies, or are composed of
            actions interchanged between some two bodies; and therefore they do
            never produce any alteration in the common centre of all as to its
            state of motion or rest. Wherefore since that centre, when the
            bodies do not act mutually one upon another, either is at rest or
            moves uniformly forward in some right line, it will, notwithstanding
            the mutual actions of the bodies among themselves, always persevere
            in its state, either of rest, or of proceeding uniformly in a right
            line, unless it is forced out of this state by the action of some
            power impressed from without upon the whole system. And therefore
            the same law takes place in a system consisting of many bodies as in
            one single body, with regard to their persevering in their state of
            motion or of rest. For the progressive motion, whether of one single
            body, or of a whole system of bodies, is always to be estimated from
            the motion of the centre of gravity.
        

    

    
        Corollary V.

            
                The motions of bodies included in a given space are
                the same among themselves, whether that
                space is at rest, or moves uniformly forwards in a right line
                without any circular motion.
            

        

        
            For the differences of the motions tending towards the same parts,
            and the sums of those that tend towards contrary parts, are, at
            first (by supposition), in both cases the same; and it is from those
            sums and differences that the collisions and impulses do arise with
            which the bodies mutually impinge one upon another. Wherefore (by
            Law II), the effects of those collisions will be equal in both
            cases; and therefore the mutual motions of the bodies among
            themselves in the one case will remain equal to the mutual motions
            of the bodies among themselves in the other. A clear proof of which
            we have from the experiment of a ship; where all motions happen
            after the same manner, whether the ship is at rest, or is carried
            uniformly forwards in a right line.
        

    

    
        Corollary vi.

            
                If bodies, any how moved among themselves, are urged
                in the direction of parallel lines by equal accelerative forces,
                they will all continue to move among themselves, after the same,
                manner as if they had been urged by no such forces.
            

        

        
            For these forces acting equally (with respect to the quantities of
            the bodies to be moved), and in the direction of parallel lines,
            will (by Law II) move all the bodies equally (as to velocity), and
            therefore will never produce any change in the positions or motions
            of the bodies among themselves.
        

    

    
        Scholium.

        

        
            Hitherto I have laid down such principles as have been received by
            mathematicians, and are confirmed by abundance of experiments. By
            the first two Laws and the first two Corollaries, Galileo discovered
            that the descent of bodies observed the duplicate ratio of the time,
            and that the motion of projectiles was in the curve of a parabola;
            experience agreeing with both, unless so far as these motions are a
            little retarded by the resistance of the air. When a body is
            falling, the uniform force of its gravity acting equally, impresses,
            in equal particles of time, equal forces upon that body, and
            therefore generates equal velocities; and in the whole time
            impresses a whole force, and generates a whole velocity proportional
            to the time. And the spaces described in proportional times are as
            the velocities and the times conjunctly; that is, in a duplicate
            ratio of the times. And when a body is thrown upwards, its uniform
            gravity impresses forces and takes off velocities proportional to
            the times; and the times of ascending to the greatest heights are as
            the velocities to be taken off, and those heights are as the
            velocities and the times conjunctly, or in the duplicate ratio of
            the velocities. And if a body be projected in any direction, the
            motion arising from its projection is compounded with the
            motion
            arising from its gravity. As if the body A by its motion of
            projection alone could describe in a given time the right line AB,
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            and with its motion of falling alone could
            describe in the same time the altitude AC; complete the
            paralellogram
            ABDC, and the body by that compounded motion will at the end of the
            time be found in the place D; and the curve line AED, which that
            body describes, will be a parabola, to which the right line AB will
            be a tangent in A; and whose ordinate BD will be as the square of
            the line AB. On the same Laws and Corollaries depend those things
            which have been demonstrated concerning the times of the vibration
            of pendulums, and are confirmed by the daily experiments of pendulum
            clocks. By the same, together with the third Law, Sir Christ. Wren,
            Dr. Wallis, and Mr. Huygens, the greatest geometers of our times,
            did severally determine the rules of the congress and reflexion of
            hard bodies, and much about the same time communicated their
            discoveries to the Royal Society, exactly agreeing among themselves
            as to those rules. Dr. Wallis, indeed, was something more early in
            the publication; then followed Sir Christopher Wren, and, lastly,
            Mr. Huygens. But Sir Christopher Wren confirmed the truth of the
            thing before the Royal Society by the experiment of pendulums, which
            Mr. Mariotte soon after thought fit to explain in a treatise
            entirely upon that subject. But to bring this experiment to an
            accurate agreement with the theory, we are to have a due regard as
            well to the resistance of the air as to the elastic force of the
            concurring bodies. Let the spherical bodies A, B be suspended by the
            parallel and
            [image: Mathematical Principles of Natural Philosophy figure: 90b]
            equal strings AC, BD, from the
            centres C, D. About these centres, with those intervals, describe
            the semicircles EAF, GBH, bisected by the radii CA, DB. Bring the
            body A to any point R of the arc EAF, and (withdrawing the body B)
            let it go from thence, and after one oscillation suppose it to
            return to the point V: then RV will be the retardation arising from
            the resistance of the air. Of this RV let ST be a fourth part,
            situated in the middle, to wit, so as RS and TV may be equal, and RS
            may be to ST as 3 to 2, then will ST represent very nearly the
            retardation during the descent from S to A. Restore the body B to
            its place: and, supposing the body A to be let fall from the point
            S, the velocity thereof in the place of reflexion A, without
            sensible error, will be the same as if it had descended in
            vacuo from the point T. Upon which account this velocity may
            be represented by the chord of the arc TA. For it is a proposition
            well known to geometers, that the velocity of a pendulous body in
            the lowest point is as the chord of the arc which it has described
            in its descent. After reflexion, suppose the
            body A comes to the place s, and the body B to the place k.
            Withdraw the body B, and find the place v, from which if
            the body A, being let go, should after one oscillation return to the
            place r, st may be a fourth part of rv,
            so placed in the middle thereof as to leave rs equal to tv,
            and let the chord of the arc tA. represent the velocity
            which the body A had in the place A immediately after reflexion. For
            t will be the true and correct place to which the body A
            should have ascended, if the resistance of the air had been taken
            off. In the same way we are to correct the place k to
            which the body B ascends, by finding the place l to which
            it should have ascended in vacuo. And thus everything may
            be subjected to experiment, in the same manner as if we were really
            placed in vacuo. These things being done, we are to take
            the product (if I may so say) of the body A, by the chord of the arc
            TA (which represents its velocity), that we may have its motion in
            the place A immediately before reflexion; and then by the chord of
            the arc tA, that we may have its motion in the place A
            immediately after reflexion. And so we are to take the product of
            the body B by the chord of the arc Bl, that we may have the
            motion of the same immediately after reflexion. And in like manner,
            when two bodies are let go together from different places, we are to
            find the motion of each, as well before as after reflexion; and then
            we may compare the motions between themselves, and collect the
            effects of the reflexion. Thus trying the thing with pendulums of
            ten feet, in unequal as well as equal bodies, and making the bodies
            to concur after a descent through large spaces, as of 8, 12, or 16
            feet, I found always, without an error of 3 inches, that when the
            bodies concurred together directly, equal changes towards the
            contrary parts were produced in their motions, and, of consequence,
            that the action and reaction were always equal. As if the body A
            impinged upon the body B at rest with 9 parts of motion, and losing
            7, proceeded after reflexion with 2, the body B was carried
            backwards with those 7 parts. If the bodies concurred with contrary
            motions, A with twelve parts of motion, and B with six, then if A
            receded with 2, B receded with 8; to wit, with a deduction of 14
            parts of motion on each side. For from the motion of A subducting
            twelve parts, nothing will remain; but subducting 2 parts more, a
            motion will be generated of 2 parts towards the contrary way; and
            so, from the motion of the body B of 6 parts, subducting 14 parts, a
            motion is generated of 8 parts towards the contrary way. But if the
            bodies were made both to move towards the same way, A, the swifter,
            with 14 parts of motion, B, the slower, with 5, and after reflexion
            A went on with 5, B likewise went on with 14 parts; 9 parts being
            transferred from A to B. And so in other cases. By the congress and
            collision of bodies, the quantity of motion, collected from the sum
            of the motions directed towards the same way, or from the difference
            of those that were directed towards contrary ways, was never
            changed. For the error of an inch or two in measures may be easily
            ascribed to the difficulty of executing
            everything with accuracy. It was not easy to let go the two
            pendulums so exactly together that the bodies should impinge one
            upon the other in the lowermost place AB; nor to mark the places s,
            and k, to which the bodies ascended after congress. Nay,
            and some errors, too, might have happened from the unequal density
            of the parts of the pendulous bodies themselves, and from the
            irregularity of the texture proceeding from other causes.
        

        
            But to prevent an objection that may perhaps be alledged against
            the rule, for the proof of which this experiment was made, as if
            this rule did suppose that the bodies were either absolutely hard,
            or at least perfectly elastic (whereas no such bodies are to be
            found in nature), I must add, that the experiments we have been
            describing, by no means depending upon that quality of hardness, do
            succeed as well in soft as in hard bodies. For if the rule is to be
            tried in bodies not perfectly hard, we are only to diminish the
            reflexion in such a certain proportion as the quantity of the
            elastic force requires. By the theory of Wren and Huygens, bodies
            absolutely hard return one from another with the same velocity with
            which they meet. But this may be affirmed with more certainty of
            bodies perfectly elastic. In bodies imperfectly elastic the velocity
            of the return is to be diminished together with the elastic force;
            because that force (except when the parts of bodies are bruised by
            their congress, or suffer some such extension as happens under the
            strokes of a hammer) is (as far as I can perceive) certain and
            determined, and makes the bodies to return one from the other with a
            relative velocity, which is in a given ratio to that relative
            velocity with which they met. This I tried in balls of wool, made up
            tightly, and strongly compressed. For, first, by letting go the
            pendulous bodies, and measuring their reflexion, I determined the
            quantity of their elastic force; and then, according to this force,
            estimated the reflexions that ought to happen in other cases of
            congress. And with this computation other experiments made
            afterwards did accordingly agree; the balls always receding one from
            the other with a relative velocity, which was to the relative
            velocity with which they met as about 5 to 9. Balls of steel
            returned with almost the same velocity: those of cork with a
            velocity something less; but in balls of glass the proportion was as
            about 15 to 16. And thus the third Law, so far as it regards
            percussions and reflexions, is proved by a theory exactly agreeing
            with experience.
        

        
            In attractions, I briefly demonstrate the thing after this manner.
            Suppose an obstacle is interposed to hinder the congress of any two
            bodies A, B, mutually attracting one the other: then if either body,
            as A, is more attracted towards the other body B, than that other
            body B is towards the first body A, the obstacle will be more
            strongly urged by the pressure of the body A than by the pressure of
            the body B, and therefore will not remain in equilibrio: but the
            stronger pressure will prevail, and will make the system of the two
            bodies, together with the obstacle, to move directly towards
            the parts on which B lies; and in free spaces, to go forward in
            infinitum with a motion perpetually accelerated; which is
            absurd and contrary to the first Law. For, by the first Law, the
            system ought to persevere in its state of rest, or of moving
            uniformly forward in a right line: and therefore the bodies must
            equally press the obstacle, and be equally attracted one by the
            other. I made the experiment on the loadstone and iron. If these,
            placed apart in proper vessels, are made to float by one another in
            standing water, neither of them will propel the other; but, by being
            equally attracted, they will sustain each other's pressure, and rest
            at last in an equilibrium.
        

        
            So the gravitation betwixt the earth and its parts is mutual. Let
            the earth FI be cut by any plane EG into two parts EGF and EGI, and
            their [image: Mathematical Principles of Natural Philosophy figure: 93]
            weights one towards the other
            will be mutually equal. For if by another plane HK, parallel to the
            former EG, the greater part EGI is cut into two parts EGKH and HKI,
            whereof HKI is equal to the part EFG, first cut off, it is evident
            that the middle part EGKH, will have no propension by its proper
            weight towards either side, but will hang as it were, and rest in an
            equilibrium betwixt both. But the one extreme part HKI will with its
            whole weight bear upon and press the middle part towards the other
            extreme part EGF; and therefore the force with which EGI, the sum of
            the parts HKI and EGKH, tends towards the third part EGF, is equal
            to the weight of the part HKI, that is, to the weight of the third
            part EGF. And therefore the weights of the two parts EGI and EGF,
            one towards the other, are equal, as I was to prove. And indeed if
            those weights were not equal, the whole earth floating in the
            non-resisting aether would give way to the greater weight, and,
            retiring from it, would be carried off in infinitum.
        

        
            And as those bodies are equipollent in the congress and reflexion,
            whose velocities are reciprocally as their innate forces, so in the
            use of mechanic instruments those agents are equipollent, and
            mutually sustain each the contrary pressure of the other, whose
            velocities, estimated according to the determination of the forces,
            are reciprocally as the forces.
        

        
            So those weights are of equal force to move the arms of a balance;
            which during the play of the balance are reciprocally as their
            velocities upwards and downwards; that is, if the ascent or descent
            is direct, those weights are of equal force, which are reciprocally
            as the distances of the points at which they are suspended from the
            axis of the balance; but if they are turned aside by the
            interposition of oblique planes, or other obstacles, and made to
            ascend or descend obliquely, those bodies will be equipollent, which
            are reciprocally as the heights of their ascent and descent taken
            according to the perpendicular; and that on account of the
            determination of gravity downwards.
        

        
            
            And in like manner in the pully, or in a
            combination of pullies, the force of a hand drawing the rope
            directly, which is to the weight, whether ascending directly or
            obliquely, as the velocity of the perpendicular ascent of the weight
            to the velocity of the hand that draws the rope, will sustain the
            weight.
        

        
            In clocks and such like instruments, made up from a combination of
            wheels, the contrary forces that promote and impede the motion of
            the wheels, if they are reciprocally as the velocities of the parts
            of the wheel on which they are impressed, will mutually sustain the
            one the other.
        

        
            The force of the screw to press a body is to the force of the hand
            that turns the handles by which it is moved as the circular velocity
            of the handle in that part where it is impelled by the hand is to
            the progressive velocity of the screw towards the pressed body.
        

        
            The forces by which the wedge presses or drives the two parts of
            the wood it cleaves are to the force of the mallet upon the wedge as
            the progress of the wedge in the direction of the force impressed
            upon it by the mallet is to the velocity with which the parts of the
            wood yield to the wedge, in the direction of lines perpendicular to
            the sides of the wedge. And the like account is to be given of all
            machines.
        

        
            The power and use of machines consist only in this, that by
            diminishing the velocity we may augment the force, and the contrary:
            from whence in all sorts of proper machines, we have the solution of
            this problem; To move a given weight with a given power,
            or with a given force to overcome any other given resistance. For if
            machines are so contrived that the velocities of the agent and
            resistant are reciprocally as their forces, the agent will just
            sustain the resistant, but with a greater disparity of velocity will
            overcome it. So that if the disparity of velocities is so great as
            to overcome all that resistance which commonly arises either from
            the attrition of contiguous bodies as they slide by one another, or
            from the cohesion of continuous bodies that are to be separated, or
            from the weights of bodies to be raised, the excess of the force
            remaining, after all those resistances are overcome, will produce an
            acceleration of motion proportional thereto, as well in the parts of
            the machine as in the resisting body. But to treat of mechanics is
            not my present business. I was only willing to show by those
            examples the great extent and certainty of the third Law of motion.
            For if we estimate the action of the agent from its force and
            velocity conjunctly, and likewise the reaction of the impediment
            conjunctly from the velocities of its several parts, and from the
            forces of resistance arising from the attrition, cohesion, weight,
            and acceleration of those parts, the action and reaction in the use
            of all sorts of machines will be found always equal to one another.
            And so far as the action is propagated by the intervening
            instruments, and at last impressed upon the resisting body, the
            ultimate determination of the action will be always contrary to the
            determination of the reaction.
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    Book 1.1


    
        Section I.

        
            
                Of the method of first and last ratios of quantities,
                by the help whereof we demonstrate the propositions that follow.
            
        

    


    
        Lemma I.

            
                
                    Quantities, and the ratios of quantities, which in any finite
                    time converge continually to equality, and before the end of
                    that time approach nearer the one to the other than by any given
                    difference, become ultimately equal.
                
            

        


        
            If you deny it, suppose them to be ultimately unequal, and let D be
            their ultimate difference. Therefore they cannot approach nearer to
            equality than by that given difference D; which is against the
            supposition.
        

    


    
        Lemma ii.
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                If in any figure AacE, terminated by the right lines
                Aa, AE, and the curve acE, there be inscribed any
                number of parallelograms Ab, Be, Cd, &c.,
                comprehended under equal bases AB, BC, CD, &c.,
                and the sides, Bb, Cc, Dd, &c., parallel to one
                side Aa of the figure; and the parallelograms
                aKbl, bLcm, cMdn, &c., are completed. Then if the breadth
                of those parallelograms be supposed to be diminished, and their
                number to be augmented in infinitum; I say, that the
                ultimate ratios which the inscribed figure AKbLcMdD,
                the circumscribed figure AalbmcndoE, and curvilinear
                figure AabcdE, will have to one another, are ratios of
                equality.
              
            

        

        
            For the difference of the inscribed and circumscribed figures is
            the sum of the parallelograms Kl, Lm, Mu,
            Do, that is (from the equality of all their bases), the
            rectangle under one of their bases Kb and the sum of their
            altitudes Aa, that is, the rectangle ABla. But
            this rectangle, because its breadth AB is
            supposed diminished in infinitum, becomes less than any
            given space. And therefore (by Lem. I) the figures inscribed and
            circumscribed become ultimately equal one to the other; and much
            more will the intermediate curvilinear figure be ultimately equal to
            either.    Q.E.D.
        

    

    
        Lemma iii.

            
                The same ultimate ratios are also ratios of equality, when the, breadths,
                AB, BC, DC, &c., of the parallelograms are unequal, and are all diminished
                in infinitum.
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            For suppose AF equal to the greatest breadth, and complete the
            parallelogram FAaf. This parallelogram will be greater than
            the difference of the inscribed and circumscribed figures; but,
            because its breadth AF is diminished in infinitum, it will
            be come less than any given rectangle.   Q.E.D.
        

        
            Cor. 1. Hence the ultimate sum of those
            evanescent parallelograms will in all parts coincide with the
            curvilinear figure.
        

        
            Cor. 2. Much more will the rectilinear
            figure comprehended under the chords of the evanescent arcs ab,
            bc, cd, &c., ultimately coincide with the curvilinear
            figure.
        

        
            Cor. 3. And also the circumscribed
            rectilinear figure comprehended under the tangents of the same arcs.
        

        
            Cor. 4 And therefore these ultimate figures
            (as to their perimeters acE) are not rectilinear, but
            curvilinear limits of rectilinear figures.
        

    

    
        Lemma iv.
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                If in two figures AacE, PprT,
                you inscribe (as before) two ranks of parallelograms, an equal number in each
                rank, and, when their breadths are diminished in infinitum,
                the ultimate ratios of the parallelograms in one figure to those
                in the other, each to each respectively, are the same; I say,
                that those two figures AacE, PprT, are to one another in that same ratio.
            

        

        
            For as the parallelograms in the one are severally to the
            parallelograms in the other, so (by composition) is the sum of all
            in the one to the sum of all in the other; and so is the one figure
            to the other; because (by Lem. III) the former figure to the former
            sum, and the latter figure to the latter sum, are both in the ratio
            of equality.   Q.E.D.
        

        
            Cor. Hence if two quantities of any kind
            are any how divided into an equal number of parts, and those
            parts, when their number is augmented, and their
            magnitude diminished in infinitum, have a given ratio one
            to the other, the first to the first, the second to the second, and
            so on in order, the whole quantities will be one to the other in
            that same given ratio. For if, in the figures of this Lemma, the
            parallelograms are taken one to the other in the ratio of the parts,
            the sum of the parts will always be as the sum of the
            parallelograms; and therefore supposing the number of the
            parallelograms and parts to be augmented, and their magnitudes
            diminished in infinitum, those sums will be in the
            ultimate ratio of the parallelogram in the one figure to the
            correspondent parallelogram in the other; that is (by the
            supposition), in the ultimate ratio of any part of the one quantity
            to the correspondent part of the other.
        

    

    
        Lemma V.

            
                
                    In similar figures, all sorts of homologous sides, whether
                    curvilinear or rectilinear, are proportional; and the areas are
                    in the duplicate ratio of the homologous sides.
                
            

        


    
        Lemma vi.
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                If any arc ACB, given in position is subtended by
                its chord AB, and in any point A, in the
                middle of the continued curvature, is touched by a right line
                AD, produced both ways; then if the points A and B approach
                one another and meet, I say, the angle BAD, contained
                between, the chord and the tangent, will be diminished in
                infinitum, and ultimately will vanish.
            

        

        
            For if that angle does not vanish, the arc ACB will contain with
            the tangent AD an angle equal to a rectilinear angle; and therefore
            the curvature at the point A will not be continued, which is against
            the supposition.
        

    

    
        Lemma vii.

            
                
                    The same things being supposed, I say that the ultimate ratio
                    of the arc, chord, and tangent, any one to any other, is the
                    ratio of equality.
                
            

        

        
            For while the point B approaches towards the point A, consider
            always AB and AD as produced to the remote points b and d,
            and parallel to the secant BD draw bd: and let the arc Acb
            be always similar to the arc ACB. Then, supposing the points A and B
            to coincide, the angle dAb will vanish, by the
            preceding Lemma; and therefore the right lines Ab, Ad
            (which are always finite), and the intermediate arc Acb,
            will coincide, and become equal among themselves. Wherefore, the
            right lines AB, AD, and the intermediate arc
            ACB (which are always proportional to the former), will vanish, and
            ultimately acquire the ratio of equality.   Q.E.D.
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            Cor. 1. Whence if through B we draw BF
            parallel to the tangent, always cutting any right line AF passing
            through A in F, this line BF will be ultimately in the ratio of
            equality with the evanescent arc ACB; because, completing the
            parallelogram AFBD, it is always in a ratio of equality with AD.
        

        
            Cor. 2. And if through B and A more right
            lines are drawn, as BE, BD, AF, AG, cutting the tangent AD and its
            parallel BF; the ultimate ratio of all the abscissas AD, AE, BF, BG,
            and of the chord and arc AB, any one to any other, will be the ratio
            of equality.
        

        
            Cor. 3. And therefore in all our reasoning
            about ultimate ratios, we may freely use any one of those lines for
            any other.
        

    

    
        Lemma viii.

            
                If the right lines AR, BR, with the arc ACB,
                the chord AB, and the tangent AD, constitute
                three triangles RAB, RACB, RAD, and the points A and
                B approach and meet: I say, that the ultimate form of these
                evanescent triangles is that of similitude, and their ultimate
                ratio that of equality.
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            For while the point B approaches towards the point A, consider
            always AB, AD, AR, as produced to the remote points b, d,
            and r, and rbd as drawn parallel to RD, and let
            the arc Acb be always similar to the arc ACB. Then
            supposing the points A and B to coincide, the angle bAd
            will vanish; and therefore the three triangles rAb,
            rAcb, rAd (which are always
            finite), will coincide, and on that account become both similar and
            equal. And therefore the triangles RAB, RACB, RAD, which are always
            similar and proportional to these, will ultimately be come both
            similar and equal among themselves.   Q.E.D.
        

        
            Cor. And hence in all reasonings about
            ultimate ratios, we may indifferently use any one of those triangles
            for any other.
        

    

    
        Lemma ix.

            
                If a right line AE, and a curve Line ABC,
                both given by position, cut each other in a given angle, A;
                and to that right line, in another given angle, BD, CE are
                ordinately applied, meeting the curve in B, C; and the
                points B and C together approach towards and
                meet in the point A: I say, that the areas of the
                triangles ABD, ACE, will ultimately be one to the other
                in the duplicate ratio of the sides.
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            For while the points B, C, approach towards the point A, suppose
            always AD to be produced to the remote points d and e,
            so as Ad, Ae may be proportional to AD, AE; and
            the ordinates db, ec, to be drawn parallel to
            the ordinates DB and EC, and meeting AB and AC produced in b
            and c. Let the curve Abc be similar to the curve
            ABC, and draw the right line Ag so as to touch both curves
            in A, and cut the ordinates DB, EC, db, ec, in F, G, f,
            g. Then, supposing the length Ae to remain the same,
            let the points B and C meet in the point A; and the angle cAg
            vanishing, the curvilinear areas Abd, Ace will
            coincide with the rectilinear areas Afd, Age; and
            therefore (by Lem. V) will be one to the other in the duplicate
            ratio of the sides Ad, Ae. But the areas ABD, ACE
            are always proportional to these areas; and so the sides AD, AE are
            to these sides. And therefore the areas ABD, ACE are ultimately one
            to the other in the duplicate ratio of the sides AD, AE.
              Q.E.D.
        

    

    
        Lemma X.

            
                
                    The spaces which a body describes by any finite force urging
                    it, whether that force is determined and immutable, or is
                    continually augmented or continually diminished, are in the very
                    beginning of the motion one to the other in the duplicate ratio
                    of the times.
                
            

        

        
            Let the times be represented by the lines AD, AE, and the
            velocities generated in those times by the ordinates DB, EC. The
            spaces described with these velocities will be as the areas ABD,
            ACE, described by those ordinates, that is, at the very beginning of
            the motion (by Lem. IX), in the duplicate ratio of the times AD, AE.
              Q.E.D.
        

        
            Cor. 1. And hence one may easily infer,
            that the errors of bodies describing similar parts of similar
            figures in proportional times, are nearly as the squares of the
            times in which they are generated; if so be these errors are
            generated by any equal forces similarly applied to the bodies, and
            measured by the distances of the bodies from those places of the
            similar figures, at which, without the action of those forces, the
            bodies would have arrived in those proportional times.
        

        
            Cor. 2. But the errors that are generated
            by proportional forces, similarly applied to the bodies at similar
            parts of the similar figures, are as the forces and the squares of
            the times conjunctly.
        

        
            Cor. 3. The same thing is to be understood
            of any spaces whatsoever described by bodies urged with different
            forces; all which, in the very beginning of the motion, are as the
            forces and the squares of the times conjunctly.
        

        
            Cor. 4. And
            therefore the forces are as the spaces described in the very
            beginning of the motion directly, and the squares of the times
            inversely.
        

        
            Cor. 5. And the squares of the times are as
            the spaces described directly, and the forces inversely.
        

    

    
        Scholium.

        

        
            If in comparing indetermined quantities of different sorts one with
            another, any one is said to be as any other directly or inversely,
            the meaning is, that the former is augmented or diminished in the
            same ratio with the latter, or with its reciprocal. And if any one
            is said to be as any other two or more directly or inversely, the
            meaning is, that the first is augmented or diminished in the ratio
            compounded of the ratios in which the others, or the reciprocals of
            the others, are augmented or diminished. As if A is said to be as B
            directly, and C directly, and D inversely, the meaning is, that A is
            augmented or diminished in the same ratio with B
            x C x 1

            D, that is to say, that A
            and BC

            D are one to the other in a given ratio.
        

    

    
        Lemma xi.

            
                
                    The evanescent subtense of the angle of contact, in
                    all curves which at the point of contact have a finite
                    curvature, is ultimately in the duplicate ratio of the subtense
                    of the conterminate arc.
                
            

        

        [image: Mathematical Principles of Natural Philosophy figure: 100]

        
            Case 1. Let AB be that arc, AD its tangent,
            BD the subtense of the angle of contact perpendicular on the
            tangent, AB the subtense of the arc. Draw BG perpendicular to the
            subtense AB, and AG to the tangent AD, meeting in G; then let the
            points D, B, and G, approach to the points d, b, and g,
            and suppose J to be the ultimate intersection of the lines BG, AG,
            when the points D, B, have come to A. It is evident that the
            distance GJ may be less than any assignable. But (from the nature of
            the circles passing through the points A, B, G, A, b, g)
            AB2 = AG x BD, and Ab2
            = Ag x bd; and therefore the ratio of AB² to Ab²
            is compounded of the ratios of AG to Ag, and of Bd
            to bd. But because GJ may be assumed of less length than
            any assignable, the ratio of AG to Ag may be such as to
            differ from the ratio of equality by less than any assignable
            difference; and therefore the ratio of AB² to Ab² may be
            such as to differ from the ratio of BD to bd by less than
            any assignable difference. There fore, by Lem. I, the ultimate ratio
            of AB² to Ab² is the same with the ultimate ratio of BD to
            bd.   Q.E.D.
        

        
            Case 2. Now let BD be inclined to AD in any
            given angle, and the ultimate ratio of BD to bd will
            always be the same as before, and therefore the same with the ratio
            of AB² to Ab².   Q.E.D.
        

        
            Case 3. And if we
            suppose the angle D not to be given, but that the right line BD
            converges to a given point, or is determined by any other condition
            whatever; nevertheless the angles D, d, being determined
            by the same law, will always draw nearer to equality, and approach
            nearer to each other than by any assigned difference, and therefore,
            by Lem. I, will at last be equal; and therefore the lines BD, bd
            are in the same ratio to each other as before.   Q.E.D.
        

        
            Cor. 1. Therefore since the tangents AD, Ad,
            the arcs AB, Ab, and their sines, BC, bc, become
            ultimately equal to the chords AB, Ab, their squares will
            ultimately become as the subtenses BD, bd.
        

        
            Cor. 2. Their squares are also ultimately
            as the versed sines of the arcs, bisecting the chords, and
            converging to a given point. For those versed sines are as the
            subtenses BD, bd.
        

        
            Cor. 3. And therefore the versed sine is in
            the duplicate ratio of the time in which a body will describe the
            arc with a given velocity.
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            Cor. 4. The rectilinear triangles ADB, Adb
            are ultimately in the triplicate ratio of the sides AD, Ad,
            and in a sesquiplicate ratio of the sides DB, db; as being
            in the ratio compounded of the sides AD to DB, and of Ad to
            db. So also the triangles ABC, Abc are ultimately
            in the triplicate ratio of the sides BC, bc. What I call
            the sesquiplicate ratio is the subduplicate of the triplicate, as
            being compounded of the simple and subduplicate ratio.
        

        
            Cor. 5. And because DB, db are
            ultimately parallel and in the duplicate ratio of the lines AD, Ad,
            the ultimate curvilinear areas ADB, Adb will be (by the
            nature of the parabola) two thirds of the rectilinear triangles ADB,
            Adb and the segments AB, Ab will be one third of
            the same triangles. And thence those areas and those segments will
            be in the triplicate ratio as well of the tangents AD, Ad,
            as of the chords and arcs AB, AB.
        

    

    
        Scholium.

        

        
            But we have all along supposed the angle of contact to be neither
            infinitely greater nor infinitely less than the angles of contact
            made by circles and their tangents; that is, that the curvature at
            the point A is neither infinitely small nor infinitely great, or
            that the interval AJ is of a finite magnitude. For DB may be taken
            as AD³: in which case no circle can be drawn through the point A,
            between the tangent AD and the curve AB, and therefore the angle of
            contact will be infinitely less than those of circles. And by a like
            reasoning, if DB be made successfully as AD4, AD5,
            AD6, AD7, &c., we shall have a series of
            angles of contact, proceeding in infinitum, wherein every
            succeeding term is infinitely less than the preceding. And
            if DB be made successively as AD2; AD3/2,
            AD4/3, AD5/4, AD6/5,
            AD7/6, &c., we shall have another infinite
            series of angles of contact, the first of which is of the same sort
            with those of circles, the second infinitely greater, and every
            succeeding one infinitely greater than the preceding. But between
            any two of these angles another series of intermediate angles of
            contact may be interposed, proceeding both ways in infinitum,
            wherein every succeeding angle shall be infinitely greater or
            infinitely less than the preceding. As if between the terms AD2
            and AD3 there were interposed the series AD13/6,
            AD11/5, AD9/4, AD7/3,
            AD5/2, AD8/3, AD11/4,
            AD14/5, AD17/6 &c.
            And again, between any two angles of this series, a new series of
            intermediate angles may be interposed, differing from one another by
            infinite intervals. Nor is nature confined to any bounds.
        

        
            Those things which have been demonstrated of curve lines, and the
            superfices which they comprehend, may be easily applied to the curve
            superfices and contents of solids. These Lemmas are premised to
            avoid the tediousness of deducing perplexed demonstrations ad
            absurdum, according to the method of the ancient geometers.
            For demonstrations are more contracted by the method of
            indivisibles: but because the hypothesis of indivisibles seems
            somewhat harsh, and therefore that method is reckoned less
            geometrical, I chose rather to reduce the demonstrations of the
            following propositions to the first and last sums and ratios of
            nascent and evanescent quantities, that is, to the limits of those
            sums and ratios; and so to premise, as short as I could, the
            demonstrations of those limits. For hereby the same thing is
            performed as by the method of indivisibles; and now those principles
            being demonstrated, we may use them with more safety. Therefore if
            hereafter I should happen to consider quantities as made up of
            particles, or should use little curve lines for right ones, I would
            not be understood to mean indivisibles, but evanescent divisible
            quantities: not the sums and ratios of determinate parts, but always
            the limits of sums and ratios; and that the force of such
            demonstrations always depends on the method laid down in the
            foregoing Lemmas.
        

        
            Perhaps it may be objected, that there is no ultimate proportion,
            of evanescent quantities; because the proportion, before the
            quantities have vanished, is not the ultimate, and when they are
            vanished, is none. But by the same argument, it may be alledged,
            that a body arriving at a certain place, and there stopping, has no
            ultimate velocity: because the velocity, before the body comes to
            the place, is not its ultimate velocity; when it has arrived, is
            none. But the answer is easy; for by the ultimate velocity is meant
            that with which the body is moved, neither before it arrives at its
            last place and the motion ceases, nor after, but at the very instant
            it arrives; that is, that velocity with which the body arrives at
            its last place, and with which the motion ceases. And in like
            manner, by the ultimate ratio of evanescent quantities is to be
            understood the ratio of the quantities not
            before they vanish, nor afterwards, but with which they vanish. In
            like manner the first ratio of nascent quantities is that with which
            they begin to be. And the first or last sum is that with which they
            begin and cease to be (or to be augmented or diminished). There is a
            limit which the velocity at the end of the motion may attain, but
            not exceed. This is the ultimate velocity. And there is the like
            limit in all quantities and proportions that begin and cease to be.
            And since such limits are certain and definite, to determine the
            same is a problem strictly geometrical. But whatever is geometrical
            we may be allowed to use in determining and demonstrating any other
            thing that is likewise geometrical.
        

        
            It may also be objected, that if the ultimate ratios of evanescent
            quantities are given, their ultimate magnitudes will be also given:
            and so all quantities will consist of indivisibles, which is
            contrary to what Euclid has demonstrated concerning
            incommensurables, in the 10th Book of his Elements. But this
            objection is founded on a false supposition. For those ultimate
            ratios with which quantities vanish are not truly the ratios of
            ultimate quantities, but limits towards which the ratios of
            quantities decreasing without limit do always converge; and to which
            they approach nearer than by any given difference, but never go
            beyond, nor in effect attain to, till the quantities are diminished
            in infinitum. This thing will appear more evident in
            quantities infinitely great. If two quantities, whose difference is
            given, be augmented in infinitum, the ultimate ratio of
            these quantities will be given, to wit, the ratio of equality; but
            it does not from thence follow, that the ultimate or greatest
            quantities themselves, whose ratio that is, will be given. Therefore
            if in what follows, for the sake of being more easily understood, I
            should happen to mention quantities as least, or evanescent, or
            ultimate, you are not to suppose that quantities of any determinate
            magnitude are meant, but such as are conceived to be always
            diminished without end.
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Book 1.2




    
        Section ii.

        Of the Invention of Centripetal Forces.

    


    
        Proposition i. Theorem I.

            
                
                    The areas, which revolving bodies describe by radii drawn to an
                    immovable centre of force do lie in the same immovable planes, and
                    are proportional to the times in which they are described.
                
            

        

        
            For suppose the time to be divided into equal parts, and in the first
            part of that time let the body by its innate force describe the right
            line AB In the second part of that time, the same would (by Law I.),
            if not hindered, proceed directly to c, along the line Bc
            equal to AB; so that by the radii AS, BS, cS, drawn to the
            centre, the equal areas ASB, BSc, would be described.
            
            [image: Mathematical Principles of Natural Philosophy figure: 105]
            But when the body is arrived at
            B, suppose that a centripetal force acts at once with a great impulse;
            and, turning aside the body from the right line Bc, compels
            it afterwards to continue its motion along the right line BC. Draw cC
            parallel to BS meeting BC in C; and at the end of the second part of
            the time, the body (by Cor. I. of the Laws) will be found in C, in the
            same plane with the triangle ASB. Join SC, and, because SB and Cc
            are parallel, the triangle SBC will be equal to the triangle SBc,
            and therefore also to the triangle SAB. By the like argument, if the
            centripetal force acts successively in C, D, E. &c.; and makes the
            body, in each single particle of time, to describe the right lines CD,
            DE, EF, &c., they will all lie in the same plane; and the triangle
            SCD will be equal to the triangle SBC, and SDE to SCD, and SEF to SDE.
            And therefore, in equal times, equal areas are described in one
            immovable plane: and, by composition, any sums SADS, SAFS, of those
            areas, are one to the other as the times in which they are described.
            Now let the number of those triangles be augmented, and their breadth
            diminished in infinitum; and (by Cor. 4, Lem. III.) their
            ultimate perimeter ADF will be a curve line: and therefore the
            centripetal force, by which the body is perpetually drawn back from
            the tangent of this curve, will act continually; and any described
            areas SADS, SAFS, which are always proportional to the times of
            description, will, in this case also, be proportional to those times.
              Q.E.D.
        

        
            Cor. 1. The velocity of a body attracted
            towards an immovable centre, in spaces void of resistance, is
            reciprocally as the perpendicular let fall from that centre on the
            right line that touches the orbit. For the velocities in those places
            A, B, C, D, E, are as the bases AB, BC, CD, DE, EF, of equal
            triangles; and these bases are reciprocally as the perpendiculars let
            fall upon them.
        

        
            Cor. 2. If the chords AB, BC of two arcs,
            successively described in equal times by the same body, in spaces void
            of resistance, are completed into a parallelogram ABCV, and the
            diagonal BV of this parallelogram; in the position which it ultimately
            acquires when those arcs are diminished in infinitum, is
            produced both ways, it will pass through the centre of force.
        

        
            Cor. 3. If the chords AB, BC, and DE, EF, of
            arcs described in equal times, in spaces void
            of resistance, are completed into the parallelograms ABCV, DEFZ; the
            forces in B and E are one to the other in the ultimate ratio of the
            diagonals BV, EZ, when those arcs are diminished in infinitum. For the
            motions BC and EF of the body (by Cor. 1 of the Laws) are compounded
            of the motions Bc, BV, and Ef, EZ: but BV and EZ,
            which are equal to Cc and Ff, in the demonstration
            of this Proposition, were generated by the impulses of the centripetal
            force in B and E, and are therefore proportional to those impulses.
        

        
            Cor. 4. The forces by which bodies, in spaces
            void of resistance, are drawn back from rectilinear motions, and
            turned into curvilinear orbits, are one to another as the versed sines
            of arcs described in equal times; which versed sines tend to the
            centre of force, and bisect the chords when those arcs are diminished
            to infinity. For such versed sines are the halves of the diagonals
            mentioned in Cor. 3.
        

        
            Cor. 5. And therefore those forces are to the
            force of gravity as the said versed sines to the versed sines
            perpendicular to the horizon of those parabolic arcs which projectiles
            describe in the same time.
        

        
            Cor. 6. And the same things do all hold good
            (by Cor. 5 of the Laws), when the planes in which the bodies are
            moved, together with the centres of force which are placed in those
            planes, are not at rest, but move uniformly forward in right lines.
        

    

    
        Proposition ii. Theorem ii.

            
                
                    Every body that moves in any curve line described in a plane,
                    and by a radius, drawn to a point either immovable, or moving
                    forward with an uniform rectilinear motion, describes about that
                    point areas proportional to the times, is urged by a centripetal
                    force directed to that point.
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            Case. 1. For every body that moves in a curve
            line, is (by Law 1) turned aside from its rectilinear course by the
            action of some force that impels it. And that force by which the body
            is turned off from its rectilinear course, and is made to describe, in
            equal times, the equal least triangles SAB, SBC, SCD, &c., about
            the immovable point S (by Prop. XL. Book 1, Elem. and Law II), acts in
            the place B, according to the direction of a line parallel to
            cC, that is, in the direction of the line BS, and in the
            place C, according to the direction of a line parallel to dD,
            that is, in the direction of the line CS, &c.; and therefore acts
            always in the direction of lines tending to the immovable point S.
              Q.E.D.
        

        
            Case. 2. And (by Cor. 5 of the Laws) it is
            indifferent whether the superfices in which a body describes a
            curvilinear figure be quiescent, or moves together with the body, the
            figure described, and its point S, uniformly forward in right lines.
        

        
            Cor. 1. In non-resisting spaces or mediums,
            if the areas are not proportional to the times, the forces are not
            directed to the point in which the radii meet; but deviate therefrom in
            consequentia, or towards the parts to which the motion is
            directed, if the description of the areas is accelerated; but in
            antecedentia, if retarded.
        

        
            Cor. 2. And even in resisting mediums, if the
            description of the areas is accelerated, the directions of the forces
            deviate from the point in which the radii meet; towards the parts to
            which the motion tends.
        

    

    
        Scholium.


        
            A body may be urged by a centripetal force compounded of several
            forces; in which case the meaning of the Proposition is, that the
            force which results out of all tends to the point S. But if any force
            acts perpetually in the direction of lines perpendicular to the
            described surface, this force will make the body to deviate from the
            plane of its motion: but will neither augment nor diminish the
            quantity of the described surface, and is therefore to be neglected in
            the composition of forces.
        

    

    
        Proposition iii. Theorem iii.

            
                
                    Every body, that by a radius drawn to the centre of another
                    body, how soever moved, describes areas about that centre
                    proportional to the times, is urged by a force compounded out of
                    the centripetal force tending to that other body, and of all the
                    accelerative force by which that other body is impelled.
                
            

        

        
            Let L represent the one, and T the other body; and (by Cor. 6 of the
            Laws) if both bodies are urged in the direction of parallel lines, by
            a new force equal and contrary to that by which the second body T is
            urged, the first body L will go on to describe about the other body T
            the same areas as before: but the force by which that other body T was
            urged will be now destroyed by an equal and contrary force; and
            therefore (by Law I.) that other body T, now left to itself, will
            either rest, or move uniformly forward in a right line: and the first
            body L impelled by the difference of the forces, that is, by the force
            remaining, will go on to describe about the other body T areas
            proportional to the times. And therefore (by Theor. II.) the
            difference of the forces is directed to the other body T as its
            centre.   Q.E.D
        

        
            Cor. 1. Hence if the
            one body L, by a radius drawn to the other body T, describes areas
            proportional to the times; and from the whole force, by which the
            first body L is urged (whether that force is simple, or, according to
            Cor. 2 of the Laws, compounded out of several forces), we subduct (by
            the same Cor.) that whole accelerative force by which the other body
            is urged; the whole remaining force by which the first body is urged
            will tend to the other body T, as its centre.
        

        
            Cor. 2. And, if these areas are proportional
            to the times nearly, the remaining force will tend to the other body T
            nearly.
        

        
            Cor. 3. And vice versa, if the
            remaining force tends nearly to the other body T, those areas will be
            nearly proportional to the times.
        

        
            Cor. 4. If the body L, by a radius drawn to
            the other body T, describes areas, which, compared with the times, are
            very unequal; and that other body T be either at rest, or moves
            uniformly forward in a right line: the action of the centripetal force
            tending to that other body T is either none at all, or it is mixed and
            compounded with very powerful actions of other forces: and the whole
            force compounded of them all, if they are many, is directed to another
            (immovable or moveable) centre. The same thing obtains, when the other
            body is moved by any motion whatsoever; provided that centripetal
            force is taken, which remains after subducting that whole force acting
            upon that other body T.
        

    

    
        Scholium.


        
            Because the equable description of areas indicates that a centre is
            respected by that force with which the body is most affected, and by
            which it is drawn back from its rectilinear motion, and retained in
            its orbit; why may we not be allowed, in the following discourse, to
            use the equable description of areas as an indication of a centre,
            about which all circular motion is performed in free spaces?
        

    

    
        Proposition iv. Theorem iv.

            
                
                    The centripetal forces of bodies, which by equable motions
                describe different circles, tend to the centres of the same
                circles; and are one to the other as the squares of the arcs
                described in equal times applied to the radii of the circles.
                
            

        

        
            These forces tend to the centres of the circles (by Prop. II., and
            Cor. 2, Prop. I.), and are one to another as the versed sines of the
            least arcs described in equal times (by Cor. 4, Prop. I.); that is, as
            the squares of the same arcs applied to the diameters of the circles
            (by Lem. VII.); and therefore since those arcs are as arcs described
            in any equal times, and the diameters are as the radii, the forces
            will be as the squares of any arcs described in the same time applied
            to the radii of the circles.   Q.E.D.
        

        
            Cor. 1. Therefore, since those arcs are as
            the velocities of the bodies the centripetal
            forces are in a ratio compounded of the duplicate ratio of the
            velocities directly, and of the simple ratio of the radii inversely.
        

        
            Cor. 2. And since the periodic times are in a
            ratio compounded of the ratio of the radii directly, and the ratio of
            the velocities inversely, the centripetal forces, are in a ratio
            compounded of the ratio of the radii directly, and the duplicate ratio
            of the periodic times inversely.
        

        
            Cor. 3. Whence if the periodic times are
            equal, and the velocities therefore as the radii, the centripetal
            forces will be also as the radii; and the contrary.
        

        
            Cor. 4. If the periodic times and the
            velocities are both in the subduplicate ratio of the radii, the
            centripetal forces will be equal among themselves; and the contrary.
        

        
            Cor. 5. If the periodic times are as the
            radii, and therefore the velocities equal, the centripetal forces will
            be reciprocally as the radii; and the contrary.
        

        
            Cor. 6. If the periodic times are in the
            sesquiplicate ratio of the radii, and therefore the velocities
            reciprocally in the subduplicate ratio of the radii, the centripetal
            forces will be in the duplicate ratio of the radii inversely; and the
            contrary.
        

        
            Cor. 7. And universally, if the periodic time
            is as any power Rn of the radius R, and therefore the
            velocity reciprocally as the power Rn−1 of the radius, the
            centripetal force will be reciprocally as the power R2n−1
            of the radius; and the contrary.
        

        
            Cor. 8. The same things all hold concerning
            the times, the velocities, and forces by which bodies describe the
            similar parts of any similar figures that have their centres in a
            similar position with those figures; as appears by applying the
            demonstration of the preceding cases to those. And the application is
            easy, by only substituting the equable description of areas in the
            place of equable motion, and using the distances of the bodies from
            the centres instead of the radii.
        

        
            Cor. 9. From the same demonstration it
            likewise follows, that the arc which a body, uniformly revolving in a
            circle by means of a given centripetal force, describes in any time,
            is a mean proportional between the diameter of the circle, and the
            space which the same body falling by the same given force would
            descend through in the same given time.
        

    

    
        Scholium.


        
            The case of the 6th Corollary obtains in the celestial bodies (as Sir
            Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed);
            and therefore in what follows, I intend to treat more at large of
            those things which relate to centripetal force decreasing in a
            duplicate ratio of the distances from the centres.
        

        
            Moreover, by means of the preceding Proposition and its Corollaries,
            we may discover the proportion of a
            centripetal force to any other known force, such as that of gravity.
            For if a body by means of its gravity revolves in a circle concentric
            to the earth, this gravity is the centripetal force of that body. But
            from the descent of heavy bodies, the time of one entire revolution,
            as well as the arc described in any given time, is given (by Cor. 9 of
            this Prop.). And by such propositions, Mr. Huygens, in his excellent
            book De Horologio Oscillatorio, has compared the force of
            gravity with the centrifugal forces of revolving bodies.
        

        
            The preceding Proposition may be likewise demonstrated after this
            manner. In any circle suppose a polygon to be inscribed of any number
            of sides. And if a body, moved with a given velocity along the sides
            of the polygon, is reflected from the circle at the several angular
            points, the force, with which at every reflection it strikes the
            circle, will be as its velocity: and therefore the sum of the forces,
            in a given time, will be as that velocity and the number of
            reflections conjunctly: that is (if the species of the polygon be
            given), as the length described in that given time, and increased or
            diminished in the ratio of the same length to the radius of the
            circle; that is, as the square of that length applied to the radius;
            and therefore the polygon, by having its sides diminished in
            infinitum, coincides with the circle, as the square of the arc
            described in a given time applied to the radius. This is the
            centrifugal force, with which the body impels the circle; and to which
            the contrary force, wherewith the circle continually repels the body
            towards the centre, is equal.
        

    

    
        Proposition v. Problem I.

            
                
                    There being given, in any places, the velocity with which a
                    body describes a given figure, by means of forces directed to some
                    common centre: to find that centre.
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            Let the three right lines PT, TQV, VR touch the figure described in
            as many points, P, Q, R, and meet in T and V. On the tangents erect
            the perpendiculars PA, QB, RC, reciprocally proportional to the
            velocities of the body in the points P, Q, R, from which the
            perpendiculars were raised; that is, so that PA may be to QB as the
            velocity in Q, to the velocity in P, and QB to RC as the velocity in R
            to the velocity in Q. Through the ends A, B, C, of the perpendiculars
            draw AD, DBE, EC, at right angles, meeting in D and E: and the right
            lines TD, VE produced, will meet in S, the centre required.
        

        
            For the perpendiculars let fall from the centre S on the tangents PT,
            QT, are reciprocally as the velocities of the bodies in the points P
            and Q (by Cor. 1, Prop. I.), and therefore,
            by construction, as the perpendiculars AP, BQ directly; that is, as
            the perpendiculars let fall from the point D on the tangents. Whence
            it is easy to infer that the points S, D, T, are in one right line.
            And by the like argument the points S, E, V are also in one right
            line; and therefore the centre S is in the point where the right lines
            TD, VE meet.   Q.E.D.
        

    

    
        Proposition vi. Theorem V.

            
                
                    In a space void of resistance, if a body revolves in any orbit
                    about an immovable centre, and in the least time describes any arc
                    just then nascent; and the versed sine of that arc is supposed to
                    be drawn bisecting the chord, and produced passing through the
                    centre of force: the centripetal force in the middle of the arc
                    will be as the versed sine directly and the square of the time
                    inversely.
                
            

        

        
            For the versed sine in a given time is as the force (by Cor. 4, Prop.
            1); and augmenting the time in any ratio, because the arc will be
            augmented in the same ratio, the versed sine will be augmented in the
            duplicate of that ratio (by Cor. 2 and 3, Lem. XI.), and therefore is
            as the force and the square of the time. Subduct on both sides the
            duplicate ratio of the time, and the force will be as the versed sine
            directly, and the square of the time inversely.   Q.E.D.
        

        
            And the same thing may also be easily demonstrated by Corol. 4, Lem. X. 
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            Cor. 1. If a body P revolving about the
            centre S describes a curve line APQ, which a right line ZPR touches in
            any point P; and from any other point Q of the curve, QR is drawn
            parallel to the distance SP, meeting the tangent in R; and QT is drawn
            perpendicular to the distance SP; the centripetal force will be
            reciprocally as the solid SP2
            x QT2

            QR, if the solid be taken of that magnitude which it
            ultimately acquires when the points P and Q coincide. For QR is equal
            to the versed sine of double the arc QP, whose middle is P: and double
            the triangle SQP, or SP x QT is
            proportional to the time in which that double arc is described; and
            therefore may be used for the exponent of the time.
        

        
            Cor. 2. By a like reasoning, the centripetal
            force is reciprocally as the solid SY2
            x QP2

            QR; if SY is a perpendicular from the centre of force on PR
            the tangent of the orbit. For the rectangles SY x
            QP and SP x QT are equal.
        

        
            Cor. 3. If the orbit
            is either a circle, or touches or cuts a circle concentrically, that
            is, contains with a circle the least angle of contact or section,
            having the same curvature and the same radius of curvature at the
            point P; and if PV be a chord of this circle, drawn from the body
            through the centre of force; the centripetal force will be
            reciprocally as the solid SP2 x PV.
            For PV is QP2

            QR.
        

        
            Cor. 4. The same things being supposed, the
            centripetal force is as the square of the velocity directly, and that
            chord inversely. For the velocity is reciprocally as the perpendicular
            SY, by Cor. 1. Prop. I.
        

        
            Cor. 5. Hence if any curvilinear figure APQ
            is given, and therein a point S is also given, to which a centripetal
            force is perpetually directed, that law of centripetal force may be
            found, by which the body P will be continually drawn back from a
            rectilinear course, and being detained in the perimeter of that
            figure, will describe the same by a perpetual revolution. That is, we
            are to find, by computation, either the solid 
            SP2 x QT2

            QR or the solid SP2 x PV,
            reciprocally proportional to this force. Examples of this we shall
            give in the following Problems.
        

    

    
        Proposition vii. Problem ii.

            
                
                    If a body revolves in the circumference of a circle; it is
                    proposed to find the law of centripetal force directed to any given point.
                
            

        

        [image: Mathematical Principles of Natural Philosophy figure: 111]

        
            Let VQPA be the circumference of the circle; S the given point to
            which as to a centre the force tends; P the body moving in the
            circumference; Q the next place into which it is to move; and PRZ the
            tangent of the circle at the preceding place. Through the point S draw
            the chord PV, and the diameter VA of the circle: join AP, and draw QT
            perpendicular to SP, which produced, may meet the tangent PR in Z; and
            lastly, through the point Q, draw LR parallel to SP, meeting the
            circle in L, and the tangent PZ in R. And, because of the similar
            triangles ZQR, ZTP, VPA, we shall have RP², that is, QRL to QT² as AV²
            to PV². And therefore
            QRL x SP2

            AV2 is equal to QT². Multiply those equals by
            SP2
QR,
            and the points P and Q coinciding, for RL write PV; then we shall have
            SP2
            x PV3

            AV2 = SP2
            x QT2

            QR. And therefore (by Cor 1 and 5, Prop. VI.)
             the centripetal force is reciprocally as 
            SP2 x PV3

            AV2; that is (because
            AV² is given), reciprocally as the square of the distance or altitude
            SP, and the cube of the chord PV conjunctly.   Q.E.I.
        

        The same otherwise.

        
            On the tangent PR produced let fall the perpendicular SY; and
            (because of the similar triangles SYP, VPA), we shall have AV to PV as
            SP to SY, and therefore SP
            x PV

            AV = SY, and 
            SP2 x PV3

            AV2 = SY2
            x PV. And therefore (by Corol. 3 and 5, Prop. VI),
            the centripetal force is reciprocally as SP2
            x PV3

            AV2; that is (because AV
            is given), reciprocally as SP2 x PV3.  
            Q.E.I.
        

        
            Cor. 1. Hence if the given point S, to which
            the centripetal force always tends, is placed in the circumference of
            the circle, as at V, the centripetal force will be reciprocally as the
            quadrato-cube (or fifth power) of the altitude SP.
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            Cor. 2. The force by which the body P in the
            circle APTV revolves about the centre of force S is to the force by
            which the same body P may revolve in the same circle, and in the same
            periodic time, about any other centre of force R, as RP2
            x SP to the cube of the right line SG, which, from the first
            centre of force S is drawn parallel to the distance PR of the body
            from the second centre of force R, meeting the tangent PG of the orbit
            in G. For by the construction of this Proposition, the former force is
            to the latter as RP2 x PT3
            to SP2 x PV3 ; that
            is, as SP x RP2 to 
            SP3 x PV3

            PT3; or (because of the
            similar triangles PSG, TPV) to SG³.
        

        
            Cor. 3. The force by which the body P in any
            orbit revolves about the centre of force S, is to the force by which
            the same body may revolve in the same orbit, and the same periodic
            time, about any other centre of force R, as the solid SP
            x RP2, contained under the distance of the body
            from the first centre of force S, and the square of its distance from
            the second centre of force R, to the cube of the right line SG, drawn
            from the first centre of the force S, parallel to the distance RP of
            the body from the second centre of force R, meeting the tangent PG of
            the orbit in G. For the force in this orbit at any point P is the same
            as in a circle of the same curvature.
        

    

    
        
            Proposition viii. Problem iii.

            
                If a body moves in the semi-circumference PQA; it is
                proposed to find the law of the centripetal force tending to a
                point S, so remote, that all the lines PS, RS drawn
                thereto, may be taken for parallels.
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            From C, the centre of the semi-circle, let the semi-diameter CA he
            drawn, cutting the parallels at right angles in M and N, and join CP.
            Because of the similar triangles CPM, PZT, and RZQ, we shall have CP²
            to PM² as PR² to QT²; and, from the nature of the circle, PR² is equal
            to the rectangle QR x (RN + QN), or, the
            points P, Q, coinciding, to the rectangle QR x 2PM.
            Therefore CP² is to PM² as QR x 2PM to QT²;
            and QT2

            QR = 2PM3

            CP2, and 
            QT2 x SP2

            QR = 2PM3 x
            SP2

            CP2. And therefore (by Corol. 1 and 5;
            Prop. VI.), the centripetal force is reciprocally as 
            2PM3 x SP2

            CP2; that is (neglecting the given ratio 
            2SP2

            CP2 ), reciprocally as PM³.   Q.E.I.
        

        And the same thing is likewise easily inferred from the preceding Proposition.

    

    
        Scholium.


        
            And by a like reasoning, a body will be moved in an ellipsis, or even
            in an hyperbola, or parabola, by a centripetal force which is
            reciprocally ae the cube of the ordinate directed to an infinitely
            remote centre of force.
        

    

    
        Proposition ix. Problem iv.

            
                If a body revolves in a spiral PQS, cutting all the
                radii SP, SQ, &c., in a given angle; it is proposed
                to find the law of the centripetal force tending to the centre of
                that spiral.
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            Suppose the indefinitely small angle PSQ to be given; because, then,
            all the angles are given, the figure SPRQT will be given in specie.
            Therefore the ratio QT

            QR is also given, and QT2

            QR is as QT, that is (because the figure is given in specie),
            as SP. But if the angle PSQ is any way changed, the right line QR,
            subtending the angle of contact QPR (by Lemma
            XI) will be changed in the duplicate ratio of PR or QT. Therefore the
            ratio QT2

            QR remains the same as before, that is, as SP. And 
            QT2 x SP2

            QR is as SP³, and therefore (by Corol. 1 and 5, Prop. VI) the
            centripetal force is reciprocally as the cube of the distance SP.
              Q.E.I.
        

        The same otherwise.

        

        
            The perpendicular SY let fall upon the tangent, and the chord PV of
            the circle concentrically cutting the spiral, are in given ratios to
            the height SP; and therefore SP³ is as SY² x PV, that is (by Corol. 3
            and 5, Prop. VI) reciprocally as the centripetal force.
        

    

    
        Lemma xii.

            
                
                    All parallelograms circumscribed about any conjugate diameters
                    of a given ellipsis or hyperbola are equal among themselves.
                
            

        

        This is demonstrated by the writers on the conic sections.

    

    
        Proposition x. Problem V.

            
                
                    If a body revolves in an ellipsis; it is proposed to find the
                    law of the centripetal force tending to the centre of the ellipsis.
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            Suppose CA, CB to be semi-axes of the ellipsis; GP, DK, conjugate
            diameters; PF, QT perpendiculars to those diameters; Qv an
            ordinate to the diameter GP; and if the parallelogram QvPR be
            completed, then (by the properties of the conic sections) the
            rectangle PvG will be to Qv² as PC² to CD²; and
            (because of the similar triangles QvT, PCF), Qv² to
            QT² as PC² to PF²; and, by composition, the ratio of PvG to
            QT² is compounded of the ratio of PC² to CD², and of the ratio of PC²
            to PF², that is, vG to QT2

            Pv as PC² to 
            CD2 x PF2

            PC2. Put QR for Pv,
            and (by Lem. XII) BC x CA for CD x PF; also (the points P and Q
            coinciding) 2PC for vG; and multiplying the
            extremes and means together, we shall have QT2
            x PC2

            QR equal to 2BC2
            x CA2

            PC. Therefore (by Cor. 5, Prop. VI),
            the centripetal force is reciprocally as 2BC2
            x CA2

            PC; that is (because 2BC2
            x CA2 is given), reciprocally as 
            1

            PC; that is, directly as the distance
            PC.   QEI.
        

        The same otherwise.

        

        
            In the right line PG on the other side of the point T, take the point
            u so that Tu may be equal to Tv; then take
            uV, such as shall be to vG as DC² to PC². And
            because Qv² is to PvG as DC² to PC² (by the conic
            sections), we shall have QV2=Pv x uV.
            Add the rectangle uPv to both sides, and the square
            of the chord of the arc PQ will be equal to the rectangle VPv;
            and therefore a circle which touches the conic section in P, and
            passes through the point Q, will pass also through the point V. Now
            let the points P and Q meet, and the ratio of uV to vG,
            which is the same with the ratio of DC² to PC², will become the ratio
            of PV to PG, or PV to 2PC; and therefore PV will be equal to 
            2DC2

            PC. And therefore the force by which
            the body P revolves in the ellipsis will be reciprocally as 
            2DC2

            PC x PF2 (by Cor. 3, Prop
            VI); that is (because 2DC² x PF² is given) directly as PC.
              Q.E.I.
        

        
            Cor. 1. And therefore the force is as the
            distance of the body from the centre of the ellipsis; and, vice
            versa, if the force is as the distance, the body will move in
            an ellipsis whose centre coincides with the centre of force, or
            perhaps in a circle into which the ellipsis may degenerate.
        

        
            Cor. 2. And the periodic times of the
            revolutions made in all ellipses whatsoever about the same centre will
            be equal. For those times in similar ellipses will be equal (by Corol.
            3 and 8, Prop. IV); but in ellipses that have their greater axis
            common, they are one to another as the whole areas of the ellipses
            directly, and the parts of the areas described in the same time
            inversely; that is, as the lesser axes directly, and the velocities of
            the bodies in their principal vertices inversely; that is, as those
            lesser axes directly, and the ordinates to the same point of the
            common axes inversely; and therefore (because of the equality of the
            direct and inverse ratios) in the ratio of equality.
        

    

    
        Scholium.


        
            If the ellipsis, by having its centre removed to an infinite
            distance, de generates into a parabola, the body will move in this
            parabola; and the force, now tending to a
            centre infinitely remote, will become equable. Which is Galileo's
            theorem. And if the parabolic section of the cone (by changing the
            inclination of the cutting plane to the cone) degenerates into an
            hyperbola, the body will move in the perimeter of this hyperbola,
            having its centripetal force changed into a centrifugal force. And in
            like manner as in the circle, or in the ellipsis, if the forces are
            directed to the centre of the figure placed in the abscissa, those
            forces by increasing or diminishing the ordinates in any given ratio;
            or even by changing the angle of the inclination of the ordinates to
            the abscissa, are always augmented or diminished in the ratio of the
            distances from the centre; provided the periodic times remain equal;
            so also in all figures whatsoever, if the ordinates are augmented or
            diminished in any given ratio, or their inclination is any way
            changed, the periodic time remaining the same, the forces directed to
            any centre placed in the abscissa are in the several ordinates
            augmented or diminished in the ratio of the distances from the centre.
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The Mathematical Principles of Natural Philosophy
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Book 1.3



    
        Section iii.

        Of the motion of bodies in eccentric conic sections.

    

    
        Proposition xi. Problem vi.

            
                
                    If a body revolves in an ellipsis; it is required to find
                    the law of the centripetal force tending to the focus of the ellipsis.
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            Let S be the focus of the ellipsis. Draw SP cutting the diameter DK
            of the ellipsis in E, and the ordinate Qv in x; and
            complete the parallelogram QxPR. It is evident that EP is
            equal to the greater semi-axis AC: for drawing HI from the other focus
            H of the ellipsis parallel to EC, because CS, CH are equal, ES, EI
            will be also equal; so that EP is the half sum of PS, PI, that is
            (because of the parallels HI, PR, and the equal angles IPR, HPZ), of
            PS, PH, which taken together are equal to the whole axis 2AC. Draw QT
            perpendicular to SP, and putting L for the principal latus rectum of
            the ellipsis (or for  
            2BC2

            AC ), we shall have L x QR to L x Pv
            as QR to Pv, that is, as PE or AC to PC; and L x Pv
            to GvP as L to Gv; and GvP to Qv²
            as PC² to CD²; and by (Corol. 2, Lem. VII) the points Q and P
            coinciding, Qv² is to Qx² in the ratio of equality;
            and Qx² or Qv² is to QT² as EP² to PF², that is, as
            CA² to PF², or (by Lem. XII) as CD² to CB². And compounding all those
            ratios together, we shall have L x QR to
            QT² as AC x L x PC² x CD², or 2CB²
            x PC² x CD² to PC x Gv x CD² x CB²,
            or as 2PC to Gv. But the points Q and P coinciding, 2PC and Gv
            are equal. And therefore the quantities L x QR
            and QT², proportional to these, will be also equal. Let those equals
            be drawn into SP2

            QR, and L x SP² will become equal to 
            SP2 x QT2

            QR. And therefore (by Corol. 1 and 5, Prop. VI) the
            centripetal force is reciprocally as L x SP², that is, reciprocally in
            the duplicate ratio of the distance SP.   Q.E.I.
        

        The same otherwise.

        
            Since the force tending to the centre of the ellipsis, by which the
            body P may revolve in that ellipsis, is (by Corol. 1, Prop. X.) as the
            distance CP of the body from the centre C of the ellipsis; let CE be
            drawn parallel to the tangent PR of the ellipsis; and the force by
            which the same body P may revolve about any other point's of the
            ellipsis, if CE and PS intersect in E, will be as 
            PE3

            SP2 (by Cor. 3, Prop. VII.);
            that is, if the point S is the focus of the ellipsis, and therefore PE
            be given as SP² reciprocally.   Q.E.I.
        

        
            With the same brevity with which we reduced the fifth Problem to the
            parabola, and hyperbola, we might do the like here: but because of the
            dignity of the Problem and its use in what follows. I shall confirm
            the other cases by particular demonstrations.
        

    

    
        Proposition xii. Problem vii.

            
                
                    Suppose a body to move in an hyperbola; it is required to
                    find the law of the centripetal force tending to the focus of that
                    figure.
                
            

        

        
            Let CA, CB be the semi-axes of the hyperbola; PG, KD other conjugate
            diameters; PF a perpendicular to the diameter KD; and Qv an
            ordinate to the diameter GP. Draw SP cutting the diameter DK in E, and
            the ordinate Qv in x, and complete the
            parallelogram QRPx. It is evident that EP is equal to the
            semi-transverse axis AC; for drawing HI, from the other focus H of the
            hyperbola, parallel to EC, because CS, CH are equal, ES, EI will be
            also equal; so that EP is the half difference 
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            of PS, PI; that is (because of the parallels
            IH, PR, and the equal angles IPR, HPZ), of PS, PH, the difference of
            which is equal to the whole axis 2AC. Draw QT perpendicular to SP; and
            putting L for the principal latus rectum of the hyperbola (that is,
            for 2BC2

            AC, we shall have L x QR to L x Pv
            as QR to Pv, or Px to Pv, that is (because
            of the similar triangles Pxv, PEC), as PE to PC, or AC to PC.
            And L x Pv will be to Gv x Pv as L to Gv;
            and (by the properties of the conic sections) the rectangle GvP
            is to Qv² as PC² to CD²; and by (Cor. 2, Lem. VII.), Qv²
            to Qx² the points Q and P coinciding, becomes a ratio of
            equality; and Qx² or Qv² is to QT² as EP² to PF²,
            that is, as CA² to PF², or (by Lem. XII.) as CD² to CB²: and,
            compounding all those ratios together, we shall have L x QR to QT² as
            AC x L x PC² x CD², or 2CB² x PC² x CD² to PC x Gv x CD² x
            CB², or as 2PC to Gv. But the points P and Q coinciding, 2PC
            and Gv are equal. And therefore the quantities L x QR and
            QT², proportional to them, will be also equal. Let those equals be
            drawn into SP2

            QR, and we shall have L x SP² equal to 
            SP2 x QT2

            QR. And therefore (by Cor. I and 5, Prop. VI.) the
            centripetal force is reciprocally as L x SP², that is, reciprocally in
            the duplicate ratio of the distance SP.   Q.E.I.
        


        The same otherwise.


        
            Find out the force tending from the centre C of the hyperbola. This
            will be proportional to the distance CP. But from thence (by Cor. 3,
            Prop. VII.) the force tending to the focus S will be as 
            PE3

            SP2, that is, because PE is
            given reciprocally as SP².   Q.E.I.
        

        
             And the same way may it be demonstrated,
            that the body having its centripetal changed into a centrifugal force,
            will move in the conjugate hyperbola.
        

    

    
        Lemma xiii.

            
                
                    The latus rectum of a parabola belonging to any vertex is
                    quadruple the distance of that vertex from the focus of the
                    figure.
                
            

        

        This is demonstrated by the writers on the conic sections.

    

    
        Lemma xiv.

            
                
                    The perpendicular, let fall from the focus of a parabola on its
                    tangent, is a mean proportional between the distances of the focus
                    from the point of contact, and from the principal vertex of the figure.
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            For, let AP be the parabola, S its focus, A its principal vertex, P
            the point of contact, PO an ordinate to the principal diameter, PM the
            tangent meeting the principal diameter in M, and SN the perpendicular
            from the focus on the tangent: join AN, and because of the equal lines
            MS and SP, MN and NP, MA and AO, the right lines AN, OP, will be
            parallel; and thence the triangle SAN will be right-angled at A, and
            similar to the equal triangles SNM, SNP; therefore PS is to SN as SN
            to SA.   Q.E.D.
        

        
            Cor. 1. PS² is to SN² as PS to SA.

        
            Cor. 2. And because SA is given, SN² will be
            as PS.
        

        
            Cor. 3. And the concourse of any tangent PM,
            with the right line SN. drawn from the focus perpendicular on the
            tangent, falls in the right line AN that touches the parabola in the
            principal vertex.
        

    

    
        Proposition xiii. Problem viii.

            
                
                    If a body moves in the perimeter of a parabola; it is required
                    to find the law of the centripetal force tending to the focus of that figure.
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            Retaining the construction of the preceding Lemma, let P be the body
            in the perimeter of the parabola; and from the place Q, into which it
            is next to succeed, draw QR parallel and QT perpendicular to SP, as
            also Qv parallel to the tangent, and meeting the diameter PG
            in v, and the distance SP in x.
            Now, because of the similar triangles Pxv, SPM, and of the
            equal sides SP, SM of the one, the sides Px or QR and Pv
            of the other will be also equal. But (by the conic sections) the
            square of the ordinate Qv is equal to the rectangle under the
            latus rectum and the segment Pv of the diameter; that is (by
            Lem. XIII.), to the rectangle 4PS x Pv, or 4PS x QR; and the
            points P and Q coinciding, the ratio of Qv to Qx (by
            Cor. 2, Lem. VII.,) becomes a ratio of equality. And therefore Qx²,
            in this case, becomes equal to the rectangle 4PS x QR. But (because of
            the similar triangles QxT, SPN), Qx² is to QT² as
            PS² to SN², that is (by Cor. 1, Lem. XIV.), as PS to SA; that is, as
            4PS x QR to 4SA x QR, and therefore (by Prop. IX. Lib. V., Elem.) QT²
            and 4SA x QR are equal. Multiply these equals by 
            SP2

            QR, and SP2 x
            QT2

            QR will become equal to SP² x 4SA: and therefore (by Cor. 1
            and 5, Prop. VI.), the centripetal force is reciprocally as SP² x 4SA;
            that is, because 4SA is given; reciprocally in the duplicate ratio of
            the distance SP.   Q.E.I.
        

        
            Cor. 1. From the three last Propositions it
            follows, that if any body P goes from the place P with any velocity in
            the direction of any right line PR, and at the same time is urged by
            the action of a centripetal force that is reciprocally proportional to
            the square of the distance of the places from the centre, the body
            will move in one of the conic sections, having its focus in the centre
            of force; and the contrary. For the focus, the point of contact, and
            the position of the tangent, being given, a conic section may be
            described, which at that point shall have a given curvature. But the
            curvature is given from the centripetal force and velocity of the body
            being given; and two orbits, mutually touching one the other, cannot
            be described by the same centripetal force and the same velocity.
        

        
            Cor. 2. If the velocity with which the body
            goes from its place P is such, that in any infinitely small moment of
            time the lineola PR may be thereby described; and the centripetal
            force such as in the same time to move the same body through the space
            QR; the body will move in one of the conic sections, whose principal
            latus rectum is the quantity QT2

            QR in its ultimate state, when the
            lineolae PR, QR are diminished in infinitum. In these
            Corollaries I consider the circle as an ellipsis; and I except the
            case where the body descends to the centre in a right line.
        

    

    
        Proposition xiv. Theorem vi.

            
                
                    If several bodies revolve about one common centre, and the
                    centripetal force is reciprocally in the duplicate ratio of the
                    distance of places from the centre; I say, that the principal
                    latera recta of their orbits are in the duplicate ratio of the areas,
                    which the bodies by radii drawn to the centre describe in the same time.
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            For (by Cor. 2, Prop. XIII) the latus rectum L is equal to the
            quantity QT2

            QR in its ultimate state when the
            points P and Q coincide. But the lineola QR in a given time is as the
            generating centripetal force; that is (by supposition), reciprocally
            as SP² . And therefore QT2

            QR is as QT² x SP²; that is, the latus
            rectum L is in the duplicate ratio of the area QT x SP.
              Q.E.D.
        

        
            Cor. Hence the whole area of the ellipsis,
            and the rectangle under the axes, which is proportional to it, is in
            the ratio compounded of the subduplicate ratio of the latus rectum,
            and the ratio of the periodic time. For the whole area is as the area
            QT x SP, described in a given time, multiplied by the periodic time.
        

    

    
        Proposition xv. Theorem vii.

            
                
                    The same things being supposed, I say, that the periodic times
                    in ellipses are in the sesquiplicate ratio of their greater axes.
                
            

        

        
            For the lesser axis is a mean proportional between the greater axis
            and the latus rectum; and, therefore, the rectangle under the axes is
            in the ratio compounded of the subduplicate ratio of the latus rectum
            and the sesquiplicate ratio of the greater axis. But this rectangle
            (by Cor. 3. Prop. XIV) is in a ratio compounded of the subduplicate
            ratio of the latus rectum, and the ratio of the periodic time. Subduct
            from both sides the subduplicate ratio of the latus rectum, and there
            will remain the sesquiplicate ratio of the greater axis, equal to the
            ratio of the periodic time.   Q.E.D.
        

        
            Cor. Therefore the periodic times in ellipses
            are the same as in circles whose diameters are equal to the greater
            axes of the ellipses.
        

    

    
        Proposition xvi. Theorem viii.

            
                
                    The same things being supposed, and right lines being drawn to
                    the bodies that shall touch the orbits, and perpendiculars being
                    let fall on those tangents from the common focus; I say, that the
                    velocities of the bodies are in a ratio compounded of the ratio of
                    the perpendiculars inversely, and the subduplicate ratio of the
                    principal latera recta directly.
                
            

        

        
            From the focus S draw SY perpendicular to the tangent PR, and the
            velocity of the body P will be reciprocally in the subduplicate ratio
            of the quantity SY2

            L. For that velocity is as the
            infinitely small arc PQ described 
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            in a given moment of time, that is (by Lem. VII), as the tangent PR;
            that is (because of the proportionals PR to QT, and SP to SY), as
            SP x QT

            SY; or as SY reciprocally, and SP x QT
            directly; but SP x QT is as the area described in the given time, that
            is (by Prop. XIV), in the subduplicate ratio of the latus rectum.
              Q.E.D.
        

        
            Cor. 1. The principal latera recta are in a
            ratio compounded of the duplicate ratio of the perpendiculars and the
            duplicate ratio of the velocities.
        

        
            Cor. 2. The velocities of bodies, in their
            greatest and least distances from the common focus, are in the ratio
            compounded of the ratio of the distances inversely, and the
            subduplicate ratio of the principal latera recta directly. For those
            perpendiculars are now the distances.
        

        
            Cor. 3. And therefore the velocity in a conic
            section, at its greatest or least distance from the focus, is to the
            velocity in a circle, at the same distance from the centre, in the
            subduplicate ratio of the principal latus rectum to the double of that
            distance.
        

        
            Cor. 4. The velocities of the bodies
            revolving in ellipses, at their mean distances from the common focus,
            are the same as those of bodies revolving in circles, at the same
            distances; that is (by Cor. 6, Prop. IV), reciprocally in the
            subduplicate ratio of the distances. For the perpendiculars are now
            the lesser semi-axes, and these are as mean proportionals between the
            distances and the latera recta. Let this ratio inversely be compounded
            with the subduplicate ratio of the latera recta directly, and we shall
            have the subduplicate ratio of the distance inversely.
        

        
            Cor. 5. In the same figure, or even in
            different figures, whose principal latera recta are equal, the
            velocity of a body is reciprocally as the perpendicular let fall from
            the focus on the tangent.
        

        
            Cor. 6. In a parabola, the velocity is
            reciprocally in the subduplicate ratio of the distance of the body
            from the focus of the figure; it is more variable in the ellipsis, and
            less in the hyperbola, than according to this ratio. For (by Cor. 2,
            Lem. XIV) the perpendicular let fall from the focus on the tangent of
            a parabola is in the subduplicate ratio of the distance. In the
            hyperbola the perpendicular is less variable; in the ellipsis more.
        

        
            Cor. 7. In a parabola, the velocity of a body
            at any distance from the focus is to the velocity of a body revolving
            in a circle, at the same distance from the centre, in the subduplicate
            ratio of the number 2 to 1; in the ellipsis it is less, and in the
            hyperbola greater, than according to this ratio, (by Cor. 2 of this
            Prop.) the velocity at the vertex of a parabola is in this
            ratio, and (by Cor. 6 of this Prop. and Prop. IV) the same proportion
            holds in all distances. And hence, also, in a parabola, the velocity
            is everywhere equal to the velocity of a body revolving in a circle at
            half the distance; in the ellipsis it is less, and in the hyperbola
            greater.
        

        
            Cor. 8. The velocity of a body revolving in
            any conic section is to the velocity of a body revolving in a circle,
            at the distance of half the principal latus rectum of the section, as
            that distance to the perpendicular let fall from the focus on the
            tangent of the section. This appears from Cor. 5.
        

        
            Cor. 9. Wherefore since (by Cor. 6, Prop.
            IV), the velocity of a body revolving in this circle is to the
            velocity of another body revolving in any other circle reciprocally in
            the subduplicate ratio of the distances; therefore, ex aequo,
            the velocity of a body revolving in a conic section will be to the
            velocity of a body revolving in a circle at the same distance as a
            mean proportional between that common distance, and half the principal
            latus rectum of the section, to the perpendicular let fall from the
            common focus upon the tangent of the section.
        

    

    
        Proposition xvii. Problem ix.

            
                
                    Supposing the centripetal force to be reciprocally proportional
                    to the squares of the distances of places from the centre, and
                    that the absolute quantity of that force is known; it is required
                    to determine the line which a body will describe that is let go
                    from a given place with a given velocity in, the direction of a given right line.
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            Let the centripetal force tending to the point S be such as will make
            the body p revolve in any given orbit pq; and
            suppose the velocity of this body in the place p is known.
            Then from the place P suppose the body P to be let with a given
            velocity in the direction of the line PR; but by virtue of a
            centripetal force to be immediately turned aside from that right line
            into the conic section PQ. This, the right line PR will therefore
            touch in P. Suppose likewise that the right line pr touches
            the orbit pq in p, and if from S you suppose
            perpendiculars let fall on those tangents, the principal latus rectum
            of the conic section (by Cor. 1, Prop. XVI) will be to the principal
            latus rectum of that orbit in a ratio compounded of the duplicate
            ratio of the perpendiculars, and the duplicate ratio of the
            velocities; and is therefore given. Let this latus rectum be L; the
            focus S of the conic section is also given.
            Let the angle RPH be the complement of the angle RPS to two right; and
            the line PH, in which the other focus H is placed, is given by
            position. Let fall SK perpendicular on PH, and erect the conjugate
            semi-axis BC; this done, we shall have SP2
            − 2KPH + PH2 = SH2
            = 4CH2 = 4BH2
            − 4BC2 = (SP + PH2)
            − L x (SP + PH) = SP2 + 2SPH +
            PH2 − L x (SP + PH). Add on both sides 2KPH
            − SP2 − PH2 + L x (SP + PH), and we
            shall have L x (SP + PH) = 2SPH + 2KPH, or
            SP + PH to PH, as 2SP + 2KP to L. Whence PH is given both in length
            and position. That is, if the velocity of the body in P is such that
            the latus rectum L is less than 2SP + 2KP, PH will lie on the same
            side of the tangent PR with the line SP; and therefore the figure will
            be an ellipsis, which from the given foci S, H, and the principal axis
            SP + PH, is given also. But if the velocity of the body is so great,
            that the latus rectum L becomes equal to 2SP + 2KP, the length PH will
            be infinite; and therefore, the figure will be a parabola, which has
            its axis SH parallel to the line PK, and is thence given. But if the
            body goes from its place P with a yet greater velocity, the length PH
            is to be taken on the other side the tangent; and so the tangent
            passing between the foci, the figure will be an hyperbola having its
            principal axis equal to the difference of the lines SP and PH, and
            thence is given. For if the body, in these cases, revolves in a conic
            section so found, it is demonstrated in Prop. XI, XII, and XIII, that
            the centripetal force will be reciprocally as the square of the
            distance of the body from the centre of force S; and therefore we have
            rightly determined the line PQ, which a body let go from a given place
            P with a given velocity, and in the direction of the right line PR
            given by position, would describe with such a force.
              Q.E.F.
        

        
            Cor. 1. Hence in every conic section, from
            the principal vertex D, the latus rectum L, and the focus S given, the
            other focus H is given, by taking DH to DS as the latus rectum to the
            difference between the latus rectum and 4DS. For the proportion, SP +
            PH to PH as 2SP + 2KP to L, becomes, in the case of this Corollary, DS
            + DH to DH as 4DS to L, and by division DS to DH as 4DS − L to L.
        

        
            Cor. 2. Whence if the velocity of a body in
            the principal vertex D is given, the orbit may be readily found; to
            wit, by taking its latus rectum to twice the distance DS, in the
            duplicate ratio of this given velocity to the velocity of a body
            revolving in a circle at the distance DS (by Cor. 3, Prop. XVI.), and
            then taking DH to DS as the latus rectum to the difference between the
            latus rectum and 4DS.
        

        
            Cor. 3. Hence also if a body move in any
            conic section, and is forced out of its orbit by any impulse, you may
            discover the orbit in which it will afterwards pursue its course. For
            by compounding the proper motion of the body
            with that motion, which the impulse alone would generate, you will
            have the motion with which the body will go off from a given place of
            impulse in the direction of a right line given in position.
        

        
            Cor. 4. And if that body is continually
            disturbed by the action of some foreign force, we may nearly know its
            course, by collecting the changes which that force introduces in some
            points, and estimating the continual changes it will undergo in the
            intermediate places, from the analogy that appears in the progress of
            the series.
        

    

    
        Scholium.
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            If a body P, by means of a centripetal force tending to any given
            point R, move in the perimeter of any given conic section whose centre
            is C; and the law of the centripetal force is required: draw CG
            parallel to the radius RP, and meeting the tangent PG of the orbit in
            G; and the force required (by Cor. 1, and Schol. Prop. X., and Cor. 3,
            Prop. VII.) will be as CG3

            RP2.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 1.4



    
        Section iv.

        Of the finding of elliptic, parabolic, and hyperbolic orbits, from the focus given.

    

    
        Lemma xv.

            
                If from the two foci S, H, of any ellipsis or
                hyberbola, we draw to any third point V the right lines
                SV, HV, whereof one HV is equal to the principal axis
                of the figure, that is, to the axis in which the foci are
                situated, the other, SV, is bisected in T by
                the perpendicular TR let fall upon it; that
                perpendicular TR will somewhere touch the conic section:
                and, vice versa, if it does touch it, HV will
                be equal to the principal axis of the figure.
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            For, let the perpendicular TR cut the right line HV, produced, if
            need be, in R; and join SR. Because TS, TV are equal, therefore the
            right lines SR, VR, as well as the angles TRS, TRV, will be also
            equal. Whence the point R will be in the conic section, and the
            perpendicular TR, will touch the same; and the contrary.
              Q.E.D.
        

    

    
        
            Proposition xviii. Problem X.

            
                
                    From a focus and the principal axes given, to describe elliptic
                    and hyperbolic trajectories, which shall pass through given
                    points, and touch right lines given by position.
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            Let S be the common focus of the figures; AB the length of the
            principal axis of any trajectory; P a point through which the
            trajectory should pass; and TR a right line which it should touch.
            About the centre P, with the interval AB − SP, if the orbit is an
            ellipsis, or AB + SP, if the orbit is an hyperbola, describe the
            circle HG. On the tangent TR let fall the perpendicular ST, and
            produce the same to V, so that TV may be equal to ST; and about V as a
            centre with the interval AB describe the circle FH. In this manner,
            whether two points P, p, are given, or two tangents TR, tr,
            or a point P and a tangent TR, we are to describe two circles. Let H
            be their common intersection, and from the foci S, H, with the given
            axis describe the trajectory: I say, the thing is done. For (be cause
            PH + SP in the ellipsis, and PH − SP in the hyperbola, is equal to the
            axis) the described trajectory will pass through the point P, and (by
            the preceding Lemma) will touch the right line TR. And by the same
            argument it will either pass through the two points P, p, or
            touch the two right lines TR, tr.   Q.E.F.
        

    

    
        Proposition xix. Problem xi.

            
                
                    About a given focus, to describe a parabolic trajectory, which
                    shall pass through given points, and touch right lines given by position.
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            Let S be the focus, P a point, and TR a tangent of the trajectory to
            be described. About P as a centre, with the interval PS, describe the
            circle FG. From the focus let fall ST perpendicular on the tangent,
            and produce the same to V, so as TV may be equal to ST. After the same
            manner another circle fg is to be described, if another
            point p is given; or another point v is to be
            found, if another tangent tr is given; then draw the right
            line IF, which shall touch the two circles FG, fg, if two
            points P, p are given; or pass through the two points V, v,
            if two tangents TR, tr, are given: or touch the circle FG,
            and pass through the point V, if the point P and the tangent TR are
            given. On FI let fall the perpendicular SI, and bisect the same in K;
            and with the axis SK and principal vertex K describe a parabola: I say
            the thing is done. For this parabola (because SK is equal to IK, and
            SP to FP) will pass through the point P; and (by
            Cor. 3, Lem. XIV) because ST is equal to TV, and STR a right angle, it
            will touch the right line TR.   Q.E.F.
        

    

    
        Proposition xx. Problem xii.

            
                
                    About a given focus to describe any trajectory given in specie
                    which shall pass through given points, and touch right lines given by position.
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            Case 1. About the focus S it is required to
            describe a trajectory ABC, passing through two points B, C. Because
            the trajectory is given in specie, the ratio of the principal axis to
            the distance of the foci will be given. In that ratio take KB to BS,
            and LC to CS. About the centres B, C, with the intervals BK, CL,
            describe two circles; and on the right line KL, that touches the same
            in K and L, let fall the perpendicular SG; which cut in A and a,
            so that GA may be to AS, and Ga to aS, as KB to BS;
            and with the axis Aa, and vertices A, a, describe a
            trajectory: I say the thing is done. For let H be the other focus of
            the described figure, and seeing GA is to AS as Ga to aS,
            then by division we shall have Ga − GA, or Aa to aS
            − AS, or SH in the same ratio, and therefore in the ratio which the
            principal axis of the figure to be described has to the distance of
            its foci; and therefore the described figure is of the same species
            with the figure which was to be described. And since KB to BS, and LC
            to CS, are in the same ratio, this figure will pass through the points
            B, C, as is manifest from the conic sections.
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            Case 2. About the focus S it is required to
            describe a trajectory which shall somewhere touch two right lines TR,
            tr. From the focus on those tangents let fall the
            perpendiculars ST, St, which produce to V, v, so
            that TV, tv may be equal to TS, tS. Bisect Vv
            in O, and erect the indefinite perpendicular OH, and cut the right
            line VS infinitely produced in K and k, so that VK be to KS,
            and Vk to kS, as the principal axis of the
            trajectory to be described is to the distance of its foci. On the
            diameter Kk describe a circle cutting OH in H; and with the
            foci S, H, and principal axis equal to VH, describe a trajectory: I
            say, the thing is done. For bisecting Kk in X, and joining
            HX, HS, HV, Hv, because VK is to KS as Vk to kS;
            and by composition, as VK + Vk to KS + kS; and by
            division, as Vk − VK to kS − KS, that is, as 2VX to
            2KX, and 2KX to 2SX, and therefore as VX to HX and HX to SX, the
            triangles VXH, HXS will be similar; therefore VH will be to SH as VX
            to XH; and therefore as VK to KS. Wherefore VH, the principal axis of
            the described trajectory, has the same ratio to SH, the distance of
            the foci, as the principal axis of the
            trajectory which was to be described has to the distance of its foci;
            and is therefore of the same species. And seeing VH, vH are
            equal to the principal axis, and VS, vS are perpendicularly
            bisected by the right lines TR, tr, it is evident (by Lem.
            XV) that those right lines touch the described trajectory.
              Q.E.F.
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            Case. 3. About the focus S it is required to
            describe a trajectory, which shall touch a right line TR in a given
            Point R. On the right line TR let fall the perpendicular ST, which
            produce to V, so that TV may be equal to ST; join VR, and cut the
            right line VS indefinitely produced in K and k, so that VK
            may be to SK, and Vk to Sk, as the principal axis of
            the ellipsis to be described to the distance of its foci; and on the
            diameter Kk describing a circle, cut the right line VR
            produced in H; then with the foci S, H, and principal axis equal to
            VH, describe a trajectory: I say, the thing is done. For VH is to SH
            as VK to SK, and therefore as the principal axis of the trajectory
            which was to be described to the distance of its foci (as appears from
            what we have demonstrated in Case 2); and therefore the described
            trajectory is of the same species with that which was to be described;
            but that the right line TR, by which the angle VRS is bisected,
            touches the trajectory in the point R, is certain from the properties
            of the conic sections.   Q.E.F.
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            Case 4. About the focus S it is required to
            describe a trajectory APB that shall touch a right line TR, and pass
            through any given point P without the tangent, and shall be similar to
            the figure apb, described with the principal axis ab,
            and foci s, h. On the tangent TR let fall the perpendicular
            ST, which produce to V, so that TV may be equal to ST; and making the
            angles hsq, shq, equal to the angles VSP, SVP, about q
            as a centre, and with an interval which shall be to ab as SP
            to VS, describe a circle cutting the figure apb in p:
            [image: Mathematical Principles of Natural Philosophy figure: 128c]
            join sp, and draw SH such that it
            may be to sh as SP is to sp, and may make the
            angle PSH equal to the angle psh, and the angle VSH equal to
            the angle psq. Then with the foci S, H, and principal axis
            AB, equal to the distance VH, describe a conic section: I say, the
            thing is done; for if sv is drawn so that it shall be to
            sp as sh is to sq,
            and shall make the angle vsp equal to the angle hsq,
            and the angle vsh equal to the angle psq, the
            triangles svh, spq, will be similar, and therefore vh
            will be to pq as sh is to sq; that is
            (because of the similar triangles VSP, hsq), as VS is to SP,
            or as ab to pq. Wherefore vh and ab
            are equal. But, because of the similar triangles VSH, vsh,
            VH is to SH as vh to sh; that is, the axis of the
            conic section now described is to the distance of its foci as the axis
            ab to the distance of the foci sh; and therefore
            the figure now described is similar to the figure aph. But,
            because the triangle PSH is similar to the triangle psh,
            this figure passes through the point P; and because VH is equal to its
            axis, and VS is perpendicularly bisected by the right line TR, the
            said figure touches the right line TR.   Q.E.F
        

    

    
        Lemma xvi.

            
                
                    From three given points to draw to a fourth point that is not
                    given three right lines whose differences shall be either given, or none at all.
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            Case 1. Let the given points be A, B, C, and
            Z the fourth point which we are to find; because of the given
            difference of the lines AZ, BZ, the locus of the point Z will be an
            hyperbola whose foci are A and B, and whose principal axis is the
            given difference. Let that axis be MN. Taking PM to MA as MN is to AB,
            erect PR perpendicular to AB, and let fall ZR perpendicular to PR;
            then from the nature of the hyperbola, ZR will be to AZ as MN is to
            AB. And by the like argument, the locus of the point Z will be another
            hyperbola, whose foci are A, C, and whose principal axis is the
            difference between AZ and CZ; and QS a perpendicular on AC may be
            drawn, to which (QS) if from any point Z of this hyperbola a
            perpendicular ZS is let fall (this ZS), shall be to AZ as the
            difference between AZ and CZ is to AC. Wherefore the ratios of ZR and
            ZS to AZ are given, and consequently the ratio of ZR to ZS one to the
            other; and therefore if the right lines RP, SQ, meet in T, and TZ and
            TA are drawn, the figure TRZS will be given in specie, and the right
            line TZ, in which the point Z is somewhere placed, will be given in
            position. There will be given also the right line TA, and the angle
            ATZ; and because the ratios of AZ and TZ to ZS are given, their ratio
            to each other is given also; and thence will be given likewise the
            triangle ATZ, whose vertex is the point Z.   Q.E.I.
        

        
            Case 2. If two of the three lines, for
            example AZ and BZ, are equal, draw the right line TZ so as to bisect
            the right line AB; then find the triangle ATZ as above.
              Q.E.I.
        

        
            Case 3. If all the
            three are equal, the point Z will be placed in the centre of a circle
            that passes through the points A, B, C.   Q.E.I.
        

        
            This problematic Lemma is likewise solved in Apollonius's Book of
            Tactions restored by Vieta.
        

    

    
        Proposition xxi. Problem xiii.

            
                
                    About a given focus to describe a trajectory that shall pass
                    through given points and touch right lines given by position.
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            Let the focus S, the point P, and the tangent TR be given, and
            suppose that the other focus H is to be found. On the tangent let fall
            the perpendicular ST, which produce to Y, so that TY may be equal to
            ST, and YH will be equal to the principal axis. Join SP, HP, and SP
            will be the difference between HP and the principal axis. After this
            manner, if more tangents TR are given, or more points P, we shall
            always determine as many lines YH, or PH, drawn from the said points Y
            or P, to the focus H, which either shall be equal to the axes, or
            differ from the axes by given lengths SP; and therefore which shall
            either be equal among themselves, or shall have given differences;
            from whence (by the preceding Lemma), that other focus H is given. But
            having the foci and the length of the axis (which is either YH, or, if
            the trajectory be an ellipsis, PH + SP; or PH − SP, if it be an
            hyperbola), the trajectory is given.   Q.E.I.
        

    

    
        Scholium.


        
            When the trajectory is an hyperbola, I do not comprehend its
            conjugate hyperbola under the name of this trajectory. For a body
            going on with a continued motion can never pass out of one hyperbola
            into its conjugate hyperbola.
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            The case when three points are given is more readily solved thus. Let
            B, C, D, be the given points. Join BC, CD, and produce them to E, F,
            so as EB may be to EC as SB to SC; and FC to FD as SC to SD. On EF
            drawn and produced let fall the perpendiculars SG, BH, and in GS
            produced indefinitely take GA to AS, and Ga to aS,
            as HB is to BS; then A will be the vertex, and Aa the
            principal axis of the trajectory; which, according as GA is greater
            than, equal to, or less than AS. will be
            either an ellipsis, a parabola, or an hyperbola; the point a
            in the first case falling on the same side of the line GF as the point
            A; in the second, going off to an infinite distance; in the third,
            falling on the other side of the line GF. For if on GF the
            perpendiculars CI, DK are let fall, IC will be to HB as EC to EB; that
            is, as SC to SB; and by permutation, IC to SC as HB to SB, or as GA to
            SA. And, by the like argument, we may prove that KD is to SD in the
            same ratio. Wherefore the points B, C, D lie in a conic section
            described about the focus S, in such manner that all the right lines
            drawn from the focus S to the several points of the section, and the
            perpendiculars let fall from the same points on the right line GF, are
            in that given ratio.
        

        
            That excellent geometer M. De la Hire has solved this Problem much
            after the same way, in his Conics, Prop. XXV., Lib. VIII.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 1.5



    
        Section V.

        How the orbits are to be found when neither focus is given.


    

    
        Lemma xvii.

            
                If from any point P of a given conic section, to the
                four produced sides AB, CD, AC, DB, of any trapezium
                ABDC inscribed in that section, as many right lines PQ,
                PR, PS, PT are drawn in given angles, each line to each side;
                the rectangle PQ x PR of those on the opposite sides
                AB, CD, will be to the rectangle PS x PT of those on
                the other two opposite sides AC, BD, in a given ratio.
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            Case 1. Let us suppose, first, that the lines
            drawn to one pair of opposite sides are parallel to either of the
            other sides; as PQ and PR to the side AC, and PS and PT to the side
            AB. And farther, that one pair of the opposite sides, as AC and BD,
            are parallel betwixt themselves; then the right line which bisects
            those parallel sides will be one of the diameters of the conic
            section, and will likewise bisect RQ. Let O be the point in which RQ
            is bisected, and PO will be an ordinate to that diameter. Produce PO
            to K, so that OK may be equal to PO, and OK will be an ordinate on the
            other side of that diameter. Since, therefore, the points A, B, P and
            K are placed in the conic section, and PK cuts AB in a given angle,
            the rectangle PQK (by Prop. XVII., XIX., XXI. and XXIII., Book III.,
            of Apollonius's Conics) will be to the rectangle AQB in a given ratio.
            But QK and PR are equal, as being the differences of the equal lines
            OK, OP, and OQ, OR; whence the rectangles PQK and PQ x PR are equal;
            and therefore the rectangle PQ x PR is to the rectangle A B, that is,
            to the rectangle PS x PT in a given ratio.   Q.E.D
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            Case 2. Let us next suppose that the opposite
            sides AC and BD of the trapezium are not parallel. Draw Bd
            parallel to AC, and meeting as well the right line ST in t,
            as the conic section in d. Join Cd cutting PQ in r,
            and draw DM parallel to PQ, cutting Cd in M, and AB in N.
            Then (because of the similar triangles BTt, DBN), Bt
            or PQ is to Tt as DN to NB. And so Rr is to AQ or PS
            as DM to AN. Wherefore, by multiplying the antecedents by the
            antecedents, and the consequents by the consequents, as the rectangle
            PQ x Rr is to the rectangle PS x Tt, so will the
            rectangle NDM be to the rectangle ANB; and (by Case 1) so is the
            rectangle PQ x Pr to the rectangle PS x Pt; and by
            division, so is the rectangle PQ x PR to the rectangle PS x PT.
              Q.E.D.
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            Case 3. Let us suppose, lastly, the four
            lines PQ, PR, PS, PT, not to be parallel to the sides AC, AB, but any
            way inclined to them. In their place draw Pq, Pr,
            parallel to AC; and Ps, Pt parallel to AB; and
            because the angles of the triangles PQq, PRr, PSs,
            PTt are given, the ratios of PQ to Pq, PR to Pr,
            PS to Ps, PT to Pt will be also given; and therefore
            the compounded ratios PQ x PR to Pq x Pr, and PS x
            PT to Ps x Pt are given. But from what we have
            demonstrated before, the ratio of Pq x Pr to Ps
            x Pt is given; and therefore also the ratio of PQ x PR to PS
            x PT.   Q.E.D.
        

    

    
        Lemma xviii.

            
                The same things supposed, if the rectangle PQ x PR of
                the lines drawn to the two opposite sides of the trapezium is to
                the rectangle PS x PT of those drawn to the other two
                sides in a given ratio, the point P, from whence those
                lines are drawn, will be placed in a conic section described about
                the trapezium.
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            Conceive a conic section to be described passing through the points A,
            B, C, D, and any one of the infinite number of points P, as for
            example p; I say, the point P will be always placed in this
            section. If you deny the thing, join AP cutting this conic section
            somewhere else, if possible, than in P, as in b. Therefore
            if from those points p and b, in the given angles
            to the sides of the trapezium, we draw the right lines pq, pr,
            ps, pt, and bk, bn, bf, bd, we shall have, as bk
            x bn to bf x bd, so (by Lem.
            XVII) pq x pr to ps x pt; and so (by supposition)
            PQ x PR to PS x PT. And because of the similar trapezia bkAf,
            PQAS, as bk to bf, so PQ to PS. Wherefore by
            dividing the terms of the preceding proportion by the correspondent
            terms of this, we shall have bn to bd as PR to PT.
            And therefore the equiangular trapezia Dnbd, DRPT, are
            similar, and consequently their diagonals Db, DP do coincide.
            Wherefore b falls in the intersection of the right lines AP,
            DP, and consequently coincides with the point P. And therefore the
            point P, wherever it is taken, falls to be in the assigned conic
            section.   Q.E.D.
        

        
            Cor. Hence if three right lines PQ, PR, PS,
            are drawn from a common point P, to as many other right lines given in
            position, AB, CD, AC, each to each, in as many angles respectively
            given, and the rectangle PQ x PR under any two of the lines drawn be
            to the square of the third PS in a given ratio; the point P, from
            which the right lines are drawn, will be placed in a conic section
            that touches the lines AB, CD in A and C; and the contrary. For the
            position of the three right lines AB, CD, AC remaining the same, let
            the line BD approach to and coincide with the line AC; then let the
            line PT come likewise to coincide with the line PS; and the rectangle
            PS x PT will become PS², and the right lines AB, CD, which before did
            cut the curve in the points A and B, C and D, can no longer cut, but
            only touch, the curve in those coinciding points.
        

    

    
        Scholium.
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            In this Lemma, the name of conic section is to be understood in a
            large sense, comprehending as well the rectilinear section through the
            vertex of the cone, as the circular one parallel to the base. For if
            the point p happens to be in a right line, by which the
            points A and D, or C and B are joined, the conic section will be
            changed into two right lines, one of which is that right line upon
            which the point p falls, and the other is a right line that
            joins the other two of the four points. If the two opposite angles of
            the trapezium taken together are equal to two right angles, and if the
            four lines PQ, PR, PS, PT, are drawn to the sides thereof at right
            angles, or any other equal angles, and the rectangle PQ x PR under two
            of the lines drawn PQ and PR, is equal to the rectangle PS x PT under
            the other two PS and PT, the conic section will become a circle. And
            the same thing will happen if the four lines are drawn in any angles,
            and the rectangle PQ x PR, under one pair of the lines drawn, is to
            the rectangle PS x PT under the other pair as the rectangle under the
            sines of the angles S, T, in which the two last lines PS, PT are drawn
            to the rectangle under the sines of the angles Q, R, in which the
            first two PQ, PR are drawn. In all other
            cases the locus of the point P will be one of the three figures which
            pass commonly by the name of the conic sections. But in room of the
            trapezium ABCD, we may substitute a quadrilateral figure whose two
            opposite sides cross one another like diagonals. And one or two of the
            four points A, B, C, D may be supposed to be removed to an infinite
            distance, by which means the sides of the figure which converge to
            those points, will become parallel; and in this case the conic section
            will pass through the other points, and will go the same way as the
            parallels in infinitum.
        

    

    
        Lemma xix.

            
                To find a point P from which if four right lines
                PQ, PR, PS, PT are drawn to as many other right lines AB,
                CD, AC, BD, given by position, each to each, at given angles,
                the rectangle PQ x PR, under any two of the lines drawn,
                shall be to the rectangle PS x PT, under the other two,
                in a given ratio.
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            Suppose the lines AB, CD, to which the two right lines PQ, PR,
            containing one of the rectangles, are drawn to meet two other lines,
            given by position, in the points A, B, C, D. From one of those, as A,
            draw any right line AH, in which you would find the point P. Let this
            cut the opposite lines BD, CD, in H and I; and, because all the angles
            of the figure are given, the ratio of PQ to PA, and PA to PS, and
            therefore of PQ to PS, will be also given. Subducting this ratio from
            the given ratio of PQ x PR to PS x PT, the ratio of PR to PT will be
            given; and adding the given ratios of PI to PR, and PT to PH, the
            ratio of PI to PH, and therefore the point P will be given.
              Q.E.I.
        

        
            Cor. 1. Hence also a tangent may be drawn to
            any point D of the locus of all the points P. For the chord PD, where
            the points P and D meet, that is, where AH is drawn through the point
            D, becomes a tangent. In which case the ultimate ratio of the
            evanescent lines IP and PH will be found as above. Therefore draw CF
            parallel to AD, meeting BD in F, and cut it in E in the same ultimate
            ratio, then DE will be the tangent; because CF and the evanescent IH
            are parallel, and similarly cut in E and P.
        

        
            Cor. 2. Hence also the locus of all the
            points P may be determined. Through any of the points A, B, C, D, as
            A, draw AE touching the locus, and through any other point B parallel
            to the tangent, draw BF meeting the locus in F; and find the point F
            by this Lemma. Bisect BF in G, and, drawing the indefinite line AG,
            this will be the position of the diameter to which BG and FG are
            ordinates. Let this AG meet the locus 
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            in H, and AH will be its diameter or latus transversum, to which the
            latus rectum will be as BG² to AG x GH. If AG nowhere meets the locus,
            the line AH being infinite, the locus will be a parabola; and its
            latus rectum corresponding to the diameter AG will be 
            BG2

            AG. But if it does meet it anywhere,
            the locus will be an hyperbola, when the points A and H are placed on
            the same side the point G; and an ellipsis, if the point G falls
            between the points A and H; unless, perhaps, the angle AGB is a right
            angle, and at the same time BG² equal to the rectangle AGH, in which
            case the locus will be a circle.
        

        
            And so we have given in this Corollary a solution of that famous
            Problem of the ancients concerning four lines, begun by Euclid, and
            carried on by Apollonius; and this not an analytical calculus, but a
            geometrical composition, such as the ancients required.
        

    

    
        Lemma xx.

            
                If the two opposite angular points A and P of
                any parallelogram ASPQ touch any conic section in the
                points A and P; and the sides AQ, AS of
                one of those angles, indefinitely produced, meet the same conic
                section in B and C; and from the points of
                concourse B and C to any fifth point D of
                the conic section, two right lines BD, CD are drawn
                meeting the two other sides PS, PQ of the parallelogram,
                indefinitely produced in T and R; the parts
                PR and PT, cut off from the sides, will always be one
                to the other in a given ratio. And vice versa, if those
                parts cut off are one to the other in a given ratio, the locus of
                the point D will be a conic section passing through the
                four points A, B, C, P.
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            Case 1. Join BP, CP, and from the point D
            draw the two right lines DG, DE, of which the first DG shall be
            parallel to AB, and meet PB, PQ, CA in H, I, G; and the other DE shall
            be parallel to AC, and meet PC, PS, AB, in F, K, E; and (by Lem. XVII)
            the rectangle DE x DF will be to the rectangle DG x DH in a given
            ratio. But PQ is to DE (or IQ) as PB to HB, and consequently as PT to
            DH; and by permutation PQ is to PT as DE to DH. Likewise PR is to DF
            as RC to DC, and therefore as (IG or) PS to DG; and by permutation PR
            is to PS as DF to DG; and, by compounding those ratios, the rectangle
            PQ x PR will be to the rectangle PS x PT as the rectangle DE x DF is
            to the rectangle DG x DH, and consequently in a given ratio. But PQ
            and PS are given, and therefore the ratio of PR to PT is given.
              Q.E.D.
        

        
            Case 2. But if PR and
            PT are supposed to be in a given ratio one to the other, then by going
            back again, by a like reasoning, it will follow that the rectangle DE
            x DF is to the rectangle DG x DH in a given ratio; and so the point D
            (by Lem. XVIII) will lie in a conic section passing through the points
            A, B, C, P, as its locus.   Q.E.D.
        

        
            Cor. 1. Hence if we draw BC cutting PQ in r
            and in PT take Pt to Pr in the same ratio which PT
            has to PR; then Bt will touch the conic section in the point
            B. For suppose the point D to coalesce with the point B, so that the
            chord BD vanishing, BT shall become a tangent, and CD and BT will
            coincide with CB and Bt.
        

        
            Cor. 2. And, vice versa, if Bt is a
            tangent, and the lines BD, CD meet in any point D of a conic section,
            PR will be to PT as Pr to Pt. And, on the contrary,
            if PR is to PT as Pr to Pt, then BD and CD will meet
            in some point D of a conic section.
        

        
            Cor. 3. One conic section cannot cut another
            conic section in more than four points. For, if it is possible, let
            two conic sections pass through the five points A, B, C, P, O; and let
            the right line BD cut them in the points D, d, and the right
            line Cd cut the right line PQ in q. Therefore PR is
            to PT as Pq to PT: whence PR and Pq are equal one to
            the other, against the supposition.
        

    

    
        Lemma xxi.

            
                If two moveable and indefinite right lines BM, CM drawn
                through given points B, C, as poles, do by their point of
                concourse M describe a third right line MN given
                by position; and other two indefinite right lines BD, CD are
                drawn, making with the former two at those given points B, C,
                given angles, MBD, MCD: I say, that those two right lines
                BD, CD will by their point of concourse D describe a
                conic section passing through the points B, C. And,
                vice versa, if the right lines BD, CD do by their
                point of concourse D describe a conic section passing
                through the given points B, C, A, and the angle DBM
                Is always equal to the given angle ABC, as well as the
                angle DCM always equal to the given angle ACB,
                the point M will lie in a right line given by position,as its locus.
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            For in the right line MN let a point N be given, and when
            the moveable point M falls on the immoveable point N. let the moveable
            point D fall on an immovable point P. Join CN, BN, CP, BP, and from
            the point P draw the right lines PT, PR meeting BD, CD in T and R, and
            making the angle BPT equal to the given angle BNM, and the angle CPR
            equal to the given angle CNM. Wherefore since (by
            supposition) the angles MBD, NBP are equal, as also the angles MCD,
            NCP, take away the angles NBD and NCD that are common, and there will
            remain the angles NBM and PBT, NCM and PCR equal; and therefore the
            triangles NBM, PBT are similar, as also the triangles NCM, PCR.
            Wherefore PT is to NM as PB to NB; and PR to NM as PC to NC. But the
            points, B, C, N, P are immovable: wherefore PT and PR have a given
            ratio to NM, and consequently a given ratio between themselves; and
            therefore, (by Lemma XX) the point D wherein the moveable right lines
            BT and CR perpetually concur, will be placed in a conic section
            passing through the points B, C, P.   Q.E.D.
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            And, vice versa, if the moveable point D lies in a conic
            section passing through the given points B, C, A; and the angle DBM is
            always equal to the given angle ABC, and the angle DCM always equal to
            the given angle ACB, and when the point D falls successively on any
            two immovable points p, P, of the conic section, the
            moveable point M falls successively on two immovable points n,
            N. Through these points n, N, draw the right line nN:
            this line nN will be the perpetual locus of that moveable
            point M. For, if possible, let the point M be placed in any curve
            line. Therefore the point D will be placed in a conic section passing
            through the five points B, C, A, p, P, when the point M is
            perpetually placed in a curve line. But from what was demonstrated
            before, the point D will be also placed in a conic section passing
            through the same five points B, C, A, p, when the point M is
            perpetually placed in a right line. Wherefore the two conic sections
            will both pass through the same five points, against Corol. 3, Lem.
            XX. It is therefore absurd to suppose that the point M is placed in a
            curve line.   Q.E.D.
        

    

    
        Proposition xxii. Problem xiv.

            To describe a trajectory that shall pass through five given points.
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            Let the five given points be A, B, C, P, D. From any one of them, as
            A, to any other two as B, C, which may be called the poles, draw the
            right lines AB, AC, and parallel to those the lines TPS, PRQ, through
            the fourth point P. Then from the two poles B, C, draw through the
            fifth point D two indefinite lines BDT, CRD, meeting with the last
            drawn lines TPS, PRQ (the former with the
            former, and the latter with the latter) in T and R. Then drawing the
            right line tr parallel to TR, cutting off from the right
            lines PT, PR, any segments Pt, Pr, proportional to
            PT, PR; and if through their extremities, t, r, and the
            poles B, C, the right lines Bt, Cr are drawn,
            meeting in d, that point d will be placed in the
            trajectory required. For (by Lem. XX) that point d is placed
            in a conic section passing through the four points A, B, C, P; and the
            lines Rr, Tt vanishing, the point d comes
            to coincide with the point D. Wherefore the conic section passes
            through the five points A, B, C, P, D.   Q.E.D.
        

        The same otherwise.
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            Of the given points join any three, as A, B, C; and about two of them
            B, C, as poles, making the angles ABC, ACB of a given magnitude to
            revolve, apply the legs BA, CA, first to the point D, then to the
            point P, and mark the points M, N, in which the other legs BL, CL
            intersect each other in both cases. Draw the indefinite right line MN,
            and let those moveable angles revolve about their poles B, C, in such
            manner that the intersection, which is now supposed to be d,
            of the legs BL, CL, or BM, CM, may always fall in that indefinite
            right line MN; and the intersection, which is now supposed to be m,
            of the legs BA, CA, or BD, CD, will describe the trajectory required,
            PADdB. For (by Lem. XXI) the point d will be placed
            in a conic section passing through the points B, C; and when the point
            m comes to coincide with the points L, M, N, the point d
            will (by construction) come to coincide with the points A, D, P.
            Wherefore a conic section will be described that shall pass through
            the five points A, B. C, P, D.   Q.E.F.
        

        
            Cor. 1. Hence a right line may be readily
            drawn which shall be a tangent to the trajectory in any given point B.
            Let the point d come to coincide with the point B, and the
            right line Bd will become the tangent required.
        

        
            Cor. 2. Hence also may be found the centres,
            diameters, and latera recta of the trajectories, as in Cor. 2, Lem. XIX.
        

    

    
        Scholium.
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            The former of these constructions will become something more simple
            by joining BP, and in that line, produced, if need be, taking Bp
            to BP as PR is to PT; and through p draw the indefinite
            right line pe parallel to SPT, and in that line pe
            taking always pe equal to Pr, and draw the right
            lines Be, Cr to meet in d.
            For since Pr to Pt, PR to PT, pB to PB, pe
            to Pt, are all in the same ratio, pe and Pr will be
            always equal. After this manner the points of the trajectory are most
            readily found, unless you would rather describe the curve
            mechanically, as in the second construction.
        

    

    
        Proposition xxiii. Problem xv.

            
                
                    To describe a trajectory that shall pass through four given
                    points, and touch a right line given by position.
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            Case 1. Suppose that HB is the given tangent,
            B the point of contact, and C, D, P, the three other given points.
            Join BC, and draw PS parallel to BH, and PQ parallel to BC; complete
            the parallelogram BSPQ. Draw BD cutting SP in T, and CD cutting PQ in
            R. Lastly, draw any line tr parallel to TR, cutting off from
            PQ, PS, the segments Pr, Pt proportional to PR, PT
            respectively; and draw Cr, Bt their point of
            concourse d will (by Lem. XX) always fall on the trajectory
            to be described.
        

        The same otherwise.
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            Let the angle CBH of a given magnitude revolve about the pole B; as
            also the rectilinear radius BC, both ways produced, about the pole C.
            Mark the points M, N, on which the leg BC of the angle cuts that
            radius when BH, the other leg thereof, meets the same radius in the
            points P and D. Then drawing the indefinite line MN, let that radius
            CP or CD and the leg BC of the angle perpetually meet in this line;
            and the point of concourse of the other leg BH with the radius will
            delineate the trajectory required.
        

        
            For if in the constructions of the preceding Problem the point A
            comes to a coincidence with the point B, the lines CA and CB will
            coincide, and the line AB, in its last situation, will become the
            tangent BH; and therefore the constructions there set down will become
            the same with the constructions here described. Wherefore the
            concourse of the leg BH with the radius will describe a conic section
            passing through the points C, D, P, and touching the line BH in the
            point B.   Q.E.F.
        

        
            Case 2. Suppose the four points B, C, D, P,
            given, being situated with out the tangent HI. Join each two by the
            lines BD, CP meeting in G, and cutting the tangent in H and I. Cut the
            tangent in A in such manner 
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            that HA may be to IA as the rectangle under a mean proportional
            between CG and GP, and a mean proportional between BH and HD is to a
            rectangle under a mean proportional between GD and GB, and a mean
            proportional between PI and IC, and A will be the point of contact.
            For if HX, a parallel to the right line PI, cuts the trajectory in any
            points X and Y, the point A (by the properties of the conic sections)
            will come to be so placed, that HA² will become to AI² in a ratio that
            is compounded out of the ratio of the rectangle XHY to the rectangle
            BHD, or of the rectangle CGP to the rectangle DGB; and the ratio of
            the rectangle BHD to the rectangle PIC. But after the point of contact
            A is found, the trajectory will be described as in the first Case.
              Q.E.F.   But the point A may be taken either
            between or without the points H and I, upon which account a twofold
            trajectory may be described.
        

    

    
        Proposition xxiv. Problem xvi.

            
                
                    To describe a trajectory that shall pass through three given
                    points, and touch two right lines given by position.
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            Suppose HI, KL to be the given tangents and B, C, D, the given
            points. Through any two of those points, as B, D, draw the indefinite
            right line BD meeting the tangents in the points H, K. Then likewise
            through any other two of these points, as C, D, draw the indefinite
            right line CD meeting the tangents in the points I, L. Cut the lines
            drawn in R and S, so that HR may be to KR as the mean proportional
            between BH and HD is to the mean proportional between BK and KD; and
            IS to LS as the mean proportional between CI and ID is to the mean
            proportional between CL and LD. But you may cut, at pleasure, either
            within or between the points K and H, I and L, or without them; then
            draw RS cutting the tangents in A and P, and A and P will be the
            points of contact. For if A and P are supposed to be the points of
            contact, situated anywhere else in the tangents, and through any of
            the points H, I, K, L, as I, situated in either tangent HI, a right
            line IY is drawn parallel to the other tangent KL, and meeting the
            curve in X and Y, and in that right line there be taken IZ equal to a
            mean proportional between IX and IY, the rectangle XIY or IZ², will
            (by the properties of the conic sections) be to LP² as the rectangle
            CID is to the rectangle CLD, that is (by the construction), as SI is
            to SL², and therefore IZ is to LP as SI to
            SL. Wherefore the points S, P, Z, are in one right line. Moreover,
            since the tangents meet in G, the rectangle XIY or IZ² will (by the
            properties of the conic sections) be to IA² as GP² is to GA², and
            consequently IZ will be to IA as GP to GA. Wherefore the points P, Z,
            A, lie in one right line, and therefore the points S, P, and A are in
            one right line. And the same argument will prove that the points R, P,
            and A are in one right line. Wherefore the points of contact A and P
            lie in the right line RS. But after these points are found, the
            trajectory may be described, as in the first Case of the preceding
            Problem.   Q.E.F.
        

        
            In this Proposition, and Case 2 of the foregoing, the constructions
            are the same, whether the right line XY cut the trajectory in X and Y,
            or not; neither do they depend upon that section. But the
            constructions being demonstrated where that right line does cut the
            trajectory, the constructions where it does not are also known; and
            therefore, for brevity's sake, I omit any farther demonstration of
            them.
        

    

    
        Lemma xxii.

            To transform figures into other figures of the same kind.
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            Suppose that any figure HGI is to be transformed. Draw, at pleasure,
            two parallel lines AO, BL, cutting any third line AB, given by
            position, in A and B, and from any point G of the figure, draw out any
            right line GD, parallel to OA, till it meet the right line AB. Then
            from any given point O in the line OA, draw to the point D the right
            line OD, meeting BL in d; and from the point of concourse
            raise the right line dg containing any given angle with the
            right line BL, and having such ratio to Od as DG has to OD;
            and g will be the point in the new figure hgi,
            corresponding to the point G. And in like manner the several points of
            the first figure will give as many correspondent points of the new
            figure. If we therefore conceive the point G to be carried along by a
            continual motion through all the points of the first figure, the point
            g will be likewise carried along by a continual motion
            through all the points of the new figure, and describe the same. For
            distraction's sake, let us call DG the first ordinate, dg
            the new ordinate, AD the first abscissa, ad the new
            abscissa; O the pole, OD the abscinding radius, OA the first ordinate
            radius, and Oa (by which the parallelogram OABa is
            completed) the new ordinate radius.
        

        
            I say, then, that if the point G is placed in a right line given by
            position, the point g will be also placed in a right line
            given by position. If the point G is placed in a conic section, the
            point g will be likewise placed in
            a conic section. And here I understand the circle as one of the conic
            sections. But farther, if the point G is placed in a line of the third
            analytical order, the point g will also be placed in a line
            of the third order, and so on in curve lines of higher orders. The two
            lines in which the points G, g, are placed, will be always
            of the same analytical order. For as ad is to OA, so are Od
            to OD, dg to DG, and AB to AD; and therefore AD is equal to
            OA x AB

            ad, and DG equal to 
            OA x dg

            ad. Now if the point G is placed in a
            right line, and therefore, in any equation by which the relation
            between the abscissa AD and the ordinate GD is expressed, those
            indetermined lines AD and DG rise no higher than to one dimension, by
            writing this equation OA x AB

            ad in place of AD, and 
            OA x dg

            ad in place of DG, a new equation will
            be produced, in which the new abscissa ad and new ordinate dg
            rise only to one dimension; and which therefore must denote a right
            line. But if AD and DG (or either of them) had risen to two dimensions
            in the first equation, ad and dg would likewise
            have risen to two dimensions in the second equation. And so on in
            three or more dimensions. The indetermined lines, ad, dg in
            the second equation, and AD, DG, in the first, will always rise to the
            same number of dimensions; and therefore the lines in which the points
            G, g, are placed are of the same analytical order.
        

        
            I say farther, that if any right line touches the curve line in the
            first figure, the same right line transferred the same way with the
            curve into the new figure will touch that curve line in the new
            figure, and vice versa. For if any two points of the curve
            in the first figure are supposed to approach one the other till they
            come to coincide, the same points transferred will approach one the
            other till they come to coincide in the new figure; and therefore the
            right lines with which those points are joined will be come together
            tangents of the curves in both figures. I might have given
            demonstrations of these assertions in a more geometrical form; but I
            study to be brief.
        

        
            Wherefore if one rectilinear figure is to be transformed into
            another, we need only transfer the intersections of the right lines of
            which the first figure consists, and through the transferred
            intersections to draw right lines in the new figure. But if a
            curvilinear figure is to be transformed, we must transfer the points,
            the tangents, and other right lines, by means of which the curve line
            is defined. This Lemma is of use in the solution of the more difficult
            Problems; for thereby we may transform the proposed figures, if they
            are intricate, into others that are more simple. Thus any right lines
            converging to a point are transformed into parallels, by taking for
            the first ordinate radius any right line that passes through the point
            of concourse of the converging lines, and that because their point of
            concourse is by this means made to go off in
            infinitum; and parallel lines are such as tend to a point
            infinitely remote. And after the problem is solved in the new figure,
            if by the inverse operations we transform the new into the first
            figure, we shall have the solution required.
        

        
            This Lemma is also of use in the solution of solid problems. For as
            often as two conic sections occur, by the intersection of which a
            problem may be solved, any one of them may be transformed, if it is an
            hyperbola or a parabola, into an ellipsis, and then this ellipsis may
            be easily changed into a circle. So also a right line and a conic
            section, in the construction of plane problems, may be transformed
            into a right line and a circle
        

    

    
        Proposition xxv. Problem xvii.

            
                
                    To describe a trajectory that shall pass through two given
                    points, and touch three right lines given by position.
                
            

        

        
            Through the concourse of any two of the tangents one with the other,
            and the concourse of the third tangent with the right line which
            passes through the two given points, draw an indefinite right line;
            and, taking this line for the first ordinate radius, transform the
            figure by the preceding Lemma into a new figure. In this figure those
            two tangents will become parallel to each other, and the third tangent
            will be parallel to the right line that passes through the two given
            points.
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            Suppose hi, kl to be
            those two parallel tangents, ik the third tangent, and hl
            a right line parallel thereto, passing through those points a, b,
            through which the conic section ought to pass in this new figure; and
            completing the parallelogram hikl, let the right lines hi,
            ik, kl be so cut in c, d, e, that hc may be
            to the square root of the rectangle ahb, ic, to id,
            and ke to kd, as the sum of the right lines hi
            and kl is to the sum of the three lines, the first whereof
            is the right line ik, and the other two are the square roots
            of the rectangles ahb and alb; and c, d, e,
            will be the points of contact. For by the properties of the conic
            sections, hc² to the rectangle ahb, and ic²
            to id², and ke² to kd², and el²
            to the rectangle alb, are all in the same ratio; and
            therefore hc to the square root of ahb, ic to id,
            ke to kd, and el to the square root of alb,
            are in the subduplicate of that ratio; and by composition, in the
            given ratio of the sum of all the antecedents hi + kl, to
            the sum of all the consequents √(ahb)+ik+√(alb).
            Wherefore from that given ratio we have the points of contact c,
            d, e, in the new figure. By the inverted operations of the last
            Lemma, let those points be transferred into the first figure, and the
            trajectory will be there described by Prob. XIV.   Q.E.F.
               But according as the points a, b, fall between
            the points h, l, or without them, the points c, d, e,
            must be taken either between the points, h,
            i, k, l, or without them. If one of the points a, b,
            falls between the points h, i, and the other without the
            points h, l, the Problem is impossible.
        

    

    
        Proposition xxvi. Problem xviii.

            
                
                    To describe a trajectory that shall pass through a given point,
                    and touch four right lines given by position.
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            From the common intersections, of any two of the tangents to the
            common intersection of the other two, draw an indefinite right line;
            and taking this line for the first ordinate radius; transform the
            figure (by Lem. XXII) into a new figure, and the two pairs of
            tangents, each of which before concurred in the first ordinate radius,
            will now become parallel. Let hi and kl, ik
            and hl, be those pairs of parallels completing the
            parallelogram hikl. And let p be the point in this
            new figure corresponding to the given point in the first figure.
            Through O the centre of the figure draw pq: and Oq
            being equal to Op, q will be the other point
            through which the conic section must pass in this new figure. Let this
            point be transferred, by the inverse operation of Lem. XXII into the
            first figure, and there we shall have the two points through which the
            trajectory is to be described. But through those points that
            trajectory may be described by Prop. XVII.
        

    

    
        Lemma xxiii.

            
                If two right lines, as AC, BD given by position, and
                terminating in given points A, B, are in a given ratio
                one to the other, and the right line CD, by which the
                indetermined points C, D are joined is cut in K in
                a given ratio; I say, that the point K will be placed in
                a right line given by position.
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            For let the right lines AC, BD meet in E, and in BE take BG to AE as
            BD is to AC, and let FD be always equal to the given line EG; and, by
            construction, EC will be to GD, that is, to EF, as AC to BD, and
            therefore in a given ratio; and therefore the triangle EFC will be
            given in kind. Let CF be cut in L so as CL may be to CF in the ratio
            of CK to CD; and because that is a given ratio, the triangle EFL will
            be given in kind, and therefore the point L will be placed in the
            right line EL given by position. Join LK, and the triangles CLK, CFD
            will be similar; and because FD is a given line, and LK is to FD in a
            given ratio, LK will be also given. To this
            let EH be taken equal, and ELKH will be always a parallelogram. And
            therefore the point K is always placed in the side HK (given by
            position) of that parallelogram.   Q.E.D.
        

        
            Cor. Because the figure EFLC is given in
            kind, the three right lines EF, EL, and EC, that is, GD, HK, and EC,
            will have given ratios to each other.
        

    

    
        Lemma xxiv.

            
                
                    If three right lines, two whereof are parallel, and given by
                    position, touch any conic section; I say, that the semi-diameter
                    of the section which is parallel to those two is a mean
                    proportional between the segments of those two that are
                    intercepted between the points of contact and the third tangent.
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            Let AF, GB be the two parallels touching the conic section ADB in A
            and B; EF the third right line touching the conic section in I, and
            meeting the two former tangents in F and G, and let CD be the
            semi-diameter of the figure parallel to those tangents; I say, that
            AF, CD, BG are continually proportional.
        

        
            For if the conjugate diameters AB, DM meet the tangent FG in E and H,
            and cut one the other in C, and the parallelogram IKCL be completed;
            from the nature of the conic sections, EC will be to CA as CA to CL;
            and so by division, EC − CA to CA − CL, or EA to AL; and by
            composition, EA to EA + AL or EL, as EC to EC + CA or EB; and
            therefore (because of the similitude of the triangles EAF, ELI, ECH,
            EBG) AF is to LI as CH to BG. Likewise, from the nature of the conic
            sections, LI (or CK) is to CD as CD to CH; and therefore (ex aequo
            perturbatè) AF is to CD as CD to BG.   Q.E.D.
        

        
            Cor. 1. Hence if two tangents FG, PQ, meet
            two parallel tangents AF, BG in F and G, P and Q, and cut one the
            other in O; AF (ex aequo perturbatè) will be to BQ as AP to
            BG, and by division, as FP to GQ, and therefore as FO to OG.
        

        
            Cor. 2. Whence also the two right lines PG,
            FQ drawn through the points P and G, F and Q, will meet in the right
            line ACB passing through the centre of the figure and the points of
            contact A, B.
        

    

    
        Lemma xxv.

            
                
                    If four sides of a parallelogram indefinitely produced touch
                    any conic section, and are cut by a fifth tangent; I say, that,
                    taking those segments of any two conterminous sides that terminate
                    in opposite angles of the parallelogram, either segment is to the
                    side from which it is cut off as that part of the other
                    conterminous side which is intercepted between the point of
                    contact and the third side is to the other segment.
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            Let the four sides ML, IK, KL, MI, of the parallelogram MLIK touch
            the F conic section in A, B, C, D; and let the fifth tangent FQ cut
            those sides in F, Q, H, and E; and taking the segments ME, KQ of the
            sides MI, KI, or the segments KH, MF of the sides KL, ML; I say, that
            ME is to MI as BK to KQ; and KH to KL as AM to MF. For, by Cor. 1 of
            the preceding Lemma, ME is to EI as (AM or) BK to BQ; and, by
            composition, ME is to MI as BK to KQ.   Q.E.D.
              Also KH is to HL as (BK or) AM to AF; and by division, KH
            to KL as AM to MF.   Q.E.D.
        

        
            Cor. 1. Hence if a parallelogram IKLM
            described about a given conic section is given, the rectangle KQ x ME,
            as also the rectangle KH x MF equal thereto, will be given. For, by
            reason of the similar triangles KQH, MFE, those rectangles are equal.
        

        
            Cor. 2. And if a sixth tangent eq
            is drawn meeting the tangents KI, MI in q and e,
            the rectangle KQ x ME will be equal to the rectangle Kq x Me,
            and KQ will be to Me as Kq to ME, and by division as
            Qq to Ee.
        

        
            Cor. 3. Hence, also, if Eq, eQ,
            are joined and bisected, and a right line is drawn through the points
            of bisection, this right line will pass through the centre of the
            conic section. For since Qq is to Ee as KQ to Me,
            the same right line will pass through the middle of all the lines Eq,
            eQ, MK (by Lem. XXIII), and the middle point of the right
            line MK is the centre of the section.
        

    

    
        Proposition xxvii. Problem xix.

            To describe a trajectory that may touch five right lines given by position.
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            Supposing ABG, BCF, GCD, FDE, EA to be the tangents given by
            position. Bisect in M and N, AF, BE, the diagonals of the
            quadrilateral figure ABFE contained under any four of them; and (by
            Cor. 3, Lem. XXV) the right line MN drawn through the points of
            bisection will pass through the centre of the
            trajectory. Again, bisect in P and Q, the diagonals (if I may so call
            them) BD, GF of the quadrilateral figure BGDF contained under any
            other four tangents, and the right line PQ, drawn through the points
            of bisection will pass through the centre of the trajectory; and
            therefore the centre will be given in the con course of the bisecting
            lines. Suppose it to be O. Parallel to any tangent BC draw KL at such
            distance that the centre O may be placed in the middle between the
            parallels; this KL will touch the trajectory to be described. Let this
            cut any other two tangents GCD, FDE, in L and K. Through the points C
            and K, F and L, where the tangents not parallel, GL, FK meet the
            parallel tangents OF, KL, draw OK, FL meeting in R; and the right line
            OR drawn and produced, will cut the parallel tangents CF, KL, in the
            points of contact. This appears from Cor. 2, Lem. XXIV. And by the
            same method the other points of contact may be found, and then the
            trajectory may be described by Prob. XIV.   Q.E.F.
        

    

    
        Scholium.


        
            Under the preceding Propositions are comprehended those Problems
            wherein either the centres or asymptotes of the trajectories are
            given. For when points and tangents and the centre are given, as many
            other points and as many other tangents are given at an equal distance
            on the other side of the centre. And an asymptote is to be considered
            as a tangent, and its infinitely remote extremity (if we may say so)
            is a point of contact. Conceive the point of contact of any tangent
            removed in infinitum, and the tangent will degenerate into
            an asymptote, and the constructions of the preceding Problems will be
            changed into the constructions of those Problems wherein the asymptote
            is given.
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            After the trajectory is described, we may find its axes and foci in
            this manner. In the construction and figure of Lem. XXI, let those
            legs BP, CP, of the moveable angles PBN, PCN, by the concourse of
            which the trajectory was described, be made parallel one to the other;
            and retaining that position, let them revolve about their poles B, C,
            in that figure. In the mean while let the other legs CN, BN, of those
            angles, by their concourse K or k, describe the circle BKGC.
            Let O be the centre of this circle; and from this centre upon the
            ruler MN, wherein those legs CN, BN did concur while the trajectory
            was described, let fall the perpendicular OH meeting the circle in K
            and L. And when those other legs CK, BK meet in the point K that is
            nearest to the ruler, the first legs CP, BP will be parallel to the
            greater axis, and perpendicular on the lesser; and the contrary
            will happen if those legs meet in the remotest
            point L. Whence if the centre of the trajectory is given; the axes
            will be given; and those being given, the foci will be readily found.
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            But the squares of the axes are one to the other as KH to LH, and
            thence it is easy to describe a trajectory given in kind through four
            given points. For if two of the given points are made the poles C, B,
            the third will give the moveable angles PCK, PBK; but those being
            given, the circle BGKC may be described. Then, because the trajectory
            is given in kind, the ratio of OH to OK, and therefore OH itself, will
            be given. About the centre O, with the interval OH, describe another
            circle, and the right line that touches this circle, and passes
            through the concourse of the legs CK, BK, when the first legs CK, BP
            meet in the fourth given point, will be the ruler MN, by means of
            which the trajectory may be described. Whence also on the other hand a
            trapezium given in kind (excepting a few cases that are impossible)
            may be inscribed in a given conic section.
        

        
            There are also other Lemmas, by the help of which trajectories given
            in kind may be described through given points, and touching given
            lines. Of such a sort is this, that if a right line is drawn through
            any point given by position, that may cut a given conic section in two
            points, and the distance of the intersections is bisected, the point
            of bisection will touch another conic section of the same kind with
            the former, and having its axes parallel to the axes of the former.
            But I hasten to things of greater use.
        

    

    
        Lemma xxvi.

            
                
                    To place the three angles of a triangle, given both in kind and
                    magnitude, in respect of as many rigid lines given by position,
                    provided they are not all parallel among themselves, in such
                    manner that the several angles may touch the several lines.
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            Three indefinite right lines AB, AC, BC, are given by position, and
            it is required so to place the triangle DEF that its angle D may touch
            the line AB, its angle E the line AC, and its angle F the line BC.
            Upon DE, DF, and EF, describe three segments of circles DRE, DGF, EMF,
            capable of angles equal to the angles BAC, ABC, ACB respectively. But
            those segments are to be described towards such sides of the lines DE,
            DF, EF, that the letters DRED may turn round
            about in the same order with the letters BACB; the letters DGFD in the
            same order with the letters ABCA; and the letters EMFE in the same
            order with the letters ACBA; then; completing those segments into
            entire circles let the two former circles cut one the other in G, and
            suppose P and Q, to be their centres. Then joining GP, PQ, take Ga
            to AB as GP is to PQ; and about the centre G, with the interval Ga,
            describe a circle that may cut the first circle DGE in a.
            Join aD cutting the second circle DFG in b, as
            well as aE cutting the third circle EMF in c.
            Complete the figure ABCdef similar and equal to the figure abcDEF:
            I say, the thing is done.
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            For drawing Fc meeting aD in n, and
            joining aG, bG, QG, QD, PD, by construction the
            angle EaD is equal to the angle CAB, and the angle acF
            equal to the angle ACB; and therefore the triangle anc
            equiangular to the triangle ABC. Wherefore the angle anc or
            FnD is equal to the angle ABC, and consequently to the angle
            FbD; and therefore the point n falls on the point b.
            Moreover the angle GPQ, which is half the angle GPD at the centre, is
            equal to the angle GaD at the circumference; and the angle
            GQP, which is half the angle GQD at the centre, is equal to the
            complement to two right angles of the angle GbD at the
            circumference, and therefore equal to the angle Gba. Upon
            which account the triangles GPQ, Gab, are similar, and Ga
            is to ab as GP to PQ; that is (by construction), as Ga
            to AB. Wherefore ab and AB are equal; and consequently the
            triangles abc, ABC, which we have now proved to be similar,
            are also equal. And therefore since the angles D, E, F, of the
            triangle DEF do respectively touch the sides ab, ac, bc of
            the triangle abc, the figure ABCdef may be
            completed similar and equal to the figure abcDEF, and by
            completing it the Problem will be solved.   Q.E.F.
        

        
            Cor. Hence a right line may be drawn whose
            parts given in length may be intercepted between three right lines
            given by position. Suppose the triangle DEF, by the access of its
            point D to the side EF, and by having the sides DE, DF placed in
            directum to be changed into a right line whose given part DE is
            to be interposed between the right lines AB, AC given by position; and
            its given part DF is to be interposed between the right lines AB, BC,
            given by position; then, by applying the preceding construction to
            this case; the Problem will be solved.
        

    

    
        
            Proposition xxviii. Problem xx.

            
                
                    To describe a trajectory given both in kind and magnitude,
                    given parts of which shall be interposed between three right lines given by position.
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            Suppose a trajectory is to be described that may be similar and equal
            to the curve line DEF, and may be cut by three right lines AB, AC, BC,
            given by position, into parts DE and EF, similar and equal to the
            given parts of this curve line.
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            Draw the right lines DE, EP, DF: and place the angles D, E, F, of
            this triangle DEF, so as to touch those right lines given by position
            (by Lem. XXVI). Then about the triangle describe the trajectory,
            similar and equal to the curve DEF.   Q.E.F.
        

    

    
        Lemma xxvii.

            
                
                    To describe a trapezium given in kind, the angles whereof may
                    be so placed, in respect of four right lines given by position,
                    that are neither all parallel among themselves, nor converge to
                    one common point, that the several angles may touch the several lines.
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            Let the four right lines ABC, AD, BD, CE, be given by position; the
            first cutting the second in A, the third in B, and the fourth in C;
            and suppose a trapezium fghi is to be described that may be
            similar to the trapezium FGHI, and whose angle f, equal to
            the given angle F, may touch the right line ABC; and the other angles
            g, h, i, equal to the other given angles, G, H, I, may touch
            the other lines AD, BD, CE, respectively. Join FH, and upon FG, FH, FI
            describe as many segments of circles FSG, FTH, FVI, the first of which
            FSG may be capable of an angle equal to the angle BAD; the second FTH
            capable of an angle equal to the angle CBD; and the third FVI of an
            angle equal to the angle ACE. But the segments are to be described
            towards those sides of the lines FG, FH, FI, that the circular order
            of the letters FSGF may be the same as of the letters BADB, and that
            the letters FTHF may turn about in the same order as the letters CBDC
            and the letters FVIF in the game order as the letters ACEA. Complete
            the segments into entire circles, and let P be the centre of the first
            circle FSG, Q the centre of the second FTH. Join and produce both ways
            the line PQ, and in it take QR in the same ratio to PQ as BC has to
            AB. But QR is to be taken towards that side of the point Q, that the
            order of the letters P, Q, R 
            [image: Mathematical Principles of Natural Philosophy figure: 151a]
            may be the same as of the letters A, B, C; and about the centre R with
            the interval RF describe a fourth circle FNc cutting the
            third circle FVI in c. Join Fc cutting the first
            circle in a, and the second in b. Draw aG,
            bH, cI, and let the figure ABCfghi be made
            similar to the figure abcFGHI; and the trapezium fghi
            will be that which was required to be described.
        

        
            For let the two first circles FSG, FTH cut one the other in K; join
            PK, QK, RK, aK, bK, cK, and produce QP
            to L. The angles FaK, FbK, FcK at the
            circumferences are the halves of the angles FPK, FQK, FRK, at the
            centres, and therefore equal to LPK, LQK, LRK, the halves of those
            angles. Wherefore the figure PQRK is equiangular and similar to the
            figure abcK, and consequently ab is to bc
            as PQ to QR, that is, as AB to BC. But by construction, the angles fAg,
            fBh, fCi, are equal to the angles
            FaG, FbH, FcI. And therefore the figure ABCfghi
            may be completed similar to the figure abcFGHI. Which done a
            trapezium fghi will be constructed similar to the trapezium
            FGHI, and which by its angles f, g, h, i will touch the
            right lines ABC, AD, BD, CE.   Q.E.F.
        

        
            Cor. Hence a right line may be drawn whose
            parts intercepted in a given order, between four right lines given by
            position, shall have a given proportion among themselves. Let the
            angles FGH, GHI, be so far increased that the right lines FG, GH, HI,
            may lie in directum; and by constructing the Problem in this
            case, a right line fghi will be drawn, whose parts fg,
            gh, hi, intercepted between the four right lines given by
            position, AB and AD, AD and BD, BD and CE, will be one to another as
            the lines FG, GH, HI, and will observe the same order among them
            selves. But the same thing may be more readily done in this manner.
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            Produce AB to K and BD to L, so as BK may be to AB as HI to GH; and
            DL to BD as GI to FG; and join KL meeting the right line CE in i.
            Produce iL to M, so as LM may be to iL as GH to
            HI; then draw MQ parallel to LB, and meeting the right line AD in g,
            and join gi cutting AB, BD in f, h; I say, the
            thing is done.
        

        
            For let Mg cut the right line AB in Q, and AD the right line
            KL in S, and draw AP parallel to BD, and
            meeting iL in P, and gM to Lh (gi
            to hi, Mi to Li, GI to HI, AK to BK) and
            AP to BL, will be in the same ratio. Cut DL in R, so as DL to RL may
            be in that same ratio; and because gS to gM, AS to
            AP, and DS to DL are proportional; therefore (ex aequo) as gS
            to Lh, so will AS be to BL, and DS to RL; and mixtly, BL − RL
            to Lh − BL, as AS − DS to gS − AS. That is, BR is
            to Bh as AD is to Ag, and therefore as BD to gQ.
            And alternately BR is to BD as Bh to gQ, or as fh
            to fg. But by construction the line BL was cut in D and R in
            the same ratio as the line FI in G and H; and therefore BR is to BD as
            FH to FG. Wherefore fh is to fg as FH to FG.
            Since, therefore, gi to hi likewise is as Mi
            to Li, that is, as GI to HI, it is manifest that the lines
            FI, fi, are similarly cut in G and H, g and h.
              Q.E.F.
        

        
            In the construction of this Corollary, after the line LK is drawn
            cutting CE in i, we may produce iE to V, so as EV
            may be to Ei as FH to HI, and then draw Vf parallel
            to BD. It will come to the same, if about the centre i with
            an interval IH, we describe a circle cutting BD in X, and produce iX
            to Y so as iY may be equal to IF, and then draw Yf
            parallel to BD.
        

        
            Sir Christopher Wren and Dr. Wallis have long ago given other
            solutions of this Problem.
        

    

    
        Proposition xxix. Problem xxi.

            
                
                    To describe a trajectory given in kind, that may be cut by four
                    right lines given by position, into parts given in order, kind, and proportion.
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            Suppose a trajectory is to be described that may be similar to the
            curve line FGHI, and whose parts, similar and proportional to the
            parts FG, GH, HI of the other, may be intercepted between the right
            lines AB and AD, AD, and BD, BD and CE given by position, viz., the
            first between the first pair of those lines, the second between the
            second, and the third between the third. Draw the right lines FG, GH,
            HI, FI; and (by Lem. XXVII) describe a trapezium fghi that
            may be similar to the trapezium FGHI, and whose angles f, g, h, i,
            may touch the right lines given by position AB, AD, BD, CE, severally
            according to their order. And then about this trapezium describe a
            trajectory, that trajectory will be similar to the curve line FGHI.
        

    

    
        Scholium.


        
            This problem may be likewise constructed in the following manner.
            Joining FG, GH, HI, FI, produce GF to V, and join FH, IG, and make
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            the angles CAK, DAL equal to the
            angles FGH, VFH. Let AK, AL meet the right line BD in K and L, and
            thence draw KM, LN, of which let KM make the angle AKM equal to the
            angle GHI, and be itself to AK as HI is to GH; and let LN make the
            angle ALN equal to the angle FHI, and be itself to AL as HI to FH.
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            But AK, KM. AL, LN are to be drawn towards
            those sides of the lines AD, AK, AL, that the letters CAKMC, ALKA,
            DALND may be carried round in the same order as the letters FGHIF; and
            draw MN meeting the right line CE in i. Make the angle iEP
            equal to the angle IGF, and let PE be to Ei as FG to GI; and
            through P draw PQf that may with the right line ADE contain
            an angle PQE equal to the angle FIG, and may meet the right line AB in
            f, and join fi. But PE and PQ are to be drawn
            towards those sides of the lines CE, PE, that the circular order of
            the letters PEiP and PEQP may be the same as of the letters
            FGHIF; and if upon the line fi, in the same order of
            letters, and similar to the trapezium FGHI, a trapezium fghi
            is constructed, and a trajectory given in kind is circumscribed about
            it, the Problem will be solved.
        

        
            So far concerning the finding of the orbits. It remains that we
            determine the motions of bodies in the orbits so found.
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        Section vi.

        How the motions are to be found in given orbits.


    

    
        Proposition xxx. Problem xxii.

            
                
                    To find at any assigned time the place of a body moving in, a
                    given parabolic trajectory.
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            Let S be the focus, and A the principal vertex of the parabola; and
            suppose 4AS x M equal to the parabolic area to be cut off APS, which
            either was described by the radius SP, since the body's departure from
            the vertex, or is to be described thereby before its arrival there.
            Now the quantity of that area to be cut off is known from the time
            which is proportional to it. Bisect AS in G, and erect the
            perpendicular GH equal to BM, and a circle described about the centre
            H, with the interval HS, will cut the parabola in the place P
            required. For letting fall PO perpendicular on the axis, and drawing
            PH, there will be

            AG2 + GH2

            (= HP2 = (AO
            − AG)2 + (PO − GH)2)

            = AO2 + PO2 − 2GAO + 2 GH +
            PO + AG2 + GH2.

             Whence 2GH x PO (= AO2 + PO2
            − 2GAO) = AO2 + ¾PO2. For AO2 write
            AO x PO2

            4AS; then dividing all the terms by 2PO, and
            multiplying them by 2AS, we shall have 4/3GH x
            AS (= 1/6AO x PO + ½AS x PO = 
            AO+3AS

            6 x PO = 
            4AO − 3SO

            6 x PO = to the area (APO − SPO))
            = to the area APS. But GH was 3M, and therefore 4/3GH
            x AS is 4AS x M. Wherefore the
            area cut off APS is equal to the area that was to be cut off 4AS
            x M.   Q.E.D.
        

        
            Cor. 1. Hence GH is to AS as the time in
            which the body described the arc AP to the time in which the body
            described the arc between the vertex A and the perpendicular erected
            from the focus S upon the axis.
        

        
            Cor. 2. And supposing a circle ASP
            perpetually to pass through the moving body P, the velocity of the
            point H is to the velocity which the body had in the vertex A as 3 to
            8; and therefore in the same ratio is the line GH to the right line
            which the body, in the time of its moving from A to P, would describe
            with that velocity which it had in the vertex A.
        

        
            Cor. 3. Hence, also, on the other hand, the
            time may be found in which the body has described any assigned arc AP.
            Join AP, and on its middle point erect a perpendicular meeting the
            right line GH in H.
        

    

    
        Lemma xxviii.

            
                
                    There is no oval figure whose area, cut off by right lines at
                    pleasure, can be universally found by means of equations of any
                    number of finite terms and dimensions.
                
            

        

        
            Suppose that within the oval any point is given; about which as a
            pole a right line is perpetually revolving with an uniform motion,
            while in that right line a moveable point going out from the pole
            moves always forward with a velocity proportional to the square of
            that right line with in the oval. By this motion that point will
            describe a spiral with infinite circumgyrations. Now if a portion of
            the area of the oval cut off by that right line could be found by a
            finite equation, the distance of the point from the pole, which is
            proportional to this area, might be found by the same equation, and
            therefore all the points of the spiral might be found by a finite
            equation also; and therefore the intersection of a right line given in
            position with the spiral might also be found by a finite equation. But
            every right line infinitely produced cuts a spiral in an infinite
            number of points; and the equation by which any one intersection of
            two lines is found at the same time exhibits all their intersections
            by as many roots, and therefore rises to as many dimensions as there
            are intersections. Be cause two circles mutually cut one another in
            two points, one of those intersections is not
            to be found but by an equation of two dimensions, by which the other
            intersection may be also found. Because there may be four
            intersections of two conic sections, any one of them is not to be
            found universally, but by an equation of four dimensions, by which
            they may be all found together. For if those intersections are
            severally sought, be cause the law and condition of all is the same,
            the calculus will be the same in every case, and therefore the
            conclusion always the same; which must therefore comprehend all those
            intersections at once within itself, and exhibit them all
            indifferently. Hence it is that the intersections of the conic scions
            with the curves of the third order, because they may amount to six,
            come out together by equations of six dimensions; and the
            intersections of two curves of the third order, because they may
            amount to nine, come out together by equations of nine dimensions. If
            this did not necessarily happen, we might reduce all solid to plane
            Problems, and those higher than solid to solid Problems. But here I
            speak of curves irreducible in power. For if the equation by which the
            curve is defined may be reduced to a lower power, the curve will not
            be one single curve, but composed of two, or more, whose intersections
            may be severally found by different calculusses. After the same manner
            the two intersections of right lines with the conic sections come out
            always by equations of two dimensions; the three intersections of
            right lines with the irreducible curves of the third order by
            equations of three dimensions; the four intersections of right lines
            with the irreducible curves of the fourth order, by equations of four
            dimensions; and so on in infinitum. Wherefore the
            innumerable intersections of a right line with a spiral, since this is
            but one simple curve and not reducible to more curves, require
            equations infinite in number of dimensions and roots, by which they
            may be all exhibited together. For the law and calculus of all is the
            same. For if a perpendicular is let fall from the pole upon that
            intersecting right line, and that perpendicular together with the
            intersecting line revolves about the pole, the intersections of the
            spiral will mutually pass the one into the other; and that which was
            first or nearest, after one revolution, will be the second; after two,
            the third; and so on: nor will the equation in the mean time be
            changed but as the magnitudes of those quantities are changed, by
            which the position of the intersecting line is determined. Wherefore
            since those quantities after every revolution return to their first
            magnitudes, the equation will return to its first form; and
            consequently one and the same equation will exhibit all the
            intersections, and will therefore have an infinite number of roots, by
            which they may be all exhibited. And therefore the intersection of a
            right line with a spiral cannot be universally found by any finite
            equation; and of consequence there is no oval figure whose area, cut
            off by right lines at pleasure, can be universally exhibited by any
            such equation.
        

        
            By the same argument, if the interval of the
            pole and point by which the spiral is described is taken proportional
            to that part of the perimeter of the oval which is cut off; it may be
            proved that the length of the perimeter cannot be universally
            exhibited by any finite equation. But here I speak of ovals that are
            not touched by conjugate figures running out in infinitum.
        

        
            Cor. Hence the area of an ellipsis, described
            by a radius drawn from the focus to the moving body, is not to be
            found from the time given by a finite equation; and therefore cannot
            be determined by the description of curves geometrically rational.
            Those curves I call geometrically rational, all the points whereof may
            be determined by lengths that are definable by equations; that is, by
            the complicated ratios of lengths. Other curves (such as spirals,
            quadratrixes, and cycloids) I call geometrically irrational. For the
            lengths which are or are not as number to number (according to the
            tenth Book of Elements) are arithmetically rational or irrational. And
            therefore I cut off an area of an ellipsis proportional to the time in
            which it is described by a curve geometrically irrational, in the
            following manner.
        

    

    
        Proposition xxxi. Problem xxiii.

            
                
                    To find the place of a body moving in a given elliptic
                    trajectory at any assigned time.
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            Suppose A to be the principal vertex, S the focus, and O the centre
            of the ellipsis APB; and let P be the place of the body to be found.
            Produce OA to G so as OG may be to OA as OA to OS. Erect the
            perpendicular GH; and about the centre O, with the interval OG,
            describe the circle GEF; and on the ruler GH, as a base, suppose the
            wheel GEF to move forwards, revolving about its axis, and in the mean
            time by its point A describing the cycloid ALI. Which done, take GK to
            the perimeter GEFG of the wheel, in the ratio of the time in which the
            body proceeding from A described the arc AP, to the time of a whole
            revolution in the ellipsis. Erect the perpendicular KL meeting the
            cycloid in L; then LP drawn parallel to KG will meet the ellipsis in
            P, the required place of the body.
        

        
            For about the centre O with the interval OA describe the semi-circle
            AQB, and let LP, produced, if need be, meet the arc AQ in Q, and join
            SQ, OQ. Let OQ meet the arc EFG in F, and upon
            OQ let fall the perpendicular SR. The area APS is as the area AQS,
            that is, as the difference between the sector OQA and the triangle
            OQS, or as the difference of the rectangles ½OQ x AQ, and ½OQ x SR,
            that is, because ½OQ is given, as the difference between the arc AQ
            and the right line SR; and therefore (because of the equality of the
            given ratios SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to
            GF; and by division, AQ − SR to GF − sine of the arc AQ) as GK, the
            difference between the arc GF and the sine of the arc AQ.
              Q.E.D.
        

    

    
        Scholium.
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            But since the description of this curve is difficult, a solution by
            approximation will be preferable. First, then, let there be found a
            certain angle B which may be to an angle of 57,29578 degrees, which an
            arc equal to the radius subtends, as SH, the distance of the foci, to
            AB, the diameter of the ellipsis. Secondly, a certain length L, which
            may be to the radius in the same ratio inversely. And these being
            found, the Problem may be solved by the following analysis. By any
            construction (or even by conjecture), suppose we know P the place of
            the body near its true place p. Then letting fall on the
            axis of the ellipsis the ordinate PR from the proportion of the
            diameters of the ellipsis, the ordinate RQ of the circumscribed circle
            AQB will be given; which ordinate is the sine of the angle AOQ,
            supposing AO to be the radius, and also cuts the ellipsis in P. It
            will be sufficient if that angle is found by a rude calculus in
            numbers near the truth. Suppose we also know the angle proportional to
            the time, that is, which is to four right angles as the time in which
            the body described the arc Ap, to the time of one revolution
            in the ellipsis. Let this angle be N. Then take an angle D, which may
            be to the angle B as the sine of the angle AOQ to the radius; and an
            angle E which may be to the angle N − AOQ + D as the length L to the
            same length L diminished by the cosine of the angle AOQ, when that
            angle is less than a right angle, or increased thereby when greater.
            In the next place, take an angle F that may be to the angle B as the
            sine of the angle AOQ + E to the radius, and an angle G, that may be
            to the angle N − AOQ − E + F as the length L to the same length L
            diminished by the cosine of the angle AOQ + E, when that angle is less
            than a right angle, or increased thereby when greater. For the third
            time take an angle H, that may be to the angle B as the sine of the
            angle AOQ + E + G to the radius; and an angle I to the angle N − AOQ −
            E − G + H, as the length L is to the same
            length L diminished by the cosine of the angle AOQ + E + G, when that
            angle is less than a right angle, or increased thereby when greater.
            And so we may proceed in infinitum. Lastly, take the angle
            AOq equal to the angle AOQ + E + G + I +, &c. and from
            its cosine Or and the ordinate pr, which is to its
            sine qr as the lesser axis of the ellipsis to the greater,
            we shall have p the correct place of the body. When the
            angle N − AOQ + D happens to be negative, the sign + of the angle E
            must be every where changed into −, and the sign − into +. And the
            same thing is to be understood of the signs of the angles G and I,
            when the angles N − AOQ − E + F, and N − AOQ − E − G + H come out
            negative. But the infinite series AOQ + E + G + I +, &c. converges
            so very fast, that it will be scarcely ever needful to proceed beyond
            the second term E. And the calculus is founded upon this Theorem, that
            the area APS is as the difference between the arc AQ and the right
            line let fall from the focus S perpendicularly upon the radius OQ.
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            And by a calculus not unlike, the Problem is solved in the hyperbola.
            Let its centre be O, its vertex A, its focus S, and asymptote OK; and
            suppose the quantity of the area to be cut off is known, as being
            proportional to the time. Let that be A, and by conjecture suppose we
            know the position of a right line SP, that cuts off an area APS near
            the truth. Join OP, and from A and P to the asymptote draw AI, PK
            parallel to the other asymptote; and by the table of logarithms the
            area AIKP will be given, and equal thereto the area OPA, which
            subducted from the triangle OPS, will leave the area cut off APS. And
            by applying 2APS − SA, or 2A − SAPS, the double difference of the area
            A that was to be cut off, and the area APS that is cut off, to the
            line SN that is let fall from the focus S, perpendicular upon the
            tangent TP, we shall have the length of the chord PQ. Which chord PQ
            is to be inscribed between A and P, if the area APS that is cut off be
            greater than the area A that was to be cut off, but towards the
            contrary side of the point P, if otherwise: and the point Q will be
            the place of the body more accurately. And by repeating the
            computation the place may be found perpetually to greater and greater
            accuracy.
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            And by such computations we have a general analytical resolution of
            the Problem. But the particular calculus that follows is better fitted
            for astronomical purposes. Supposing AO, OB, OD, to be the semi-axis
            of the ellipsis, and L its latus rectum, and D the difference betwixt
            the lesser semi-axis OD, and ½L the half of
            the latus rectum: let an angle Y be found, whose sine may be to the
            radius as the rectangle under that difference D, and AO + OD the half
            sum of the axes to the square of the greater axis AB. Find also an
            angle Z, whose sine may be to the radius as the double rectangle under
            the distance of the foci SH and that difference D to triple the square
            of half the greater semi-axis AO. Those angles being once found, the
            place of the body may be thus determined. Take the angle T
            proportional to the time in which the arc BP was described, or equal
            to what is called the mean motion; and an angle V the first equation
            of the mean motion to the angle Y, the greatest first equation, as the
            sine of double the angle T is to the radius; and an angle X, the
            second equation, to the angle Z, the second greatest equation, as the
            cube of the sine of the angle T is to the cube of the radius. Then
            take the angle BHP the mean motion equated equal to T + X + V, the sum
            of the angles T, V, X, if the angle T is less than a right angle; or
            equal to T + X − V, the difference of the same, if that angle T is
            greater than one and less than two right angles; and if HP meets the
            ellipsis in P, draw SP, and it will cut off the area BSP nearly
            proportional to the time.
        

        
            This practice seems to be expeditious enough, because the angles V
            and X, taken in second minutes, if you please, being very small, it
            will be sufficient to find two or three of their first figures. But it
            is likewise sufficiently accurate to answer to the theory of the
            planet's motions. For even in the orbit of Mars, where the greatest
            equation of the centre amounts to ten degrees, the error will scarcely
            exceed one second. But when the angle of the mean motion equated BHP
            is found, the angle of the true motion BSP, and the distance SP, are
            readily had by the known methods.
        

        
            And so far concerning the motion of bodies in curve lines. But it may
            also come to pass that a moving body shall ascend or descend in a
            right line; and I shall now go on to explain what belongs to such kind
            of motions.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 1.7



    
        Section vii.

        Concerning the rectilinear ascent and descent of bodies.


    

    
        Proposition xxxii. Problem xxiv.

            
                
                    Supposing that the centripetal force is reciprocally
                    proportional to the square of the distance of the places from the
                    centre; it is required to define the spaces which a body, falling
                    directly, describes in given times.
                
            

        

        
            Case 1. If the body does not fall
            perpendicularly, it will (by Cor. 1 
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            Prop. XIII) describe some conic section whose focus is A placed in the
            centre of force. Suppose that conic section to be ARPB and its focus
            S. And, first, if the figure be an ellipsis, upon the greater axis
            thereof AB describe the semi-circle ADB, and let the right line DPC
            pass through the falling body, making right angles with the axis; and
            drawing DS, PS, the area ASD will be proportional to the area ASP, and
            therefore also to the time. The axis AB still remaining the same, let
            the breadth of the ellipsis be perpetually diminished, and the area
            ASD will always remain proportional to the time. Suppose that breadth
            to be diminished in infinitum; and the orbit APB in that
            case coinciding with the axis AB, and the focus S with the extreme
            point of the axis B, the body will descend in the right line AC, and
            the area ABD will become proportional to the time. Wherefore the space
            AC will be given which the body describes in a given time by its
            perpendicular fall from the place A, if the area ABD is taken
            proportional to the time, and from the point D the right line DC is
            let fall perpendicularly on the right line AB.   Q.E.I.
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            Case 2. If the figure RPB is an hyperbola, on
            the same principal diameter AB describe the rectangular hyperbola BED;
            and because the areas CSP, CBfP, SPfB, are severally
            to the several areas CSD, CBED, SDEB, in the given ratio of the
            heights CP, CD, and the area SPfB is proportional to the time
            in which the body P will move through the arc PfB. the area
            SDEB will be also proportional to that time. Let the latus rectum of
            the hyperbola RPB be diminished in infinitum, the latus
            transversum remaining the same; and the arc PB will come to coincide
            with the right line CB, and the focus S, with the vertex B, and the
            right line SD with the right line BD. And therefore the area BDEB will
            be proportional to the time in which the body C, by its perpendicular
            descent, describes the line CB.   Q.E.I.
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            Case 3. And by the like argument, if the
            figure RPB is a parabola, and to the same principal vertex B another
            parabola BED is described, that may always remain given while the
            former para bola in whose perimeter the body P moves, by having its
            latus rectum diminished and reduced to nothing, comes to coincide with
            the line CB, the parabolic segment BDEB will be proportional to the
            time in which that body P or C will descend to the centre S or B.
              Q.E.I
        

    

    
        
            Proposition xxxiii. Theorem ix.

            
                The things above found being supposed. I say, that the velocity
                of a falling body in any place C is to the velocity of a
                body, describing a circle about the centre B at the
                distance BC, in the subduplicate ratio of AC,
                the distance of the body from the remoter vertex A of
                the circle or rectangular hyperbola, to ½AB, the
                principal semi-diameter of the figure.
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            Let AB, the common diameter of both figures RPB, DEB, be bisected in
            O; and draw the right line PT that may touch the figure RPB in P, and
            likewise cut that common diameter AB (produced, if need be) in T; and
            let SY be perpendicular to this line, and BQ to this diameter, and
            suppose the latus rectum of the figure RPB to be L. From Cor. 9, Prop.
            XVI, it is manifest that the velocity of a body, moving in the line
            RPB about the centre S, in any place P, is to the velocity of a body
            describing a circle about the same centre, at the distance SP, in the
            subduplicate ratio of the rectangle ½L x SP to SY². For by the
            properties of the conic sections ACB is to CP² as 2AO to L, and
            therefore 2CP2 x AO

            ACB is equal to L. Therefore those
            velocities are to each other in the subduplicate ratio of 
            CP2 x AO x SP

            ACB to SY². Moreover, by the properties
            of the conic sections, CO is to BO as BO to TO, and (by composition or
            division) as CB to BT. Whence (by division or composition) BO − or +
            CO will be to BO as CT to BT, that is, AC will be to AO as CP to BQ;
            and therefore CP2 x AO
            x SP

            ACB is equal to 
            BQ2 x AC x SP

            AO x BC. Now suppose CP, the breadth of
            the figure RPB, to be diminished in infinitum, so as the
            point P may come to coincide with the point C, and the point S with
            the point B, and the line SP with the line BC, and the line SY with
            the line BQ; and the velocity of the body now descending
            perpendicularly in the line CB will be to the velocity of a
            body describing a circle about the centre B, at the distance BC; in
            the subduplicate ratio of BQ2
            x AC x SP

            AO x BC to SY², that is (neglecting the
            ratios of equality of SP to BC, and BQ² to SY²), in the subduplicate
            ratio of AC to AO, or ½AB.   Q.E.D.
        

        
            Cor. 1. When the points B and S come to
            coincide, TC will become to TS as AC to AO.
        

        
            Cor. 2. A body revolving in any circle at a
            given distance from the Centre, by its motion converted upwards, will
            ascend to double its distance from the centre.
        

    

    
        Proposition xxxiv. Theorem X.

            
                If the figure BED is a parabola, I say, that the
                velocity of a falling body in any place C is equal to
                the velocity by which a body may uniformly describe a circle about
                the centre B at half the interval BC.
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            For (by Cor. 7, Prop. XVI) the velocity of a body describing a
            parabola RPB about the centre S, in any place P, is equal to the
            velocity of a body uniformly describing a circle about the same centre
            S at half the interval SP. Let the breadth CP of the parabola be
            diminished in infinitum, so as the parabolic arc PfB
            may come to coincide with the right line CB, the centre S with the
            vertex B, and the interval SP with the interval BC, and the
            proposition will be manifest.   Q.E.D.
        

    

    
        Proposition xxxv. Theorem xi.

            
                The same things supposed, I say, that the area of the figure
                DES, described by the indefinite radius SD, is equal to
                the area which a body with a radius equal to half the latus rectum
                of the figure DES, by uniformly revolving about the
                centre S, may describe in the same time.
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            For suppose a body C in the smallest moment
            of time describes in falling the infinitely little line Cc,
            while another body K, uniformly revolving about the centre S in the
            circle OKk, describes the arc Kk. Erect the
            perpendiculars CD, cd, meeting the figure DES in D, d.
            Join SD, Sd, SK, Sk, and draw Dd meeting
            the axis AS in T, and thereon let fall the perpendicular SY.
        

        
            Case 1. If the figure DES is a circle, or a
            rectangular hyperbola, bisect its transverse diameter AS in O, and SO
            will be half the latus rectum. And because TC is to TD as Cc
            to Dd, and TD to TS as CD to SY; ex aequo TC will
            be to TS as CD x Cc to SY x Dd. But (by Cor. 1,
            Prop. XXXIII) TC is to TS as AC to AO; to wit, if in the coalescence
            of the points D, d, the ultimate ratios of the lines are
            taken. Wherefore AC is to AO or SK as CD x Cc to SY x Dd.
            Farther, the velocity of the descending body in C is to the velocity
            of a body describing a circle about the centre S, at the interval SC,
            in the subduplicate ratio of AC to AO or SK (by Prop. XXXIII); and
            this velocity is to the velocity of a body describing the circle OKk
            in the subduplicate ratio of SK to SC (by Cor. 6, Prop IV); and, ex
            aequo, the first velocity to the last, that is, the little line
            Cc to the arc Kk, in the subduplicate ratio of AC to
            SC, that is, in the ratio of AC to CD. Wherefore CD x Cc is
            equal to AC x Kk, and consequently AC to SK as AC x Kk
            to SY x Dd, and thence SK x Kk equal to SY x Dd,
            and ½SK x Kk equal to ½SY x Dd, that is, the area KSk
            equal to the area SDd. Therefore in every moment of time two
            equal particles, KSk and SDd, of areas are
            generated, which, if their magnitude is diminished, and their number
            increased in infinitum, obtain the ratio of equality, and
            consequently (by Cor. Lem. IV), the whole areas together generated are
            always equal.   Q.E.D.
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            Case 2. But if the figure DES is a parabola,
            we shall find, as above, CD x Cc to SY x Dd as TC to
            TS, that is, as 2 to 1; and that therefore ¼CD x Cc is equal
            to ½SY x Dd. But the velocity of the falling body in C is
            equal to the velocity with which a circle may be uniformly described
            at the interval ½SC (by Prop. XXXIV). And this velocity to the
            velocity with which a circle may be described with the radius SK, that
            is, the little line Cc to the arc Kk, is (by Cor. 6,
            Prop. IV) in the subduplicate ratio of SK to ½SC; that is, in the
            ratio of SK to ½CD. Wherefore ½SK x Kk is equal to ¼CD x Cc,
            and therefore equal to ½SY x Dd; that is, the area KSk
            is equal to the area SDd, as above.   Q.E.D.
        

    

    
        
            Proposition xxxvi. Problem xxv.

            To determine the times of the descent of a body falling from place A.
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            Upon the diameter AS, the distance of the body from the centre at the
            beginning, describe the semi-circle ADS, as likewise the semi-circle
            OKH equal thereto, about the centre S. From any place C of the body
            erect the ordinate CD. Join SD, and make the sector OSK equal to the
            area ASD. It is evident (by Prop. XXXV) that the body in falling will
            describe the space AC in the same time in which another body,
            uniformly revolving about the centre S, may describe the arc OK.
              Q.E.F.
        

    

    
        Proposition xxxvii. Problem xxvi.

            
                
                    To define the times of the ascent or descent of a body
                    projected upwards or downwards from a given place.
                
            

        

        
            Suppose the body to go off from the given place G, in the direction
            of the line GS, with any velocity. In the duplicate ratio of this
            velocity to the uniform velocity in a circle, with which the body may
            revolve about
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            the centre S at the given
            interval SG, take GA to ½AS. If that ratio is the same as of the
            number 2 to 1, the point A is infinitely remote; in which case a
            parabola is to be described with any latus rectum to the vertex S, and
            axis SG; as appears by Prop. XXXIV. But if that ratio is less or
            greater than the ratio of 2 to 1, in the former case a circle, in the
            latter a rectangular hyperbola, is to be described on the diameter SA;
            as appears by Prop. XXXIII. Then about the centre S, with an interval
            equal to half the latus rectum, describe the circle HkK; and
            at the place G of the ascending or descending body, and at any other
            place C, erect the perpendiculars GI, CD, meeting the conic section or
            circle in I and D. Then joining SI, SD, let the sectors HSK, HSk
            be made equal to the segments SEIS, SEDS. and (by Prop. XXXV) the body
            G will describe the space GC in the same time
            in which the body K may describe the arc Kk.
              Q.E.F.
        

    

    
        Proposition xxxviii. Theorem xii.

            
                
                    Supposing that the centripetal force is proportional to the
                    altitude or distance of places from the centre. I say, that the
                    times and velocities of falling bodies, and the spaces which they
                    describe, are respectively proportional to the arcs, and the right
                    and versed sines of the arcs.
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            Suppose the body to fall from any place A in the right line AS; and
            about the centre of force S, with the interval AS, describe the
            quadrant of a circle AE; and let CD be the right sine of any arc AD;
            and the body A will in the time AD in falling describe the space AC,
            and in the place C will acquire the velocity CD.
        

        
            This is demonstrated the same way from Prop. X, as Prop. XXXII was
            demonstrated from Prop. XI.
        

        
            Cor. 1. Hence the times are equal in which
            one body falling from the place A arrives at the centre S, and another
            body revolving describes the quadrantal arc ADE.
        

        
            Cor. 2. Wherefore all the times are equal in
            which bodies falling from whatsoever places arrive at the centre. For
            all the periodic times of revolving bodies are equal (by Cor. 3, Prop. IV).
        

    

    
        Proposition xxxix. Problem xxvii.

            
                
                    Supposing a centripetal force of any kind, and granting the
                    quadratures of curvilinear figures; it is required to find the
                    velocity of a body, ascending or descending in a right line, in
                    the several places through which it passes; as also the time in
                    which it will arrive at any place: and vice versa.
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            Suppose the body E to fall from any place A in the right line ADEC;
            and from its place E imagine a perpendicular EG always erected
            proportional to the centripetal force in that place tending to the
            centre C; and let BFG be a curve line, the locus of the point G. And
            in the beginning of the motion suppose EG to coincide with the
            perpendicular AB; and the velocity of the body in any place E will be
            as a right line whose square is equal to the curvilinear area ABGE.
              Q.E.I.
        

        
            In EG take EM reciprocally proportional to a
            right line whose square is equal to the area ABGE, and let VLM he a
            curve line wherein the point M is always placed, and to which the
            right line AB produced is an asymptote; and the time in which the body
            in falling describes the line AE, will be as the curvilinear area
            ABTVME.   Q.E.I.
        

        
            For in the right line AE let there be taken the very small line DE of
            a given length, and let DLF be the place of the line EMG, when the
            body was in D; and if the centripetal force be such, that a right
            line, whose square is equal to the area ABGE, is as the velocity of
            the descending body, the area itself will be as the square of that
            velocity; that is, if for the velocities in D and E we write V and V +
            I, the area ABFD will be as VV, and the area ABGE as VV + 2VI + II;
            and by division, the area DFGE as 2VI + II, and therefore 
            DFGE

            DE will be as 
            2VI+II

            DE; that is, if we take the first
            ratios of those quantities when just nascent, the length DF is as the
            quantity 2VI

            DE, and therefore also as half that
            quantity I x V

            DE. But the time in which the body in
            falling describes the verv small line DE, is as that line directly and
            the velocity V inversely; and the force will be as the increment I of
            the velocity directly and the time inversely; and therefore if we take
            the first ratios when those quantities are just nascent, as
            
            I x V

            DE, that is, as the length DF.
            Therefore a force proportional to DF or EG will cause the body to
            descend with a velocity that is as the right line whose square is
            equal to the area ABGE.   Q.E.D.
        

        
            Moreover, since the time in which a very small line DE of a given
            length may be described is as the velocity inversely, and therefore
            also inversely as a right line whose square is equal to the area ABFD;
            and since the line DL, and by consequence the nascent area DLME, will
            be as the same right line inversely, the time will be as the area
            DLME, and the sum of all the times will be as the sum of all the
            areas; that is (by Cor. Lem. IV), the whole time in which the line AE
            is described will be as the whole area ATVME.   Q.E.D.
        

        
            Cor. 1. Let P be the place from whence a body
            ought to fall, so as that, when urged by any known uniform centripetal
            force (such as gravity is vulgarly supposed to be), it may acquire in
            the place D a velocity equal to the velocity which another body,
            falling by any force whatever, hath acquired in that place D. In the
            perpendicular DF let there be taken DR, which may be to DF as that
            uniform force to the other force in the place D. Complete the
            rectangle PDRQ, and cut off the area ABFD equal to that rectangle.
            Then A will be the place 
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            from whence the other body fell. For completing the rectangle DRSE,
            since the area ABFD is to the area DFGE as VV to 2VI, and therefore as
            ½V to I, that is, as half the whole velocity to the increment of the
            velocity of the body falling by the unequable force; and in like
            manner the area PQRD to the area DRSE as half the whole velocity to
            the increment of the velocity of the body falling by the uniform
            force; and since those increments (by reason of the equality of the
            nascent times) are as the generating forces, that is, as the ordinates
            DF, DR, and consequently as the nascent areas DFGE, DRSE: therefore, ex
            aequo, the whole areas ABFD, PQRD will be to one another as the
            halves of the whole velocities; and therefore, because the velocities
            are equal, they become equal also.
        

        
            Cor. 2. Whence if any body be projected
            either upwards or downwards with a given velocity from any place D,
            and there be given the law of centripetal force acting on it, its
            velocity will be found in any other place, as e, by erecting
            the ordinate eg, and taking that velocity to the velocity in
            the place D as a right line whose square is equal to the rectangle
            PQRD, either increased by the curvilinear area DFge, if the
            place e is below the place D, or diminished by the same area
            DFge, if it be higher, is to the right line whose square is
            equal to the rectangle PQRD alone.
        

        
            Cor. 3. The time is also known by erecting
            the ordinate em reciprocally proportional to the square root
            of PQRD + or − DFge, and taking the time in which the body
            has described the line De to the time in which another body
            has fallen with an uniform force from P, and in falling arrived at D
            in the proportion of the curvilinear area DLme to the
            rectangle 2PD x DL. For the time in which a body falling with an
            uniform force hath described the line PD, is to the time in which the
            same body has described the line PE in the subduplicate ratio of PD to
            PE; that is (the very small line DE being just nascent), in the ratio
            of PD to PD + ½DE, or 2PD to 2PD + DE, and, by division, to the time
            in which the body hath described the small line DE, as 2PD to DE, and
            therefore as the rectangle 2PD x DL to the area DLME; and the time in
            which both the bodies described the very small line DE is to the time
            in which the body moving unequably hath described the line De
            as the area DLME to the area DLme; and, ex aequo,
            the first mentioned of these times is to the last as the rectangle 2PD
            x DL to the area DLme.
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Book 1.8



    
        
        Section viii.

        Of the invention of orbits wherein bodies will revolve, being acted upon by any sort of centripetal force.

    

    
        Proposition xl. Theorem xiii.

            
                
                    If a body, acted upon by any centripetal force, is any how
                    moved, and another body ascends or descends in a right line, and
                    their velocities be equal in any one case of equal altitudes,
                    their velocities will be also equal at all equal altitudes.
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            Let a body descend from A through D and E, to the centre C; and let
            another body move from V in the curve line VIKk. From the
            centre C, with any distances, describe the concentric circles DI, EK,
            meeting the right line AC in D and E, and the curve VIK in I and K.
            Draw IC meeting KE in N, and on IK let fall the perpendicular NT; and
            let the interval DE or IN between the circumferences of the circles be
            very small; and imagine the bodies in D and I to have equal
            velocities. Then because the distances CD and CI are equal, the
            centripetal forces in D and I will be also equal. Let those forces be
            expressed by the equal lineolae DE and IN; and let the force IN (by
            Cor. 2 of the Laws of Motion) be resolved into two others, NT and IT.
            Then the force NT acting in the direction of the line NT perpendicular
            to the path ITK of the body will not at all affect or change the
            velocity of the body in that path, but only draw it aside from a
            rectilinear course, and make it deflect perpetually from the tangent
            of the orbit, and proceed in the curvilinear path ITKk. That
            whole force, therefore, will be spent in producing this effect; but
            the other force IT, acting in the direction of the course of the body,
            will be all employed in accelerating it, and in the least given time
            will produce an acceleration proportional to itself. Therefore the
            accelerations of the bodies in D and I, produced in equal times, are
            as the lines DE, IT (if we take the first ratios of the nascent lines
            DE, IN, IK, IT, NT); and in unequal times as those lines and the times
            conjunctly. But the times in which DE and IK are described, are, by
            reason of the equal velocities (in D and I) as the spaces described DE
            and IK, and therefore the accelerations in the course of the bodies
            through the lines DE and IK are as DE and IT, and DE and IK
            conjunctly; that is, as the square of DE to the rectangle IT into IK.
            But the rectangle IT x IK is equal to the square of IN, that is, equal
            to the square of DE; and therefore the accelerations generated in the
            passage of the bodies from D and I to E and K are equal. Therefore the
            velocities of the bodies in E and K are also equal, and by the same
            reasoning they will always be found equal in any subsequent equal
            distances.   Q.E.D.
        

        
            By the same reasoning, bodies of equal
            velocities and equal distances from the centre will he equally
            retarded in their ascent to equal distances.   Q.E.D.
        

        
            Cor. 1. Therefore if a body either oscillates
            by hanging to a string, or by any polished and perfectly smooth
            impediment is forced to move in a curve line; and another body ascends
            or descends in a right line, and their velocities be equal at any one
            equal altitude, their velocities will be also equal at all other equal
            altitudes. For by the string of the pendulous body, or by the
            impediment of a vessel perfectly smooth, the same thing will be
            effected as by the transverse force NT. The body is neither
            accelerated nor retarded by it, but only is obliged to leave its
            rectilinear course.
        

        
            Cor. 2. Suppose the quantity P to be the
            greatest distance from the centre to which a body can ascend, whether
            it be oscillating, or revolving in a trajectory, and so the same
            projected upwards from any point of a trajectory with the velocity it
            has in that point. Let the quantity A be the distance of the body from
            the centre in any other point of the orbit; and let the centripetal
            force be always as the power An−1, of the quantity A, the
            index of which power n−1 is any number n
            diminished by unity. Then the velocity in every altitude A will be as
            √(Pa − An) and
            therefore will be given. For by Prop. XXXIX, the velocity of a body
            ascending and descending in a right line is in that very ratio.
        

    

    
        Proposition xli. Problem xxviii.

            
                
                    Supposing a centripetal force of any kind, and granting the
                    quadratures of curvilinear figures, it is required to find as well
                    the trajectories in which bodies will move, as the times of their
                    motions in the trajectories found.
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            Let any centripetal force tend to the centre C, and let it be
            required to find the trajectory VIKk. Let there be given the
            circle VR, described from the centre C with any interval CV; and from
            the same centre describe any other circles ID, KE cutting the
            trajectory in I and K, and the right line CV in D and E. Then draw the
            right line CNIX cutting the circles KE, VR in N and X, and the right
            line CKY meeting the circle VR in Y. Let the points I and K be
            indefinitely near; and let the body go on from V through I and K to k;
            and let the point A be the place from whence another body is to fall,
            so as in the place D to acquire a velocity equal to the velocity of
            the first body in I. And things remaining as in Prop. XXXIX, the
            lineola IK, described in the least given time will
            be as the velocity, and therefore as the right line whose square is
            equal to the area ABFD, and the triangle ICK proportional to the time
            will be given, and therefore KN will be reciprocally as the altitude
            IC; that is (if there be given any quantity Q, and the altitude IC be
            called A), as Q

            A. This quantity 
            Q

            A call Z, and suppose the magnitude of
            Q to be such that in some case √(ABFD) may
            be to Z as IK to KN, and then in all cases √(ABFD)
            will be to Z as IK to KN, and ABFD to ZZ as IK² to KN², and by
            division ABFD − ZZ to ZZ as IN² to KN², and therefore √(ABFD
            − ZZ) to Z; or Q

            A as IN to KN; and therefore A x KN
            will be equal to Q x IN

            √(ABFD − ZZ). Therefore since YX x XC
            is to A x KN as CX², to AA, the rectangle XY x XC will be equal to
            Q x IN x CX2

            AA√(ABFD − ZZ). Therefore in the
            perpendicular DF let there be taken continually Db, Dc
            equal to Q

            2√(ABFD − ZZ), 
            Q x CX2

            2AA√(ABFD − ZZ) respectively, and let
            the curve lines ab, ac, the foci of the points b
            and c, be described: and from the point V let the
            perpendicular Va be erected to the line AC, cutting off the
            curvilinear areas VDba, VDca, and let the ordinates
            Ez, Ex, be erected also. Then because the rectangle
            Db x IN or DbzE is equal to half the rectangle A x
            KN, or to the triangle ICK; and the rectangle Dc x IN or DcxE
            is equal to half the rectangle YX x XC, or to the triangle XCY; that
            is, because the nascent particles DbzE, ICK of the areas VDba,
            VIC are always equal; and the nascent particles DcxE, XCY of
            the areas VDca, VCX are always equal: therefore the generated
            area VDba will be equal to the generated area VIC, and
            therefore proportional to the time; and the generated area VDca
            is equal to the generated sector VCX. If, therefore, any time be given
            during which the body has been moving from V, there will be also given
            the area proportional to it VDba; and thence will be given
            the altitude of the body CD or CI; and the area VDca, and the
            sector VCX equal thereto, together with its angle VCI. But the angle
            VCI, and the altitude CI being given, there is also given the place I,
            in which the body will be found at the end of that time.
              Q.E.I.
        

        
            Cor. 1. Hence the greatest and least
            altitudes of the bodies, that is, the apsides of the trajectories, may
            be found very readily. For the apsides are those points in which a
            right line IC drawn through the centre falls perpendicularly upon the
            trajectory VIK; which comes to pass when the right lines IK and NK
            become equal; that is, when the area ABFD is equal to ZZ.
        

        
            Cor. 2. So also the
            angle KIN, in which the trajectory at any place cuts the line IC, may
            be readily found by the given altitude IC of the body: to wit, by
            making the sine of that angle to radius as KN to IK that is, as Z to
            the square root of the area ABFD.
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            Cor. 3. If to the centre C, and the principal
            vertex V, there be described a conic section VRS; and from any point
            thereof, as R, there be drawn the tangent RT meeting the axis CV
            indefinitely produced in the point T; and then joining CR there be
            drawn the right line CP, equal to the abscissa CT, making an angle VCP
            proportional to the sector VCR; and if a centripetal force,
            reciprocally proportional to the cubes of the distances of the places
            from the centre, tends to the centre C; and from the place V there
            sets out a body with a just velocity in the direction of a line
            perpendicular to the right line CV; that body will proceed in a
            trajectory VPQ, which the point P will always touch; and therefore if
            the conic section VRS be an hyberbola, the body will descend to the
            centre; but if it be an ellipsis, it will ascend perpetually, and go
            farther and farther off in infinitum. And, on the contrary,
            if a body endued with any velocity goes off from the place V, and
            according as it begins either to descend obliquely to the centre, or
            ascends obliquely from it, the figure VRS be either an hyperbola or an
            ellipsis, the trajectory may be found by increasing or diminishing the
            angle VCP in a given ratio. And the centripetal force becoming
            centrifugal, the body will ascend obliquely in the trajectory VPQ,
            which is found by taking the angle VCP proportional to the elliptic
            sector VRC, and the length CP equal to the length CT, as before. All
            these things follow from the foregoing Proposition, by the quadrature
            of a certain curve, the invention of which, as being easy enough, for
            brevity's sake I omit.
        

    

    
        Proposition xlii. Problem xxix.

            
                
                    The law of centripetal force being given, it is required to
                    find the motion of a body setting out from a given place, with a
                    given velocity, in the direction of a given right line.
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            Suppose the same things as in the three preceding propositions; and
            let the body go off from the place I in the direction of the little
            line, IK, with the same velocity as another body, by falling with an
            uniform centripetal force from the place P, may acquire in D; and let
            this uniform force be to the force with which the body is
            at first urged in I, as DR to DF. Let the body go on towards k;
            and about the centre C, with the interval Ck, describe the
            circle ke, meeting the right line PD in e, and let
            there be erected the lines eg, ev, ew, ordinately applied to
            the curves BFg, abv, acw. From the given rectangle
            PDRQ and the given law of centripetal force, by which the first body
            is acted on, the curve line BFg is also given, by the
            construction of Prop. XXVII, and its Cor. 1. Then from the given angle
            CIK is given the proportion of the nascent lines IK, KN; and thence,
            by the construction of Prob. XXVIII, there is given the quantity Q,
            with the curve lines abv, acw; and therefore, at the end of
            any time Dbve, there is given both the altitude of the body Ce
            or Ck, and the area Dcwe, with the sector equal to
            it XCy, the angle ICk, and the place k, in
            which the body will then be found.   Q.E.I.
        

        
            We suppose in these Propositions the centripetal force to vary in its
            recess from the centre according to some law, which any one may
            imagine at pleasure; but at equal distances from the centre to be
            everywhere the same.
        

        
            I have hitherto considered the motions of bodies in immovable orbits.
            It remains now to add something concerning their motions in orbits
            which revolve round the centres of force.
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        Section ix.

        Of the motion of bodies in moveable orbits; and of the motion of the apsides.


    

    
        Proposition xliii. Problem xxx.

            
                
                    It is required to make a body move in a trajectory that
                    revolves about the centre of force in the same manner as another
                    body in the same trajectory at rest.
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            In the orbit VPK, given by position, let the body P revolve,
            proceeding from V towards K. From the centre C let there be
            continually drawn Cp, equal to CP, making the angle VCp
            proportional to the angle VCP; and the area which the line Cp
            describes will be to the area VCP, which the line CP describes at the
            same time, as the velocity of the describing line Cp to the
            velocity of the describing line CP; that is, as the angle VCp
            to the angle VCP, therefore in a given ratio, and therefore
            proportional to the time. Since, then, the area described by the line
            Cp in an immovable plane is proportional to the time, it is
            manifest that a body, being acted upon by a just quantity of
            centripetal force may revolve with the point
            p in the curve line which the same point p, by the
            method just now explained, may be made to describe an immovable plane.
            Make the angle VCu equal to the angle PCp, and the
            line Cu equal to CV, and the figure uCp
            equal to the figure VCP, and the body being always in the point p,
            will move in the perimeter of the revolving figure uCp,
            and will describe its (revolving) arc up in the same time
            that the other body P describes the similar and equal arc VP in the
            quiescent figure VPK. Find, then, by Cor. 5, Prop. VI., the
            centripetal force by which the body may be made to revolve in the
            curve line which the point p describes in an immovable
            plane, and the Problem will be solved.   Q.E.F.
        

    

    
        Proposition xliv. Theorem xiv.

            
                
                    The difference of the forces, by which two bodies may be made
                    to move equally, one in a quiescent, the other in the same orbit
                    revolving, is in a triplicate ratio of their common altitudes inversely.
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            Let the parts of the quiescent orbit VP, PK be similar and equal to
            the parts of the revolving orbit up, pk; and let the
            distance of the points P and K be supposed of the utmost smallness.
            Let fall a perpendicular kr from the point k to
            the right line pC, and produce it to m, so that mr
            may be to kr as the angle VCp to the angle VCP.
            Because the altitudes of the bodies PC and pC, KC and kC,
            are always equal, it is manifest that the increments or decrements of
            the lines PC and pC are always equal; and therefore if each
            of the several motions of the bodies in the places P and p
            be resolved into two (by Cor. 2 of the Laws of Motion), one of which
            is directed towards the centre, or according to the lines PC, pC,
            and the other, transverse to the former, hath a direction
            perpendicular to the lines PC and pC; the motions towards
            the centre will be equal, and the transverse motion of the body p
            will be to the transverse motion of the body P as the angular motion
            of the line pC to the angular motion of the line PC; that
            is, as the angle VCp to the angle VCP. Therefore, at the same
            time that the body P, by both its motions, comes to the point K, the
            body p, having an equal motion towards the centre, will be
            equally moved from p towards C; and therefore that time
            being expired, it will be found somewhere in the line mkr,
            which, passing through the point k, is perpendicular to the
            line pC; and by its transverse motion will acquire a
            distance from the line pC, that will
            be to the distance which the other body P acquires from the line PC as
            the transverse motion of the body p to the transverse motion
            of the other body P. Therefore since kr is equal to the
            distance which the body P acquires from the line PC, and mr
            is to kr as the angle VCp to the angle VCP, that
            is, as the transverse motion of the body p to the transverse
            motion of the body P, it is manifest that the body p, at the
            expiration of that time, will be found in the place m. These
            things will be so, if the bodies p and P are equally moved
            in the directions of the lines pC and PC, and are therefore
            urged with equal forces in those directions, but if we take an angle pCn
            that is to the angle pCk as the angle VCp
            to the angle VCP, and nC be equal to kC, in that
            case the body p at the expiration of the time will really be
            in n; and is therefore urged with a greater force than the
            body P, if the angle nCp is greater than the angle
            kCp, that is, if the orbit upk, move
            either in consequentia or in antecedentia, with a
            celerity greater than the double of that with which the line CP moves
            in consequentia; and with a less force if the orbit moves
            slower in antecedentia. And the difference of the forces
            will be as the interval mn of the places through which the
            body would be carried by the action of that difference in that given
            space of time. About the centre C with the interval Cn or Ck
            suppose a circle described cutting the lines mr, mn produced
            in s and t, and the rectangle mn x mt
            will be equal to the rectangle mk x ms, and therefore mn
            will be equal to mk x ms

            mt. But since the triangles pCk,
            pCn, in a given time, are of a given magnitude, kr
            and mr, and their difference mk, and their sum ms,
            are reciprocally as the altitude pC, and therefore the
            rectangle mk x ms is reciprocally as the square of the
            altitude pC. But, moreover, mt is directly as ½mt,
            that is, as the altitude pC. These are the first ratios of
            the nascent lines: and hence mk x
            ms

            mt, that is, the nascent lineola mn,
            and the difference of the forces proportional thereto, are
            reciprocally as the cube of the altitude pC.
              Q.E.D.
        

        
            Cor. 1. Hence the difference of the forces in
            the places P and p, or K and k, is to the force
            with which a body may revolve with a circular motion from R to K, in
            the same time that the body P in an immovable orb describes the arc
            PK, as the nascent line mn to the versed sine of the nascent
            arc RK, that is, as mk x ms

            mt to rk2

            2kC, or as mk x ms to the
            square of rk; that is, if we take given quantities F and G
            in the same ratio to one another as the angle VCP bears to the angle
            VCp, as GG − FF to FF. And, therefore, if from the centre C,
            with any distance CP or Cp, there be described a circular
            sector equal to the whole area VPC, which the body revolving
            in an immovable orbit has by a radius drawn to the centre described in
            any certain time, the difference of the forces, with which the body P
            revolves in an immovable orbit, and the body p in a movable
            orbit, will be to the centripetal force, with which another body by a
            radius drawn to the centre can uniformly describe that sector in the
            same time as the area VPC is described, as GG − FF to FF. For that
            sector and the area pCk are to one another as the
            times in which they are described.
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            Cor. 2. If the orbit VPK be an ellipsis,
            having its focus C, and its highest apsis V, and we suppose the the
            ellipsis upk similar and equal to it, so that pC
            may be always equal to PC, and the angle VCp be to the angle
            VCP in the given ratio of G to F; and for the altitude PC or pC
            we put A, and 2R for the latus rectum of the ellipsis, the force with
            which a body may be made to revolve in a movable ellipsis will be as
            FF

            AA+RGG − RFF

            A3, and vice versa.
            Let the force with which a body may revolve in an immovable ellipsis
            be expressed by the quantity FF

            AA, and the force in V will be 
            FF

            CV2. But the force with
            which a body may revolve in a circle at the distance CV, with the same
            velocity as a body revolving in an ellipsis has in V, is to the force
            with which a body revolving in an ellipsis is acted upon in the apsis
            V, as half the latus rectum of the ellipsis to the semi-diameter CV of
            the circle, and therefore is as RFF

            CV3; and the force which is
            to this, as GG − FF to FF, is as RGG
            − RFF

            CV3 : and this force (by
            Cor. 1 of this Prop.) is the difference of the forces in V, with which
            the body P revolves in the immovable ellipsis VPK, and the body p
            in the movable ellipsis upk. Therefore since by this Prop,
            that difference at any other altitude A is to itself at the altitude
            CV as 1

            A3 to 
            1

            CV3, the same difference
            in every altitude A will be as RGG
            − RFF

            A3. Therefore to the force
            FF

            AA, by which the body may revolve in an
            immovable ellipsis VPK add the excess
            RGG − RFF

            A3, and the sum will be the
            whole force FF

            AA+RGG − RFF

            A3 by which a body may
            revolve in the same time in the movable ellipsis upk.
        

        
            Cor. 3. In the same manner it will be found,
            that, if the immovable orbit VPK be an ellipsis having its centre in
            the centre of the forces C, and there be supposed a movable ellipsis upk,
            similar, equal, and concentrical to it; and 2R be the principal latus
            rectum of that ellipsis, and 2T the latus transversum, or greater
            axis; and the angle VCp be continually to the angle VCP as G
            to F; the forces with which bodies may revolve in the immovable and
            movable ellipsis, in equal times, will be as 
            FFA

            T3 and 
            FFA

            T3+RGG − RFF

            A3 respectively.
        

        
            Cor. 4. And universally, if the greatest
            altitude CV of the body be called T, and the radius of the curvature
            which the orbit VPK has in V, that is, the radius of a circle equally
            curve, be called R, and the centripetal force with which a body may
            revolve in any immovable trajectory VPK at the place V be called
            VFF

            TT, and in other places P be
            indefinitely styled X; and the altitude CP be called A, and G be taken
            to F in the given ratio of the angle VCp to the angle VCP;
            the centripetal force with which the same body will perform the same
            motions in the same time, in the same trajectory upk
            revolving with a circular motion, will be as the sum of the forces
            X+VRGG − VRFF

            A3.
        

        
            Cor. 5. Therefore the motion of a body in an
            immovable orbit being given, its angular motion round the centre of
            the forces may be increased or diminished in a given ratio; and thence
            new immovable orbits may be found in which bodies may revolve with new
            centripetal forces.
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            Cor. 6. Therefore if there be erected the
            line VP of an indeterminate length, perpendicular to the line CV given
            by position, and CP be drawn, and Cp equal to it, making the
            angle VCp having a given ratio to the angle VCP, the force
            with which a body may revolve in the curve line Vpk, which
            the point p is continually describing, will be reciprocally
            as the cube of the altitude Cp. For the body P, by its vis
            inertiae alone, no other force impelling it, will proceed
            uniformly in the right line VP. Add, then, a force tending to the
            centre C reciprocally as the cube of the altitude CP or Cp,
            and (by what was just demonstrated) the body
            will deflect from the rectilinear motion into the curve line Vpk.
            But this curve Vpk is the same with the curve VPQ found in
            Cor. 3, Prop XLI, in which, I said, bodies attracted with such forces
            would ascend obliquely.
        

    

    
        Proposition xlv. Problem xxxi.

            To find the motion of the apsides in orbits approaching very near to circles.

        

        
            This problem is solved arithmetically by reducing the orbit, which a
            body revolving in a movable ellipsis (as in Cor. 2 and 3 of the above
            Prop.) describes in an immovable plane, to the figure of the orbit
            whose apsides are required; and then seeking the apsides of the orbit
            which that body describes in an immovable plane. But orbits acquire
            the same figure. if the centripetal forces with which they are
            described, compared between themselves, are made proportional at equal
            altitudes. Let the point V be the highest apsis, and write T for the
            greatest altitude CV, A for any other altitude CP or Cp, and
            X for the difference of the altitudes CV − CP; and the force with
            which a body moves in an ellipsis revolving about its focus C (as in
            Cor. 2), and which in Cor. 2 was as
            FF

            AA + 
            RGG − RFF

            A3, that is as,
            FFA + RGG − RFF

            A3,
            by substituting T − X for A, will become as 
            RGG − RFF + TFF − FFX

            A3. In like manner any other
            centripetal force is to be reduced to a fraction whose denominator is
            A³, and the numerators are to be made analogous by collating together
            the homologous terms. This will be made plainer by Examples.
        

        
            Example 1. Let us suppose the centripetal
            force to be uniform, and therefore as
            A3

            A3 or, writing T − X for A
            in the numerator, as T3
            − 3TTX+3TXX − X3

            A3. Then collating together
            the correspondent terms of the numerators, that is, those that consist
            of given quantities, with those of given quantities, and those of
            quantities not given with those of quantities not given, it will
            become RGG − RFF + TFF to T³ as − FFX to 3TTX + 3TXX − X³, or as −FF
            to −3TT + 3TX − XX. Now since the orbit is supposed extremely near to
            a circle, let it coincide with a circle; and because in that case R
            and T become equal, and X is infinitely diminished, the last ratios
            will be, as RGG to T², so −FF to −3TT, or as GG to TT, so FF to 3TT;
            and again, as GG to FF, so TT to 3TT, that is, as 1 to 3; and
            therefore G is to F, that is, the angle VCp to the angle VCP,
            as 1 to √3. Therefore since the body, in an immovable 
            ellipsis, in descending from the upper to the lower apsis, describes an angle,
            if I may so speak, of 180 deg., the other body in a movable ellipsis,
            and therefore in the immovable orbit we are treating of, will in its
            descent from the upper to the lower apsis, describe an angle VCp
            of 180

            √3 deg. And this comes to pass by reason of the likeness of
            this orbit which a body acted upon by an uniform centripetal force
            describes, and of that orbit which a body performing its circuits in a
            revolving ellipsis will describe in a quiescent plane. By this
            collation of the terms, these orbits are made similar; not
            universally, indeed, but then only when they approach very near to a
            circular figure. A body, therefore revolving with an uniform
            centripetal force in an orbit nearly circular, will always describe an
            angle of 180

            √3 deg., or 103 deg., 55 m., 23 sec., at the centre; moving
            from the upper apsis to the lower apsis when it has once described
            that angle, and thence returning to the upper apsis when it has
            described that angle again; and so on in infinitum.
        

        
            Exam. 2. Suppose the centripetal force to be
            as any power of the altitude A, as, for example, An−3, or
            An

            A3; where n − 3 and n signify
            any indices of powers whatever, whether integers or fractions,
            rational or surd, affirmative or negative. That numerator An
            or (T − X)n being reduced to an indeterminate series by my
            method of converging series, will become Tn
            − nXTn−1 + nn − n

            2XXTn−2, &c. And conferring these
            terms with the terms of the other numerator RGG − RFF + TFF − FFX, it
            becomes as RGG − RFF + TFF to Tn, so − FF to −nTn−1
            + nn − n

            2XTn−2, &c. And taking the last
            ratios where the orbits approach to circles, it becomes as RGG to Tn,
            so − FF to −nTn−1, or as GG to Tn−1, so
            FF to nTn−; and again, GG to FF, so Tn−1
            to nTn−1, that is, as 1 to n; and
            therefore G is to F, that is the angle VCp to the angle VCP,
            as 1 to √n. Therefore since the angle VCP, described in the descent of
            the body from the upper apsis to the lower apsis in an ellipsis, is of
            180 deg., the angle VCp, described in the descent of the body
            from the upper apsis to the lower apsis in an orbit nearly circular
            which a body describes with a centripetal force proportional to the
            power An−3, will be equal to an angle of 
            180

            √n deg., and this angle being repeated, the body will return
            from the lower to the upper apsis, and so on in infinitum.
            As if the centripetal force be as the distance of the body from the
            centre, that is, as A, or A4

            A3, n will be
            equal to 4, and √n equal to 2; and therefore the angle between
            the upper and the lower apsis will be equal to 
            180

            2 deg., or 90 deg. Therefore the body having performed a
            fourth part of one revolution, will arrive at the lower apsis, and
            having performed another fourth part, will arrive at the upper apsis,
            and so on by turns in infinitum. This appears also from
            Prop. X. For a body acted on by this centripetal force will revolve in
            an immovable ellipsis, whose centre is the centre of force. If the
            centripetal force is reciprocally as the distance, that is, directly
            as 1

            A or A2

            A3, n will be equal to 2; and therefore
            the angle between the upper and lower apsis will be 
            180

            √2 deg., or 127 deg., 16 min., 45 sec.; and therefore a body
            revolving with such a force, will by a perpetual repetition of this
            angle, move alternately from the upper to the lower and from the lower
            to the upper apsis for ever. So, also, if the centripetal force be
            reciprocally as the biquadrate root of the eleventh power of the
            altitude, that is, reciprocally as A11/4 , and, therefore,
            directly as 1

            A11/4 or as 
            A1/4

            A3, n will be equal to ¼, and 
            180

            √n deg. will be equal to 360 deg.; and therefore the body
            parting from the upper apsis, and from thence perpetually descending,
            will arrive at the lower apsis when it has completed one entire
            revolution; and thence ascending perpetually, when it has completed
            another entire revolution, it will arrive again at the upper apsis;
            and so alternately for ever.
        

        
            Exam. 3. Taking m and n
            for any indices of the powers of the altitude, and b and c
            for any given numbers, suppose the centripetal force to be as 
            bAm − can

            A3, that is, as b
            into (T − X)m + c into (T − X)n

            A3 or (by the method of converging series
            above-mentioned) as

            bTm+cTn
            − mbXTm−1ncXTn−1 + 
            mm − m

            2bXXTm−2 + nn
            − n

            2cXXTn−2

            A3 &c.

            and comparing the terms of the numerators, there will arise RGG
            − RFF + TFF to bTm + cTn as −FF
            to −mbTm−1 − ncTn
            + mm − m

            2bXTm−2 + nn
            − n

            2cXTn−2, &c. And taking the last
            ratios that arise when the orbits come to a circular form, there will
            come forth GG to bTm−1 + cTn−1
            as FF to mbTm−1 + ncTn−1;
            and again, GG to FF as bTm−1 +
            cTn−1 to mbTn−1
            + ncTn−1. This proportion, by expressing
            the greatest altitude CV or T arithmetically by unity, becomes, GG to
            FF as b + c to mb + nc, and therefore as 1
            to mb + nc

            b + c. Whence G becomes to F, that is, the angle VCp
            to the angle VCP, as 1 to √
            mb + nc

            b + c. And therefore since
            the angle VCP between the upper and the lower apsis, in an immovable
            ellipsis, is of 180 deg., the angle VCp between the same
            apsides in an orbit which a body describes with a centripetal force,
            that is, as bAm + cAn

            A3, will be equal to an angle of 180
            √b + c

            mb + nc deg. And by the same
            reasoning, if the centripetal force be as bAm
            − cAn

            A3, the angle between the apsides will be found
            equal to 180√
            b − c

            mb − nc. After the same
            manner the Problem is solved in more difficult cases. The quantity to
            which the centripetal force is proportional must always be resolved
            into a converging series whose denominator is A³. Then the given part
            of the numerator arising from that operation is to be supposed in the
            same ratio to that part of it which is not given, as the given part of
            this numerator RGG − RFF + TFF − FFX is to
            that part of the same numerator which is not given. And taking away
            the superfluous quantities, and writing unity for T, the proportion of
            G to F is obtained.
        

        
            Cor. 1 . Hence if the centripetal force be as
            any power of the altitude, that power may be found from the motion of
            the apsides; and so contrariwise. That is, if the whole angular
            motion, with which the body returns to the same apsis, be to the
            angular motion of one revolution, or 360 deg., as any number as m
            to another as n, and the altitude called A; the force will
            be as the power Ann

            mm−3 of the altitude
            A; the index of which power is nn

            mm−3. This appears by the
            second example. Hence it is plain that the force in its recess from
            the centre cannot decrease in a greater than a triplicate ratio of the
            altitude. A body revolving with such a force and parting from the
            apsis, if it once begins to descend, can never arrive at the lower
            apsis or least altitude, but will descend to the centre, describing
            the curve line treated of in Cor. 3, Prop. XLI. But if it should, at
            its parting from the lower apsis, begin to ascend never so little, it
            will ascend in infinitum, and never come to the upper apsis;
            but will describe the curve line spoken of in the same Cor., and Cor.
            6; Prop. XLIV. So that where the force in its recess from the centre
            decreases in a greater than a triplicate ratio of the altitude, the
            body at its parting from the apsis, will either descend to the centre,
            or ascend in infinitum, according as it descends or ascends at the
            beginning of its motion. But if the force in its recess from the
            centre either decreases in a less than a triplicate ratio of the
            altitude, or increases in any ratio of the altitude whatsoever, the
            body will never descend to the centre, but will at some time arrive at
            the lower apsis; and, on the contrary, if the body alternately
            ascending and descending from one apsis to another never comes to the
            centre, then either the force increases in the recess from the centre,
            or it decreases in a less than a triplicate ratio of the altitude; and
            the sooner the body returns from one apsis to another, the farther is
            the ratio of the forces from the triplicate ratio. As if the body
            should return to and from the upper apsis by an alternate descent and
            ascent in 8 revolutions, or in 4, or 2, or 1½; that is, if m
            should be to n as 8, or 4, or 2, or 1½ to 1, and therefore
            nn

            mm−3, be 1/64
            − 3, or 1/16 − 3, or
            1/4 − 3,
            or 4/9
            − 3; then the force will be as A1/64−3;
            or A1/16−3;
            or A1/4−3;
            or A4/9−3;
            that is, it will be reciprocally as A3−1/64,
            or A3−1/16,
            or A3−1/4,
            or A3−4/9.
            If the body after each revolution returns to the same apsis, and the
            apsis remains unmoved, then m will be to n as 1 to
            1, and therefore Ann/mm−3
            will be equal to A−2, or 1/AA;
            and therefore the decrease of the forces will be in a duplicate ratio
            of the altitude; as was demonstrated above. If the body in three
            fourth parts, or two thirds, or one third, or one fourth part of an
            entire revolution, return to the same apsis; m will be to n
            as ¾ or ⅔ or ⅓ or ¼ to 1, and therefore Ann/mm−3
            is equal to A16/9−3,
            or A9/4−3,
            or A9−3, or A16−3;
            and therefore the force is either reciprocally as A11/9,
            or directly as A6 or A13. Lastly if the body in
            its progress from the upper apsis to the same upper apsis again, goes
            over one entire revolution and three deg. more, and therefore that
            apsis in each revolution of the body moves three deg. in
            consequentia; then m will be to n as 363
            deg. to 360 deg. or as 121 to 120, and therefore Ann/mm−3
            will be equal to A−29523/14641,
            and therefore the centripetal force will be reciprocally as A29523/14641,
            or reciprocally as A24/2 4 3
            very nearly. Therefore the centripetal force decreases in a ratio
            something greater than the duplicate; but approaching 59¾ times nearer
            to the duplicate than the triplicate.
        

        
            Cor. 2. Hence also if a body, urged by a
            centripetal force which is reciprocally as the square of the altitude,
            revolves in an ellipsis whose focus is in the centre of the forces;
            and a new and foreign force should be added to or subducted from this
            centripetal force, the motion of the apsides arising from that foreign
            force may (by the third Example) be known; and so on the contrary. As
            if the force with which the body revolves in the ellipsis be
            as 1

            AA; and the foreign force subducted
            as cA, and therefore the remaining force as 
            A − cA4

            A3; then (by the third
            Example) b will be equal to 1. m equal to 1, and n
            equal to 4; and therefore the angle of revolution between the apsides
            is equal to 180√(1
            − c

            1 − 4c) deg. Suppose that
            foreign force to be 357.45 parts less than the other force with which
            the body revolves in the ellipsis; that is, c to be 
            100

            35745; A or T being equal to 1; and
            then 180√(1 − c

            1 − 4c) will be 180√(
            35645

            35345) or 180.7623, that is,
            180 deg., 45 min., 44 sec. Therefore the body, parting from the upper
            apsis, will arrive at the lower apsis with an angular motion of 180
            deg., 45 min., 44 sec, and this angular motion being repeated, will
            return to the upper apsis; and therefore the upper apsis in each
            revolution will go forward 1 deg., 31 min., 28 sec. The apsis of the
            moon is about twice as swift.
        

        
            So much for the motion of bodies in orbits whose planes pass through
            the centre of force. It now remains to determine those motions in
            eccentrical planes. For those authors who treat of the motion of heavy
            bodies used to consider the ascent and descent of such bodies, not
            only in a perpendicular direction, but at all degrees of obliquity
            upon any given planes; and for the same reason we are to consider in
            this place the motions of bodies tending to centres by means of any
            forces whatsoever, when those bodies move in eccentrical planes. These
            planes are supposed to be perfectly smooth and polished, so as not to
            retard the motion of the bodies in the least. Moreover, in these
            demonstrations, instead of the planes upon which those bodies roll or
            slide, and which are therefore tangent planes to the bodies, I shall
            use planes parallel to them, in which the centres of the bodies move,
            and by that motion describe orbits. And by the same method I
            afterwards determine the motions of bodies performed in curve
            superficies.
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Book 1.10



    
        Section X.

        Of the motion of bodies in given superficies, and of the reciprocal motion of funependulous bodies.


    

    
        Proposition xlvi. Problem xxxii.

            
                
                    Any kind of centripetal force being supposed, and the centre of
                    force, and any plane whatsoever in which the body revolves, being
                    given, and the quadratures of curvilinear figures being allowed;
                    it is required to determine the motion of a body going off from a
                    given place, with a given velocity, in the direction of a given
                    right line in that plane.
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            Let S be the centre of force, SC the least distance of that centre
            from the given plane, P a body issuing from the place P in the
            direction of the right line PZ, Q the same body revolving in its
            trajectory, and PQR the trajectory itself which is required to be
            found, described in that given plane. Join CQ, QS, and if in QS we
            take SV proportional to the centripetal force with which the body is
            attracted towards the centre S, and draw VT parallel to CQ, and
            meeting SC in T; then will the force SV be resolved into two (by Cor.
            2, of the Laws of Motion), the force ST, and the force TV; of which ST
            attracting the body in the direction of a line perpendicular to that
            plane, does not at all change its motion in that plane. But the action
            of the other force TV, coinciding with the position of the plane
            itself, attracts the body directly towards the given point C in that
            plane; and therefore causes the body to move in this plane in the same
            manner as if the force ST were taken away, and the body were to
            revolve in free space about the centre C by means of the force TV
            alone. But there being given the centripetal force TV with which the
            body Q revolves in free space about the given centre C, there is given
            (by Prop. XLII) the trajectory PQR which the body describes; the place
            Q, in which the body will be found at any given time; and, lastly, the
            velocity of the body in that place Q. And so è contra.
              Q.E.I.
        

    

    
        Proposition xlvii. Theorem xv.

            
                
                    Supposing the centripetal force to be proportional to the
                    distance of the body from the centre; all bodies revolving in any
                    planes whatsoever will describe ellipses, and complete their
                    revolutions in equal times; and those which move in right lines,
                    running backwards and forwards alternately, will complete their
                    several periods of going and returning in the same times.
                
            

        

        
            For letting all things stand as in the foregoing Proposition, the
            force SV, with which the body Q revolving in any plane PQR is
            attracted towards the centre S, is as the distance SQ; and therefore
            because SV and SQ, TV and CQ are proportional, the force TV with which
            the body is attracted towards the given point C in the plane of the
            orbit is as the distance CQ. Therefore the forces with which bodies
            found in the plane PQR are attracted towards the point C, are in
            proportion to the distances equal to the forces with which the same
            bodies are attracted every way towards the centre S; and therefore the
            bodies will move in the same times, and in the same figures, in any
            plane PQR about the point C, as they would do
            in free spaces about the centre S; and therefore (by Cor. 2, Prop. X,
            and Cor. 2, Prop. XXXVIII.) they will in equal times either describe
            ellipses in that plane about the centre C, or move to and fro in right
            lines passing through the centre C in that plane; completing the same
            periods of time in all cases.   Q.E.D.
        

    

    
        Scholium.


        
            The ascent and descent of bodies in curve superficies has a near
            relation to these motions we have been speaking of. Imagine curve
            lines to be described on any plane, and to revolve about any given
            axes passing through the centre of force, and by that revolution to
            describe curve superficies; and that the bodies move in such sort that
            their centres may be always found in those superficies. If those
            bodies reciprocate to and fro with an oblique ascent and descent,
            their motions will be performed in planes passing through the axis,
            and therefore in the curve lines, by whose revolution those curve
            superficies were generated. In those cases, therefore, it will be
            sufficient to consider the motion in those curve lines.
        

    

    
        Proposition xlviii. Theorem xvi.

            
                
                    If a wheel stands upon the outside of a globe at right angles
                    thereto, and revolving about its own axis goes forward in a great
                    circle, the length of the curvilinear path which any point, given
                    in the perimeter of the wheel, hath described since the time that
                    it touched the globe (which curvilinear path we may call the
                    cycloid or epicycloid), will be to double the versed sine of half
                    the arc which since that time has touched the globe in passing
                    over it, as the sum of the diameters of the globe and the wheel to
                    the semi-diameter of the globe.
                
            

        

    

    
        Proposition xlix. Theorem xvii.

            
                
                    If a wheel stand upon the inside of a concave globe at right
                    angles thereto, and revolving about its own axis go forward in one
                    of the great circles of the globe, the length of the curvilinear
                    path which any point, given in the perimeter of the wheel, hath
                    described since it touched the globe, will be to the double of the
                    versed sine of half the arc which in all that time has touched the
                    globe in passing over it, as the difference of the diameters of
                    the globe and the wheel to the semi-diameter of the globe.
                
            

        

        
            Let ABL be the globe, C its centre, BPV the wheel insisting thereon,
            E the centre of the wheel, B the point of contact, and P the given
            point in the perimeter of the wheel. Imagine this wheel to proceed in
            the great circle ABL from A through B towards L, and in its progress
            to revolve in such a manner that the arcs AB, PB may be always equal
            one to the other, and the given point P in the perimeter of the wheel
            may describe in the 
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            mean time the curvilinear path AP. Let AP be the whole curvilinear
            path described since the wheel touched the globe in A, and the length
            of this path AP will be to twice the versed sine of the arc ½PB as 2CE
            to CB. For let the right line CE (produced if need be) meet the wheel
            in V, and join CP, BP, EP, VP; produce CP, and let fall thereon the
            perpendicular VF. Let PH, VH, meeting in H, touch the circle in P and
            V, and let PH cut VF in G, and to VP let fall the perpendiculars GI,
            HK. From the centre C with any interval let there be described the
            circle nom, cutting the right line CP in n, the
            perimeter of the wheel BP in o, and the curvilinear path AP
            in m; and from the centre V with the interval Vo
            let there be described a circle cutting VP produced in q.
        

        
            Because the wheel in its progress always revolves about the point of
            contact B, it is manifest that the right line BP is perpendicular to
            that curve line AP which the point P of the wheel describes, and
            therefore that the right line VP will touch this curve in the point P.
            Let the radius of the circle nom be gradually increased or
            diminished so that at last it become equal to the distance CP; and by
            reason of the similitude of the evanescent figure Pnomq, and
            the figure PFGVI, the ultimate ratio of the evanescent lineolae Pm,
            Pn, Po, Pq, that is, the ratio of the
            momentary mutations of the curve AP, the right line CP, the circular
            arc BP, and the right line VP, will be the
            same as of the lines PV, PF, PG, PI, respectively. But since VF is
            perpendicular to CF, and VH to CV, and therefore the angles HVG, VCF
            equal; and the angle VHG (because the angles of the quadrilateral
            figure HVEP are right in V and P) is equal to the angle CEP, the
            triangles VHG, CEP will be similar; and thence it will come to pass
            that as EP is to CE so is HG to HV or HP, and so KI to KP, and by
            composition or division as CB to CE so is PI to PK, and doubling the
            consequents as CB to 2CE so PI to PV, and so is Pq to Pm.
            Therefore the decrement of the line VP, that is, the increment of the
            line BV − VP to the increment of the curve line AP is in a given ratio
            of CB to 2CE, and therefore (by Cor. Lem. IV) the lengths BV − VP and
            AP, generated by those increments, are in the same ratio. But if BV be
            radius, VP is the cosine of the angle BVP or ½BEP, and therefore BV −
            VP is the versed sine of the same angle, and therefore in this wheel,
            whose radius is ½BV, BV − VP will be double the versed sine of the arc
            ½BP. Therefore AP is to double the versed sine of the arc ½BP as 2CE
            to CB.   Q.E.D.
        

        
            The line AP in the former of these Propositions we shall name the
            cycloid without the globe, the other in the latter Proposition the
            cycloid within the globe, for distinction sake.
        

        
            Cor. 1. Hence if there be described the
            entire cycloid ASL, and the same be bisected in S, the length of the
            part PS will be to the length PV (which is the double of the sine of
            the angle VBP, when EB is radius) as 2CE to CB, and therefore in a
            given ratio.
        

        
            Cor. 2. And the length of the semi-perimeter
            of the cycloid AS will be equal to a right line which is to the
            diameter of the wheel BV as 2CE to CB.
        

    

    
        
            Proposition l. Problem xxxiii.

            To cause a pendulous body to oscillate in a given cycloid.
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            Let there be given within the globe QVS described with the centre C,
            the cycloid QRS, bisected in R, and meeting the superficies of the
            globe with its extreme points Q and S on either hand. Let there be
            drawn CR bisecting the arc QS in O, and let it be produced to A in
            such sort that CA may be to CO as CO to CR. About the centre C, with
            the interval CA, let there be described an exterior globe DAF; and
            within this globe, by a wheel whose diameter is AO, let there be
            described two semi-cycloids AQ, AS, touching the interior globe in Q
            and S, and meeting the exterior globe in A. From that point A, with a
            thread APT in length equal to the line AR, let the body T depend, and
            oscillate in such manner between the two semi-cycloids
            AQ, AS, that, as often as the pendulum parts from the perpendicular
            AR, the upper part of the thread AP may be applied to that
            semi-cycloid APS towards which the motion tends, and fold itself round
            that curve line, as if it were some solid obstacle, the remaining part
            of the same thread PT which has not yet touched the semi-cycloid
            continuing straight. Then will the weight T oscillate in the given
            cycloid QRS.   Q.E.F.
        

        
            For let the thread PT meet the cycloid QRS in T, and the circle QOS
            in V, and let CV be drawn; and to the rectilinear part of the thread
            PT from the extreme points P and T let there be erected the
            perpendiculars BP, TW, meeting the right line CV in B and W. It is
            evident, from the construction and generation of the similar figures
            AS, SR, that those perpendiculars PB, TW, cut off from CV the lengths
            VB, VW equal the diameters of the wheels OA, OR. Therefore TP is to VP
            (which is double the sine of the angle VBP when ½BV is radius) as BW
            to BV, or AO + OR to AO, that is (since CA and CO, CO and CR, and by
            division AO and OR are proportional), as CA + CO to CA, or, if BV be
            bisected in E, as 2CE to CB. Therefore (by Cor. 1, Prop. XLIX), the
            length of the rectilinear part of the thread PT is always equal to the
            arc of the cycloid PS, and the whole thread APT is always equal to the
            half of the cycloid APS, that is (by Cor. 2, Prop. XLIX), to the
            length AR. And therefore contrariwise, if the string remain always
            equal to the length AR, the point T will always move in the given
            cycloid QRS.   Q.E.D.
        

        
            Cor. The string AR is equal to the
            semi-cycloid AS, and therefore has the same ratio to AC the
            semi-diameter of the exterior globe as the like semi-cycloid SR has to
            CO the semi-diameter of the interior globe.
        

    

    
        Proposition li. Theorem xviii.

            
                If a centripetal force tending on all sides to the centre
                C of a globe, be in all places as the distance of the place
                from the centre, and by this force alone acting upon it, the body
                T oscillate (in the manner above described) in the perimeter of
                the cycloid QRS; I say, that all the oscillations, how
                unequal soever in themselves, will be performed in equal times.
            

        

        
            For upon the tangent TW infinitely produced let fall the
            perpendicular CX, and join CT. Because the centripetal force with
            which the body T is impelled towards C is as the distance CT, let this
            (by Cor. 2, of the Laws) be resolved into the parts CX, TX, of which
            CX impelling the body directly from P stretches the thread PT, and by
            the resistance the thread makes to it is totally employed, producing
            no other effect; but the other part TX, impelling the body
            transversely or towards X, directly accelerates the motion in the
            cycloid. Then it is plain that the acceleration of the body,
            proportional to this accelerating force, will be every
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            moment as the length TX, that is (because CV,
            WV, and TX, TW proportional to them are given), as the length TW, that
            is (by Cor. 1, Prop. XLIX) as the length of the arc of the cycloid TR.
            If therefore two pendulums APT, Apt, be unequally drawn aside
            from the perpendicular AR, and let fall together, their accelerations
            will be always as the arcs to be described TR, tR. But the
            parts described at the beginning of the motion are as the
            accelerations, that is, as the wholes that are to be described at the
            beginning, and therefore the parts which remain to be described, and
            the subsequent accelerations proportional to those parts, are also as
            the wholes, and so on. Therefore the accelerations, and consequently
            the velocities generated, and the parts described with those
            velocities; and the parts to be described, are always as the wholes;
            and therefore the parts to be described preserving a given ratio to
            each other will vanish together, that is, the two bodies oscillating
            will arrive together at the perpendicular AR. And since on the other
            hand the ascent of the pendulums from the lowest place R through the
            same cycloidal arcs with a retrograde motion, is retarded in the
            several places they pass through by the same forces by which their
            descent was accelerated; it is plain that the velocities of their
            ascent and descent through the same arcs are equal, and consequently
            performed in equal times; and, therefore, since the two parts of the
            cycloid RS and RQ lying on either side of the perpendicular are
            similar and equal, the two pendulums will perform as well the wholes
            as the halves of their oscillations in the same times.
              Q.E.D.
        

        
            Cor. The force with which the body T is
            accelerated or retarded in any place T of the cycloid, is to the whole
            weight of the same body in the highest place S or Q as the arc of the
            cycloid TR is to the arc SR or QR.
        

    

    
        Proposition lii. Problem xxxiv.

            
                
                    To define the velocities of the pendulums in the several
                    places, and the times in which both the entire oscillations, and
                    the several parts of them are performed.
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            About any centre G, with the interval GH equal to the arc of the
            cycloid RS, describe a semi-circle HKM bisected by the semi-diameter
            GK. And if a centripetal force proportional to the distance of the
            places from the centre tend to the centre G, and it be in the
            perimeter HIK equal to the centripetal force in the perimeter of the
            globe QOS tending towards its centre, and at the same time that the
            pendulum T is let fall from the highest place S, a body, as L, is let
            fall from H to G; then because the 
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            forces which act upon the bodies are equal at the beginning, and
            always proportional to the spaces to be described TR, LG, and
            therefore if TR and LG are equal, are also equal in the places T and
            L, it is plain that those bodies describe at the beginning equal
            spaces ST, HL, and therefore are still acted upon equally, and
            continue to describe equal spaces. Therefore by Prop. XXXVIII, the
            time in which the body describes the arc ST is to the time of one
            oscillation, as the arc HI the time in which the body H arrives at L,
            to the semi-periphery HKM, the time in which the body H will come to
            M. And the velocity of the pendulous body in the place T is to its
            velocity in the lowest place R, that is, the velocity of the body H in
            the place L to its velocity in the place G; or the momentary increment
            of the line HL to the momentary increment of the line HG (the arcs HI,
            HK increasing with an equable flux) as the ordinate LI to the radius
            GK, or as √(SR2 − TR2)
            to SR. Hence, since in unequal oscillations there are described in
            equal time arcs proportional to the entire arcs of the oscillations,
            there are obtained from the times given, both the velocities and the
            arcs described in all the oscillations universally. Which was first
            required.
        

        
            Let now any pendulous bodies oscillate in different cycloids
            described within different globes, whose absolute forces are also
            different; and if the absolute force of any globe QOS be called V, the
            accelerative force with which the pendulum is acted on in the
            circumference of this globe, when it begins to move directly towards
            its centre, will be as the distance of the pendulous body from that
            centre and the absolute force of the globe conjunctly, that is, as CO
            x V. Therefore the lineola HY, which is as this accelerated force CO x
            V, will be described in a given time; and if there be erected the
            perpendicular YZ meeting the circumference in Z, the nascent arc HZ
            will denote that given time. But that nascent arc HZ is in the
            subduplicate ratio of the rectangle GHY, and therefore as √(GH
            x CO x V). Whence the time of an entire oscillation in the
            cycloid QRS (it being as the semi-periphery HKM, which denotes that
            entire oscillation, directly; and as the arc HZ which in like manner
            denotes a given time inversely) will be as GH directly and √(GH
            x CO x V) inversely; that is, because GH and SR are equal, as
            √(SR

            CO x V), or (by Cor. Prop.
            L,) as √(AR

            AC x V). Therefore the
            oscillations in all globes and cycloids, performed with what absolute
            forces soever, are in a ratio compounded of the subduplicate ratio of
            the length of the string directly, and the subduplicate ratio of the
            distance between the point of suspension and the centre of the globe
            inversely, and the subduplicate ratio of the absolute force of the
            globe inversely also.   Q.E.I.
        

        
            Cor. 1. Hence also
            the times of oscillating, falling, and revolving bodies may be
            compared among themselves. For if the diameter of the wheel with which
            the cycloid is described within the globe is supposed equal to the
            semi-diameter of the globe, the cycloid will become a right line
            passing through the centre of the globe, and the oscillation will be
            changed into a descent and subsequent ascent in that right line.
            Whence there is given both the time of the descent from any place to
            the centre, and the time equal to it in which the body revolving
            uniformly about the centre of the globe at any distance describes an
            arc of a quadrant. For this time (by Case 2) is to the time of half
            the oscillation in any cycloid QRS as 1 to √(
            AR

            AC).
        

        
            Cor. 2. Hence also follow what Sir Christopher
            Wren and M. Huygens have discovered concerning the
            vulgar cycloid. For if the diameter of the globe be infinitely
            increased, its sphaerical superficies will be changed into a plane,
            and the centripetal force will act uniformly in the direction of lines
            perpendicular to that plane, and this cycloid of our's will become the
            same with the common cycloid. But in that case the length of the arc
            of the cycloid between that plane and the describing point will become
            equal to four times the versed sine of half the arc of the wheel
            between the same plane and the describing point, as was discovered by
            Sir Christopher Wren. And a pendulum between two such
            cycloids will oscillate in a similar and equal cycloid in equal times,
            as M. Huygens demonstrated. The descent of heavy bodies also
            in the time of one oscillation will be the same as M. Huygens
            exhibited.
        

        
            The propositions here demonstrated are adapted to the true
            constitution of the Earth, in so far as wheels moving in any of its
            great circles will describe, by the motions of nails fixed in their
            perimeters, cycloids without the globe; and pendulums, in mines and
            deep caverns of the Earth, must oscillate in cycloids within the
            globe, that those oscillations may be performed in equal times. For
            gravity (as will be shewn in the third book) decreases in its progress
            from the superficies of the Earth; upwards in a duplicate ratio of the
            distances from the centre of the Earth; downwards in a simple ratio of
            the same.
        

    

    
        Proposition liii. Problem xxxv.

            
                
                    Granting the quadratures of curvilinear figures, it is required
                    to find the forces with which bodies moving in given curve lines
                    may always perform their oscillations in equal times.
                
            

        

        
            Let the body T oscillate in any curve line STRQ, whose axis is AR
            passing through the centre of force C. Draw TX touching that curve in
            any place of the body T, and in that tangent TX take TY equal to the
            arc TR. The length of that arc is known from the common methods used
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            for the quadratures of figures.
            From the point Y draw the right line YZ perpendicular to the tangent.
            Draw CT meeting that perpendicular in Z, and the centripetal force
            will be proportional to the right line TZ.   Q.E.I.
        

        
            For if the force with which the body is attracted from T towards C be
            expressed by the right line TZ taken proportional to it, that force
            will be resolved into two forces TY, YZ, of which YZ drawing the body
            in the direction of the length of the thread PT, does not at all
            change its motion; whereas the other force TY directly accelerates or
            retards its motion in the curve STRQ. Wherefore since that force is as
            the space to be described TR, the accelerations or retardations of the
            body in describing two proportional parts (a greater and a less) of
            two oscillations, will be always as those parts, and therefore will
            cause those parts to be described together. But bodies which
            continually describe together parts proportional to the wholes, will
            describe the wholes together also.   Q.E.D.
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            Cor. 1. Hence if the body T, hanging by a
            rectilinear thread AT from the centre A, describe the circular arc
            STRQ, and in the mean time be acted on by any force tending downwards
            with parallel directions, which is to the uniform force of gravity as
            the arc TR to its sine TN, the times of the several oscillations will
            be equal. For because TZ, AR are parallel, the triangles ATN, ZTY are
            similar; and therefore TZ will be to AT as TY to TN; that is, if the
            uniform force of gravity be expressed by the given length AT, the
            force TZ, by which the oscillations become isochronous, will be to the
            force of gravity AT, as the arc TR equal to TY is to TN the sine of
            that arc.
        

        
            Cor. 2. And therefore in clocks, if forces
            were impressed by some machine upon the pendulum which preserves the
            motion, and so compounded with the force of gravity that the whole
            force tending downwards should be always as a line produced by
            applying the rectangle under the arc TR and the radius AR to the sine
            TN, all the oscillations will become isochronous.
        

    

    
        Proposition liv. Problem xxxvi.

            
                
                    Granting the quadratures of curvilinear figures, it is required
                    to find the times in which bodies by means of any centripetal
                    force will descend or ascend in any curve lines described in a
                    plane passing through the centre of force.
                
            

        

        
            Let the body descend from any place S, and move in any curve STtR
            given in a plane passing through the centre of force C. Join CS, and let
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            it be divided into innumerable equal parts, and let Dd be one of
            those parts. From the centre C, with the intervals CD, Cd,
            let the circles DT, dt be described, meeting the curve line
            STtR in T and t. And because the law of centripetal
            force is given, and also the altitude CS from which the body at first
            fell, there will be given the velocity of the body in any other
            altitude CT (by Prop. XXXIX). But the time in which the body describes
            the lineola Tt is as the length of that lineola, that is, as
            the secant of the angle tTC directly, and the velocity
            inversely. Let the ordinate DN, proportional to this time, be made
            perpendicular to the right line CS at the point D, and because Dd
            is given, the rectangle Dd x DN, that is, the area DNnd,
            will be proportional to the same time. Therefore if PNn be a
            curve line in which the point N is perpetually found, and its
            asymptote be the right line SQ standing upon the line CS at right
            angles, the area SQPND will be proportional to the time in which the
            body in its descent hath described the line ST; and therefore that
            area being found, the time is also given.   Q.E.I.
        

    

    
        Proposition lv. Theorem xix.

            
                
                    If a body move in any curve superficies, whose axis passes
                    through the centre of force, and from the body a perpendicular be
                    let fall upon the axis; and a line parallel and equal thereto be
                    drawn from any given point of the axis; I say, that this parallel
                    line will describe an area proportional to the time.
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            Let BKL be a curve superficies, T a body revolving in it, STR a
            trajectory which the body describes in the same, S the beginning of
            the trajectory, OMK the axis of the curve superficies, TN a right line
            let fall perpendicularly from the body to the axis; OP a line parallel
            and equal thereto drawn from the given point O in the axis; AP the
            orthographic projection of the trajectory described by the point P in
            the plane AOP in which the revolving line OP is found; A the beginning
            of that projection, answering to the point S; TC a right line drawn
            from the body to the centre; TG a part thereof proportional to the
            centripetal force with which the body tends towards the centre C; TM a
            right line perpendicular to the curve superficies; TI a part thereof
            proportional to the force of pressure with which the body urges
            the superficies, and therefore with which it is
            again repelled by the superficies towards M; PTF a right line parallel
            to the axis and passing through the body, and GF, IH right lines let
            fall perpendicularly from the points G and I upon that parallel PHTF.
            I say, now. that the area AOP, described by the radius OP from the
            beginning of the motion, is proportional to the time. For the force TG
            (by Cor. 2, of the Laws of Motion) is resolved into the forces TF, FG;
            and the force TI into the forces TH, HI; but the forces TF, TH, acting
            in the direction of the line PF perpendicular to the plane AOP,
            introduce no change in the motion of the body but in a direction
            perpendicular to that plane. Therefore its motion, so far as it has
            the same direction with the position of the plane, that is, the motion
            of the point P, by which the projection AP of the trajectory is
            described in that plane, is the same as if the forces TF, TH were
            taken away, and the body were acted on by the forces FG, HI alone;
            that is, the same as if the body were to describe in the plane AOP the
            curve AP by means of a centripetal force tending to the centre O, and
            equal to the sum of the forces FG and HI. But with such a force as
            that (by Prop. 1) the area AOP will be described proportional to the
            time.   Q.E.D.
        

        
            Cor. By the same reasoning, if a body, acted
            on by forces tending to two or more centres in any the same right line
            CO, should describe in a free space any curve line ST, the area AOP
            would be always proportional to the time.
        

    

    
        Proposition lvi. Problem xxxvii.

            
                
                    Granting the quadratures of curvilinear figures, and supposing
                    that there are given both the law of centripetal force tending to
                    a given centre, and the curve superficies whose axis passes
                    through that centre; it is required to find the trajectory which a
                    body will describe in that superficies, when going off from a
                    given place with a given velocity, and in a given direction in that superficies.
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            The last construction remaining, let the body T go from the given
            place S, in the direction of a line given by position, and turn into
            the trajectory sought STR, whose orthographic projection in the plane
            BDO is AP. And from the given velocity of the body in the altitude SC,
            its velocity in any other altitude TC will be also given. With that
            velocity, in a given moment of time, let the body describe the
            particle Tt of its trajectory, and let Pp be the
            projection of that particle described in the plane AOP. Join Op,
            and a little circle being described upon the curve superficies about
            the centre T with the interval Tt
            let the projection of that little circle in the plane AOP be the
            ellipsis pQ. And because the magnitude of that little circle
            Tt, and TN or PO its distance from the axis CO is also given,
            the ellipsis pQ will be given both in kind and magnitude, as
            also its position to the right line PO. And since the area POp
            is proportional to the time, and therefore given because the time is
            given, the angle POp will be given. And thence will be given
            p the common intersection of the ellipsis and the right line
            Op, together with the angle OPp, in which the
            projection APp of the trajectory cuts the line OP. But from
            thence (by conferring Prop. XLI, with its 2d Cor.) the manner of
            determining the curve APp easily appears. Then from the
            several points P of that projection erecting to the plane AOP, the
            perpendiculars PT meeting the curve superficies in T, there will be
            given the several points T of the trajectory.   Q.E.I.
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Book 1.11



    
        Section xi.

        Of the motions of bodies tending to each other with centripetal forces.


    

    
        
            I have hitherto been treating of the attractions of bodies towards an
            immovable centre; though very probably there is no such thing existent
            in nature. For attractions are made towards bodies, and the actions of
            the bodies attracted and attracting are always reciprocal and equal,
            by Law III; so that if there are two bodies, neither the attracted nor
            the attracting body is truly at rest, but both (by Cor. 4, of the Laws
            of Motion), being as it were mutually attracted, revolve about a
            common centre of gravity. And if there be more bodies, which are
            either attracted by one single one which is attracted by them again,
            or which all of them, attract each other mutually, these bodies will
            be so moved among themselves, as that their common centre of gravity
            will either be at rest, or move uniformly forward in a right line. I
            shall therefore at present go on to treat of the motion of bodies
            mutually attracting each other; considering the centripetal forces as
            attractions; though perhaps in a physical strictness they may more
            truly be called impulses. But these propositions are to be considered
            as purely mathematical; and therefore, laying aside all physical
            considerations, I make use of a familiar way of speaking, to make
            myself the more easily understood by a mathematical reader.
        

    

    
        Proposition lvii. Theorem xx.

            
                
                    Two bodies attracting each other mutually describe similar
                    figures about their common centre of gravity, and about each other mutually.
                
            

        

        
            For the distances of the bodies from their common centre of gravity
            are reciprocally as the bodies; and therefore in a given ratio to each
            other: and thence, by composition of ratios, in a given ratio to the
            whole distance between the bodies. Now these
            distances revolve about their common term with an equable angular
            motion, because lying in the same right line they never change their
            inclination to each other mutually. But right lines that are in a
            given ratio to each other, and revolve about their terms with an equal
            angular motion, describe upon planes, which either rest with those
            terms, or move with any motion not angular, figures entirely similar
            round those terms. Therefore the figures described by the revolution
            of these distances are similar.   Q.E.D.
        

    

    
        Proposition lviii. Theorem xxi.

            
                
                    If two bodies attract each other mutually with forces of any
                    kind, and in the mean time revolve about the common centre of
                    gravity; I say, that, by the same forces, there may be described
                    round either body unmoved a figure similar and equal to the
                    figures which the bodies so moving describe round each other mutually.
                
            

        

        
            Let the bodies S and P revolve about their common centre of gravity
            C, proceeding from S to T, and from P to Q. From the given point s let
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            there be continually drawn sp,
            sq, equal and parallel to SP, TQ; and the curve pqv,
            which the point p describes in its revolution round the
            immovable point s, will be similar and equal to the curves
            which the bodies S and P describe about each other mutually; and
            therefore, by Theor. XX, similar to the curves ST and PQV which the
            same bodies describe about their common centre of gravity C; and that
            because the proportions of the lines SC, CP, and SP or sp,
            to each other, are given.
        

        
            Case 1. The common centre of gravity C (by
            Cor. 4, of the Laws of Motion) is either at rest, or moves uniformly
            in a right line. Let us first suppose it at rest, and in s
            and p let there be placed two bodies, one immovable in s,
            the other movable in p, similar and equal to the bodies S
            and P. Then let the right lines PR and pr touch the curves
            PQ and pq in P and p, and produce CQ and sq
            to R and r. And because the figures CPRQ, sprq are
            similar, RQ will be to rq as CP to sp, and
            therefore in a given ratio. Hence if the force with which the body P
            is attracted towards the body S, and by consequence towards the
            intermediate point the centre C, were to the force with which the body
            p is attracted towards the centre s, in the same
            given ratio, these forces would in equal times attract the
            bodies from the tangents PR, pr to the arcs PQ, pq,
            through the intervals proportional to them RQ, rq; and
            therefore this last force (tending to s) would make the body
            p revolve in the curve pqv, which would become
            similar to the curve PQV, in which the first force obliges the body P
            to revolve; and their revolutions would be completed in the same
            times. But because those forces are not to each other in the ratio of
            CP to sp, but (by reason of the similarity and equality of
            the bodies S and s, P and p and the equality of
            the distances SP, sp) mutually equal, the bodies in equal
            times will be equally drawn from the tangents; and therefore that the
            body p may be attracted through the greater interval rq,
            there is required a greater time, which will be in the subduplicate
            ratio of the intervals; because, by Lemma X, the spaces described at
            the very beginning of the motion are in a duplicate ratio of the
            times. Suppose, then the velocity of the body p to be to the
            velocity of the body P in a subduplicate ratio of the distance sp
            to the distance CP, so that the arcs pq, PQ, which are in a
            simple proportion to each other, may be described in times that are in
            a subduplicate ratio of the distances; and the bodies P, p,
            always attracted by equal forces, will describe round the quiescent
            centres C and s similar figures PQV, pqv, the
            latter of which pqv is similar and equal to the figure which
            the body P describes round the movable body S.   Q.E.D.
        

        
            Case 2. Suppose now that the common centre of
            gravity, together with the space in which the bodies are moved among
            themselves, proceeds uniformly in a right line; and (by Cor. 6, of the
            Laws of Motion) all the motions in this space will be performed in the
            same manner as before; and therefore the bodies will describe mutually
            about each other the same figures as before, which will be therefore
            similar and equal to the figure pqv.   Q.E.D.
        

        
            Cor. 1. Hence two bodies attracting each
            other with forces proportional to their distance, describe (by Prop.
            X) both round their common centre of gravity, and round each other
            mutually concentrical ellipses; and, vice versa, if such
            figures are described, the forces are proportional to the distances.
        

        
            Cor. 2. And two bodies, whose forces are
            reciprocally proportional to the square of their distance, describe
            (by Prop. XI, XII, XIII), both round their common centre of gravity,
            and round each other mutually, conic sections having their focus in
            the centre about which the figures are described. And, vice versa,
            if such figures are described, the centripetal forces are reciprocally
            proportional to the squares of the distance.
        

        
            Cor. 3. Any two bodies revolving round their
            common centre of gravity describe areas proportional to the times, by
            radii drawn both to that centre and to each other mutually.
        

    

    
        
            Proposition lix. Theorem xxii.

            
                The periodic time of two bodies S and P revolving
                round their common centre of gravity C, is to the
                periodic time of one of the bodies P revolving round the
                other S remaining unmoved, and describing a figure
                similar and equal to those which the bodies describe about each
                other mutually, in a subduplicate ratio of the other body S to
                the sum of the bodies S + P.
            

        

        
            For, by the demonstration of the last Proposition, the times in which
            any similar arcs PQ, and pq are described are in a
            subduplicate ratio of the distances CP and SP, or sp, that
            is, in a subduplicate ratio of the body S to the sum of the bodies S +
            P. And by composition of ratios, the sums of the times in which all
            the similar arcs PQ and pq are described, that is, the whole
            times in which the whole similar figures are described are in the same
            subduplicate ratio.   Q.E.D.
        

    

    
        Proposition lx. Theorem xxiii.

            
                If two bodies S and P, attracting each other
                with forces reciprocally proportional to the squares of their
                distance, revolve about their common centre of gravity; I say,
                that the principal axis of the ellipsis which either of the
                bodies, as P, describes by this motion about the other
                S, will be to the principal axis of the ellipsis, which the same
                body P may describe in the same periodical time about
                the other body S quiescent, as the sum of the two bodies
                S + P to the first of two mean proportionals between that sum
                and the other body S.
            

        

        
            For if the ellipses described were equal to each other, their
            periodic times by the last Theorem would be in a subduplicate ratio of
            the body S to the sum of the bodies S + P. Let the periodic
            time in the latter ellipsis be diminished in that ratio, and the
            periodic times will become equal; but, by Prop. XV, the principal axis
            of the ellipsis will be diminished in a ratio sesquiplicate to the
            former ratio; that is, in a ratio to which the ratio of S to S + P is
            triplicate; and therefore that axis will be to the principal axis of
            the other ellipsis as the first of two mean proportionals between S +
            P and S to S + P. And inversely the principal axis of the ellipsis
            described about the movable body will be to the principal axis of that
            described round the immovable as S + P to the first of two mean
            proportionals between S + P and S.   Q.E.D.
        

    

    
        Proposition lxi. Theorem xxiv.

            
                
                    If two bodies attracting each other with any kind of forces,
                    and not otherwise agitated or obstructed, are moved in any manner
                    whatsoever, those motions will be the same as if they did not at
                    all attract each other mutually, but were both attracted with the
                    same forces by a third body placed in their common centre of
                    gravity; and the law of the attracting forces will he the same in
                    respect of the distance of the bodies from the common centre, as
                    in respect of the distance between the two bodies.
                
            

        

        
            For those forces with which the bodies
            attract each other mutually, by tending to the bodies, tend also to
            the common centre of gravity lying directly between them; and
            therefore are the same as if they proceeded from in intermediate body.
              Q.E.D.
        

        
            And because there is given the ratio of the distance of either body
            from that common centre to the distance between the two bodies, there
            is given, of course, the ratio of any power of one distance to the
            same power of the other distance; and also the ratio of any quantity
            derived in any manner from one of the distances compounded any how
            with given quantities, to another quantity derived in like manner from
            the other distance, and as many given quantities having that given
            ratio of the distances to the first. Therefore if the force with which
            one body is attracted by another be directly or inversely as the
            distance of the bodies from each other, or as any power of that
            distance; or, lastly, as any quantity derived after any manner from
            that distance compounded with given quantities; then will the same
            force with which the same body is attracted to the common centre of
            gravity be in like manner directly or inversely as the distance of the
            attracted body from the common centre, or as any power of that
            distance; or, lastly, as a quantity derived in like sort from that
            distance compounded with analogous given quantities. That is, the law
            of attracting force will be the same with respect to both distances.
              Q.E.D.
        

    

    
        Proposition lxii. Problem xxxviii.

            
                
                    To determine the motions of two bodies which attract each other
                    with forces reciprocally proportional to the squares of the
                    distance between them, and are let fall from given places.
                
            

        

        
            The bodies, by the last Theorem, will be moved in the same manner as
            if they were attracted by a third placed in the common centre of their
            gravity; and by the hypothesis that centre will be quiescent at the
            beginning of their motion, and therefore (by Cor. 4, of the Laws of
            Motion) will be always quiescent. The motions of the bodies are
            therefore to be determined (by Prob. XXV) in the same manner as if
            they were impelled by forces tending to that centre; and then we shall
            have the motions of the bodies attracting each other mutually.
              Q.E.I.
        

    

    
        Proposition lxiii. Problem xxxix.

            
                
                    To determine the motions of two bodies attracting each other
                    with forces reciprocally proportional to the squares of their
                    distance, and going off from given places in given directions with
                    given velocities.
                
            

        

        
            The motions of the bodies at the beginning being given, there is
            given also the uniform motion of the common
            centre of gravity, and the motion of the space which moves along with
            this centre uniformly in a right line, and also the very first, or
            beginning motions of the bodies in respect of this space. Then (by
            Cor. 5. of the Laws, and the last Theorem) the subsequent motions will
            be performed in the same manner in that space, as if that space
            together with the common centre of gravity were at rest, and as if the
            bodies did not attract each other, but were attracted by a third body
            placed in that centre. The motion therefore in this movable space of
            each body going off from a given place, in a given direction, with a
            given velocity, and acted upon by a centripetal force tending to that
            centre, is to be determined by Prob. IX and XXVI, and at the same time
            will be obtained the motion of the other round the same centre. With
            this motion compound the uniform progressive motion of the entire
            system of the space and the bodies revolving in it, and there will be
            obtained the absolute motion of the bodies in immovable space.
              Q.E.I.
        

    

    
        Proposition lxiv. Problem xl.

            
                
                    Supposing forces with which bodies mutually attract each other
                    to increase in a simple ratio of their distances from the centres;
                    it is required to find the motions of several bodies among
                    themselves.
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            Suppose the first two bodies T and L to have their common centre of
            gravity in D. These, by Cor. 1, Theor. XXI, will describe ellipses
            having their centres in D, the magnitudes of which ellipses are known
            by Prob. V.
        

        
            Let now a third body S attract the two former T and L with the
            accelerative forces ST, SL, and let it be attracted again by them. The
            force ST (by Cor. 2, of the Laws of Motion) is resolved into the
            forces SD, DT; and the force SL into the forces SD and DL. Now the
            forces DT, DL, which are as their sum TL, and therefore as the
            accelerative forces with which the bodies T and L attract each other
            mutually, added to the forces of the bodies T and L, the first to the
            first, and the last to the last, compose forces proportional to the
            distances DT and DL as before, but only greater than those former
            forces: and therefore (by Cor. 1, Prop. X, and Cor. 1, and 8, Prop.
            IV) they will cause those bodies to describe ellipses as before, but
            with a swifter motion. The remaining accelerative forces SD and DL, by
            the motive forces SD x T and SD x L, which are as the bodies
            attracting those bodies equally and in the direction of the lines TI,
            LK parallel to DS, do not at all change their situations with respect
            to one another, but cause them equally to approach to the line IK;
            which must be imagined drawn through the middle of the body S, and
            perpendicular to the line DS. But that approach to the line IK
            will be hindered by causing the system of the bodies T and L on one
            side, and the body S on the other, with proper velocities, to revolve
            round the common centre of gravity C. With such a motion the body S,
            because the sum of the motive forces SD x T and SD x L is proportional
            to the distance CS, tends to the centre C, will describe an ellipsis
            round the same centre C; and the point D, because the lines CS and CD
            are proportional, will describe a like ellipsis over against it. But
            the bodies T and L, attracted by the motive forces SD x T and SD x L,
            the first by the first, and the last by the last, equally and in the
            direction of the parallel lines TI and LK, as was said before, will
            (by Cor. 5 and 6, of the Laws of Motion) continue to describe their
            ellipses round the movable centre D, as before.   Q.E.I.
        

        
            Let there be added a fourth body V, and, by the like reasoning, it
            will be demonstrated that this body and the point C will describe
            ellipses about the common centre of gravity B; the motions of the
            bodies T, L, and S round the centres D and C remaining the same as
            before; but accelerated. And by the same method one may add yet more
            bodies at pleasure.   Q.E.I
        

        
            This would be the case, though the bodies T and L attract each other
            mutually with accelerative forces either greater or less than those
            with which they attract the other bodies in proportion to their
            distance. Let all the mutual accelerative attractions be to each other
            as the distances multiplied into the attracting bodies; and from what
            has gone before it will easily be concluded that all the bodies will
            describe different ellipses with equal periodical times about their
            common centre of gravity B, in an immovable plane.   Q.E.I.
        

    

    
        Proposition lxv. Theorem xxv.

            
                
                    Bodies, whose forces decrease in a duplicate ratio of their
                    distances from their centres, may move among themselves in
                    ellipses; and by radii drawn to the foci may describe areas
                    proportional to the times very nearly.
                
            

        

        
            In the last Proposition we demonstrated that case in which the
            motions will be performed exactly in ellipses. The more distant the
            law of the forces is from the law in that case, the more will the
            bodies disturb each other's motions; neither is it possible that
            bodies attracting each other mutually according to the law supposed in
            this Proposition should move exactly in ellipses, unless by keeping a
            certain proportion of distances from each other. However, in the
            following crises the orbits will not much differ from ellipses.
        

        
            Case I. Imagine several lesser bodies to
            revolve about some very great one at different distances from it, and
            suppose absolute forces tending to every one of the bodies
            proportional to each. And because (by Cor. 4, of the Laws) the common
            centre of gravity of them all is either at rest, or moves
            uniformly forward in a right line, suppose the lesser bodies so small
            that the great body may be never at a sensible distance from that
            centre; and then the great body will, without any sensible error, be
            either at rest, or move uniformly forward in a right line; and the
            lesser will revolve about that great one in ellipses, and by radii
            drawn thereto will describe areas proportional to the times; if we
            except the errors that may be introduced by the receding of the great
            body from the common centre of gravity, or by the mutual actions of
            the lesser bodies upon each other. But the lesser bodies may be so far
            diminished, as that this recess and the mutual actions of the bodies
            on each other may become less than any assignable; and therefore so as
            that the orbits may become ellipses, and the areas answer to the
            times, without any error that is not less than any assignable.
              Q.E.O.
        

        
            Case 2. Let us imagine a system of lesser
            bodies revolving about a very great one in the manner just described,
            or any other system of two bodies revolving about each other to be
            moving uniformly forward in a right line, and in the mean time to be
            impelled sideways by the force of another vastly greater body situate
            at a great distance. And because the equal accelerative forces with
            which the bodies are impelled in parallel directions do not change the
            situation of the bodies with respect to each other, but only oblige
            the whole system to change its place while the parts still retain
            their motions among themselves, it is manifest that no change in those
            motions of the attracted bodies can arise from their attractions
            towards the greater, unless by the inequality of the accelerative
            attractions, or by the inclinations of the lines towards each other,
            in whose directions the attractions are made. Suppose, therefore, all
            the accelerative attractions made towards the great body to be among
            themselves as the squares of the distances reciprocally; and then, by
            increasing the distance of the great body till the differences of the
            right lines drawn from that to the others in respect of their length,
            and the inclinations of those lines to each other, be less than any
            given, the motions of the parts of the system will continue without
            errors that are not less than any given. And because, by the small
            distance of those parts from each other, the whole system is attracted
            as if it were but one body, it will therefore be moved by this
            attraction as if it were one body; that is, its centre of gravity will
            describe about the great body one of the conic sections (that is, a
            parabola or hyperbola when the attraction is but languid and an
            ellipsis when it is more vigorous); and by radii drawn thereto, it
            will describe areas proportional to the times, without any errors but
            those which arise from the distances of the parts, which are by the
            supposition exceedingly small, and may be diminished at pleasure.
              Q.E.O.
        

        
            By a like reasoning one may proceed to more compounded cases in
            infinitum.
        

        
            Cor. 1. In the second Case, the nearer the
            very great body approaches to the system of
            two or more revolving bodies, the greater will the perturbation be of
            the motions of the parts of the system among themselves; because the
            inclinations of the lines drawn from that great body to those parts
            become greater; and the inequality of the proportion is also greater.
        

        
            Cor. 2. But the perturbation will be greatest
            of all, if we suppose the accelerative attractions of the parts of the
            system towards the greatest body of all are not to each other
            reciprocally as the squares of the distances from that great body;
            especially if the inequality of this proportion be greater than the
            inequality of the proportion of the distances from the great body. For
            if the accelerative force, acting in parallel directions and equally,
            causes no perturbation in the motions of the parts of the system, it
            must of course, when it acts unequally, cause a perturbation
            somewhere, which will be greater or less as the inequality is greater
            or less. The excess of the greater impulses acting upon some bodies,
            and not acting upon others, must necessarily change their situation
            among themselves. And this perturbation, added to the perturbation
            arising from the inequality and inclination of the lines, makes the
            whole perturbation greater.
        

        
            Cor. 3. Hence if the parts of this system
            move in ellipses or circles without any remarkable perturbation, it is
            manifest that, if they are at all impelled by accelerative forces
            tending to any other bodies, the impulse is very weak, or else is
            impressed very near equally and in parallel directions upon all of
            them.
        

    

    
        Proposition lxvi. Theorem xxvi.

            
                
                    If three bodies whose forces decrease in a duplicate ratio of
                    the distances attract each other mutually; and the accelerative
                    attractions of any two towards the third be between themselves
                    reciprocally as the squares of the distances; and the two least
                    revolve about the greatest; I say, that the interior of the two
                    revolving bodies will, by radii drawn to the innermost and
                    greatest, describe round that body areas more proportional to the
                    times, and a figure more approaching to that of an ellipsis having
                    its focus in the point of concourse of the radii, if that great
                    body be agitated by those attractions, than it would do if that
                    great body were not attracted at all by the lesser, but remained
                    at rest; or than, it would if that great body were very much more
                    or very much less attracted, or very much more or very much less
                    agitated, by the attractions.
                
            

        

        
            This appears plainly enough from the demonstration of the second
            Corollary of the foregoing Proposition; but it maybe made out after
            this manner by a way of reasoning more distinct and more universally
            convincing.
        

        
            Case 1. Let the lesser bodies P and S revolve
            in the same plane about the greatest body T, the body P describing the
            interior orbit PAB, and S the exterior orbit
            ESE. Let SK be the mean distance of the bodies P and S; and let the
            accelerative attraction of the body P towards S, at that mean
            distance, be expressed by that line SK. Make SL to SK as the
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            square of SK to the square of SP, and SL will be the accelerative
            attraction of the body P towards S at any distance SP. Join PT, and
            draw LM parallel to it meeting ST in M; and the attraction SL will be
            resolved (by Cor. 2, of the Laws of Motion) into the attractions SM,
            LM. And so the body P will be urged with a threefold accelerative
            force. One of these forces tends towards T, and arises from the mutual
            attraction of the bodies T and P. By this force alone the body P would
            describe round the body T, by the radius PT, areas proportional to the
            times, and an ellipsis whose focus is in the centre of the body T; and
            this it would do whether the body T remained unmoved, or whether it
            were agitated by that attraction. This appears from Prop. XI, and Cor.
            2 and 3 of Theor. XXI. The other force is that of the attraction LM,
            which, because it tends from P to T, will be superadded to and
            coincide with the former force; and cause the areas to be still
            proportional to the times, by Cor. 3, Theor. XXI. But because it is
            not reciprocally proportional to the square of the distance PT, it
            will compose, when added to the former, a force varying from that
            proportion; which variation will be the greater by how much the
            proportion of this force to the former is greater, caeteris
            paribus. Therefore, since by Prop. XI, and by Cor. 2, Theor.
            XXI, the force with which the ellipsis is described about the focus T
            ought to be directed to that focus, and to be reciprocally
            proportional to the square of the distance PT, that compounded force
            varying from that proportion will make the orbit PAB vary from the
            figure of an ellipsis that has its focus in the point T; and so much
            the more by how much the variation from that proportion is greater;
            and by consequence by how much the proportion of the second force LM
            to the first force is greater, caeteris paribus. But now the
            third force SM, attracting the body P in a direction parallel to ST,
            composes with the other forces a new force which is no longer directed
            from P to T; and which varies so much more from this direction by how
            much the proportion of this third force to the other forces is
            greater, caeteris paribus; and therefore causes the body P
            to describe, by the radius TP, areas no longer proportional to the
            times; and therefore makes the variation from that proportionality so
            much greater by how much the proportion of this force to the others is
            greater. But this third force will increase the variation of the orbit
            PAB from the elliptical figure
            before-mentioned upon two accounts; first because that force is not
            directed from P to T; and, secondly, because it is not reciprocally
            proportional to the square of the distance PT. These things being
            premised, it is manifest that the areas are then most nearly
            proportional to the times, when that third force is the least
            possible, the rest preserving their former quantity; and that the
            orbit PAB does then approach nearest to the elliptical figure
            above-mentioned, when both the second and third, but especially the
            third force, is the least possible; the first force remaining in its
            former quantity.
        

        
            Let the accelerative attraction of the body T towards S be expressed
            by the line SN; then if the accelerative attractions SM and SN were
            equal, these, attracting the bodies T and P equally and in parallel
            directions would not at all change their situation with respect to
            each other. The motions of the bodies between themselves would be the
            same in that case as if those attractions did not act at all, by Cor.
            6, of the Laws of Motion. And, by a like reasoning, if the attraction
            SN is less than the attraction SM, it will take away out of the
            attraction SM the part SN, so that there will remain only the part (of
            the attraction) MN to disturb the proportionality of the areas and
            times, and the elliptical figure of the orbit. And in like manner if
            the attraction SN be greater than the attraction SM, the perturbation
            of the orbit and proportion will be produced by the difference MN
            alone. After this manner the attraction SN reduces always the
            attraction SM to the attraction MN, the first and second attractions
            remaining perfectly unchanged; and therefore the areas and times come
            then nearest to proportionality, and the orbit PAB to the
            above-mentioned elliptical figure, when the attraction MN is either
            none, or the least that is possible; that is, when the accelerative
            attractions of the bodies P and T approach as near as possible to
            equality; that is, when the attraction SN is neither none at all, nor
            less than the least of all the attractions SM, but is, as it were; a
            mean between the greatest and least of all those attractions SM, that
            is, not much greater nor much less than the attraction SK.
              Q.E.D.
        

        
            Case 2. Let now the lesser bodies P, S,
            revolve about a greater T in different planes; and the force LM,
            acting in the direction of the line PT situate in the plane of the
            orbit PAB, will have the same effect as before; neither will it draw
            the body P from the plane of its orbit. But the other force NM acting
            in the direction of a line parallel to ST (and which, therefore, when
            the body S is without the line of the nodes is inclined to the plane
            of the orbit PAB), besides the perturbation of the motion just now
            spoken of as to longitude, introduces another perturbation also as to
            latitude, attracting the body P out of the plane of its orbit. And
            this perturbation, in any given situation of the bodies P and T to
            each other, will be as the generating force MN; and therefore becomes
            least when the force MN is least, that is (as was just now shewn),
            where the attraction SN is not much greater nor much less than the
            attraction SK.   Q.E.D.
        

        
            Cor. 1. Hence it may
            be easily collected, that if several less bodies P, S, R, &c.,
            revolve about a very great body T, the motion of the innermost
            revolving body P will be least disturbed by the attractions of the
            others, when the great body is as well attracted and agitated by the
            rest (according to the ratio of the accelerative forces) as the rest
            are by each other mutually.
        

        
            Cor. 2. In a system of three bodies, T, P, S,
            if the accelerative attractions of any two of them towards a third be
            to each other reciprocally as the squares of the distances, the body
            P, by the radius PT, will describe its area about the body T swifter
            near the conjunction A and the opposition B than it will near the
            quadratures C and D. For every force with which the body P is acted on
            and the body T is not, and which does not act in the direction of the
            line PT, does either accelerate or retard the description of the area,
            according as it is directed, whether in consequentia or in
            antecedentia. Such is the force NM. This force in the passage
            of the body P from C to A is directed in consequentia to its
            motion, and therefore accelerates it; then as far as D in
            antecedentia, and retards the motion; then in consequentia
            as far as B; and lastly in antecedentia as it moves from B
            to C.
        

        
            Cor. 3. And from the same reasoning it
            appears that the body P caeteris paribus, moves more swiftly
            in the conjunction and opposition than in the quadratures.
        

        
            Cor. 4. The orbit of the body P, caeteris
            paribus, is more curve at the quadratures than at the
            conjunction and opposition. For the swifter bodies move, the less they
            deflect from a rectilinear path. And besides the force KL, or NM, at
            the conjunction and opposition, is contrary to the force with which
            the body T attracts the body P, and therefore diminishes that force;
            but the body P will deflect the less from a rectilinear path the less
            it is impelled towards the body T.
        

        
            Cor. 5. Hence the body P, caeteris
            paribus, goes farther from the body T at the quadratures than
            at the conjunction and opposition. This is said,
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            however, supposing no regard had to the motion of eccentricity. For if
            the orbit of the body P be eccentrical, its eccentricity (as will be
            shewn presently by Cor. 9) will be greatest when the apsides are in
            the syzygies; and thence it may sometimes come to pass that the body
            P, in its near approach to the farther apsis, may go farther from the
            body T at the syzygies than at the quadratures.
        

        
            Cor. 6. Because the centripetal force of the
            central body T, by which the body P is
            retained in its orbit, is increased at the quadratures by the addition
            caused by the force LM, and diminished at the syzygies by the
            subduction caused by the force KL, and, because the force KL is
            greater than LM, it is more diminished than increased; and, moreover,
            since that centripetal force (by Cor. 2, Prop. IV) is in a ratio
            compounded of the simple ratio of the radius TP directly, and the
            duplicate ratio of the periodical time inversely; it is plain that
            this compounded ratio is diminished by the action of the force KL; and
            therefore that the periodical time, supposing the radius of the orbit
            PT to remain the same, will be increased, and that in the subduplicate
            of that ratio in which the centripetal force is diminished; and,
            therefore, supposing this radius increased or diminished, the
            periodical time will be increased more or diminished less than in the
            sesquiplicate ratio of this radius, by Cor. 6, Prop. IV. If that force
            of the central body should gradually decay, the body P being less and
            less attracted would go farther and farther from the centre T; and, on
            the contrary, if it were increased, it would draw nearer to it.
            Therefore if the action of the distant body S, by which that force is
            diminished, were to increase and decrease by turns, the radius TP will
            be also increased and diminished by turns; and the periodical time
            will be increased and diminished in a ratio compounded of the
            sesquiplicate ratio of the radius, and of the subduplicate of that
            ratio in which the centripetal force of the central body T is
            diminished or increased, by the increase or decrease of the action of
            the distant body S.
        

        
            Cor. 7. It also follows, from what was before
            laid down, that the axis of the ellipsis described by the body P, or
            the line of the apsides, does as to its angular motion go forwards and
            backwards by turns, but more forwards than backwards, and by the
            excess of its direct motion is in the whole carried forwards. For the
            force with which the body P is urged to the body T at the quadratures,
            where the force MN vanishes, is compounded of the force LM and the
            centripetal force with which the body T attracts the body P. The first
            force LM, if the distance PT be increased, is increased in nearly the
            same proportion with that distance, and the other force decreases in
            the duplicate ratio of the distance; and therefore the sum of these
            two forces decreases in a less than the duplicate ratio of the
            distance PT; and therefore, by Cor. 1, Prop. XLV, will make the line
            of the apsides, or, which is the same thing, the upper apsis, to go
            backward. But at the conjunction and opposition the force with which
            the body P is urged towards the body T is the difference of the force
            KL, and of the force with which the body T attracts the body P; and
            that difference, because the force KL is very nearly increased in the
            ratio of the distance PT, decreases in more than the duplicate ratio
            of the distance PT; and therefore, by Cor. 1, Prop. XLV, causes the
            line of the apsides to go forwards. In the places between the syzygies
            and the quadratures, the motion of the line
            of the apsides depends upon both of these causes conjunctly, so that
            it either goes forwards or backwards in proportion to the excess of
            one of these causes above the other. Therefore since the force KL in
            the syzygies is almost twice as great as the force LM in the
            quadratures, the excess will be on the side of the force KL, and by
            consequence the line of the apsides will be carried forwards. The
            truth of this and the foregoing
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            Corollary will be more easily understood by conceiving the system of the two
            bodies T and P to be surrounded on every side by several bodies S, S,
            S, &c., disposed about the orbit ESE. For by the actions of these
            bodies the action of the body T will be diminished on every side, and
            decrease in more than a duplicate ratio of the distance.
        

        
            Cor. 8. But since the progress or regress of
            the apsides depends upon the decrease of the centripetal force, that
            is, upon its being in a greater or less ratio than the duplicate ratio
            of the distance TP, in the passage of the body from the lower apsis to
            the upper; and upon a like increase in its return to the lower apsis
            again; and therefore becomes greatest where the proportion of the
            force at the upper apsis to the force at the lower apsis recedes
            farthest from the duplicate ratio of the distances inversely; it is
            plain, that, when the apsides are in the syzygies, they will, by
            reason of the subducting force KL or NM − LM, go forward more swiftly;
            and in the quadratures by the additional force LM go backward more
            slowly. Because the velocity of the progress or slowness of the
            regress is continued for a long time; this inequality becomes
            exceedingly great.
        

        
            Cor. 9. If a body is obliged, by a force
            reciprocally proportional to the square of its distance from any
            centre, to revolve in an ellipsis round that centre; and afterwards in
            its descent from the upper apsis to the lower apsis, that force by a
            perpetual accession of new force is increased in more than a duplicate
            ratio of the diminished distance; it is manifest that the body, being
            impelled always towards the centre by the perpetual accession of this
            new force, will incline more towards that centre than if it were urged
            by that force alone which decreases in a duplicate ratio of the
            diminished distance, and therefore will describe an orbit interior to
            that elliptical orbit, and at the lower apsis approaching nearer to
            the centre than before. Therefore the orbit by the accession of this
            new force will become more eccentrical. If now, while the body is
            returning from the lower to the upper apsis, it should decrease by the
            same degrees by which it increases before the body would return to its
            first distance; and therefore if the force
            decreases in a yet greater ratio, the body, being now less attracted
            than before, will ascend to a still greater distance, and so the
            eccentricity of the orbit will be increased still more. Therefore if
            the ratio of the increase and decrease of the centripetal force be
            augmented each revolution, the eccentricity will be augmented also;
            and, on the contrary, if that ratio decrease, it will be diminished.
        

        
            Now, therefore, in the system of the bodies T, P, S, when the apsides
            of the orbit PAB are in the quadratures, the ratio of that increase
            and decrease is least of all, and becomes greatest when the apsides
            are in the syzygies. If the apsides are placed in the quadratures, the
            ratio near the apsides is less, and near the syzygies greater, than
            the duplicate ratio of the distances; and from that greater ratio
            arises a direct motion of the line of the apsides, as was just now
            said. But if we consider the ratio of the whole increase or decrease
            in the progress between the apsides, this is less than the duplicate
            ratio of the distances. The force in the lower is to the force in the
            upper apsis in less than a duplicate ratio of the distance of the
            upper apsis from the focus of the ellipsis to the distance of the
            lower apsis from the same focus; and, contrariwise, when the apsides
            are placed in the syzygies, the force in the lower apsis is to the
            force in the upper apsis in a greater than a duplicate ratio of the
            distances. For the forces LM in the quadratures added to the forces of
            the body T compose forces in a less ratio; and the forces KL in the
            syzygies subducted from the forces of the body T, leave the forces in
            a greater ratio. Therefore the ratio of the whole increase and
            decrease in the passage between the apsides is least at the
            quadratures and greatest at the syzygies; and therefore in the passage
            of the apsides from the quadratures to the syzygies it is continually
            augmented, and increases the eccentricity of the ellipsis; and in the
            passage from the syzygies to the quadratures it is perpetually
            decreasing, and diminishes the eccentricity.
        

        
            Cor. 10. That we may give an account of the
            errors as to latitude, let us suppose the plane of the orbit EST to
            remain immovable; and from the cause of the errors above explained, it
            is manifest, that, of the two forces NM, ML, which are the only and
            entire cause of them, the force ML acting always in the plane of the
            orbit PAB never disturbs the motions as to latitude; and that the
            force NM, when the nodes are in the syzygies, acting also in the same
            plane of the orbit, does not at that time affect those motions. But
            when the nodes are in the quadratures, it disturbs them very much,
            and, attracting the body P perpetually out of the plane of its orbit,
            it diminishes the inclination of the plane in the passage of the body
            from the quadratures to the syzygies, and again increases the same in
            the passage from the syzygies to the quadratures. Hence it comes to
            pass that when the body is in the syzygies, the inclination is then
            least of all, and returns to the first magnitude nearly, when the body
            arrives at the next node. But if the nodes are
            situate at the octants after the quadratures, that is, between C and
            A, D and B, it will appear, from
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            what was just now shewn, that in the passage of the body P from either node to
            the ninetieth degree from thence, the inclination of the plane is
            perpetually diminished; then, in the passage through the next 45
            degrees to the next quadrature, the inclination is increased; and
            afterwards, again, in its passage through another 45 degrees to the
            next node, it is diminished. Therefore the inclination is more
            diminished than increased, and is therefore always less in the
            subsequent node than in the preceding one. And, by a like reasoning,
            the inclination is more increased than diminished when the nodes are
            in the other octants between A and D, B and C. The inclination,
            therefore, is the greatest of all when the nodes are in the syzygies.
            In their passage from the syzygies to the quadratures the inclination
            is diminished at each appulse of the body to the nodes: and be comes
            least of all when the nodes are in the quadratures, and the body in
            the syzygies; then it increases by the same degrees by which it
            decreased before; and, when the nodes come to the next syzygies,
            returns to its former magnitude.
        

        
            Cor. 11. Because when the nodes are in the
            quadratures the body P is perpetually attracted from the plane of its
            orbit; and because this attraction is made towards S in its passage
            from, the node C through the conjunction A to the node D; and to the
            contrary part in its passage from the node D through the opposition B
            to the node C; it is manifest that, in its motion from the node C, the
            body recedes continually from the former plane CD of its orbit till it
            comes to the next node; and therefore at that node, being now at its
            greatest distance from the first plane CD, it will pass through the
            plane of the orbit EST not in D, the other node of that plane, but in
            a point that lies nearer to the body S, which therefore be comes a new
            place of the node in antecedentia to its former place. And,
            by a like reasoning, the nodes will continue to recede in their
            passage from this node to the next. The nodes, therefore, when situate
            in the quadratures, recede perpetually; and at the syzygies, where no
            perturbation can be produced in the motion as to latitude, are
            quiescent: in the intermediate places they partake of both conditions,
            and recede more slowly; and, therefore, being always either retrograde
            or stationary, they will be carried backwards, or in antecedentia,
            each revolution.
        

        
            Cor. 12. All the errors described in these
            corrollaries are a little greater at the
            conjunction of the bodies P, S, than at their opposition; because the
            generating forces NM and ML are greater.
        

        
            Cor. 13. And since the causes and proportions
            of the errors and variations mentioned in these Corollaries do not
            depend upon the magnitude of the body S, it follows that all things
            before demonstrated will happen, if the magnitude of the body S be
            imagined so great as that the system of the two bodies P and T may
            revolve about it. And from this increase of the body S, and the
            consequent increase of its centripetal force, from which the errors of
            the body P arise, it will follow that all these errors, at equal
            distances, will be greater in this case, than in the other where the
            body S revolves about the system of the bodies P and T.
        

        
            Cor. 14. But since the forces NM, ML, when
            the body S is exceedingly distant, are very nearly as the force SK and
            the ratio PT to ST conjunctly; that is, if both the distance PT, and
            the absolute force of the body S be given, as ST³ reciprocally; and
            since those forces NM, ML are the causes of all the errors and effects
            treated of in the foregoing Corollaries; it is manifest that all those
            effects, if the system of bodies T and P continue as before, and only
            the distance ST and the absolute force of the body S be changed, will
            be very nearly in a ratio compounded of the direct ratio of the
            absolute force of the body S, and the triplicate inverse ratio of the
            distance ST. Hence if the system of bodies T and P revolve about a
            distant body S, those forces NM, ML, and their effects, will be (by
            Cor. 2 and 6, Prop IV) reciprocally in a duplicate ratio of the
            periodical time. And thence, also, if the magnitude of the body S be
            proportional to its absolute force, those forces NM, ML, and their
            effects, will be directly as the cube of the apparent diameter of the
            distant body S viewed from T, and so vice versa. For these
            ratios are the same as the compounded ratio above mentioned.
        

        
            Cor. 15. And because if the orbits ESE and
            PAB, retaining their figure, proportions, and inclination to each
            other, should alter their magnitude; and the forces of the bodies S
            and T should either remain, or be changed in any given ratio; these
            forces (that is, the force of the body T, which obliges the body P to
            deflect from a rectilinear course into the orbit PAB, and the force of
            the body S, which causes the body P to deviate from that orbit) would
            act always in the same manner, and in the same proportion; it follows,
            that all the effects will be similar and proportional, and the times
            of those effects proportional also; that is, that all the linear
            errors will be as the diameters of the orbits, the angular errors the
            same as before; and the times of similar linear errors, or equal
            angular errors, as the periodical times of the orbits.
        

        
            Cor. 16. Therefore if the figures of the
            orbits and their inclination to each other be given, and the
            magnitudes, forces, and distances of the bodies be any how changed, we
            may, from the errors and times of those errors in one
            case, collect very nearly the errors and times of the errors in any
            other case. But this may be done more expeditiously by the following
            method. The forces NM, ML, other things remaining unaltered, are as
            the radius TP; and their periodical effects (by Cor. 2, Lem. X) are as
            the forces and the square of the periodical time of the body P
            conjunctly. These are the linear errors of the body P; and hence the
            angular errors as they appear from the centre T (that is, the motion
            of the apsides and of the nodes, and all the apparent errors as to
            longitude and latitude) are in each revolution of the body P as the
            square of the time of the revolution, very nearly. Let these ratios be
            compounded with the ratios in Cor. 14, and in any system of bodies T,
            P, S, where P revolves about T very near to it, and T revolves about S
            at a great distance, the angular errors of the body P, observed from
            the centre T, will be in each revolution of the body P as the square
            of the periodical time of the body P directly, and the square of the
            periodical time of the body T inversely. And therefore the mean motion
            of the line of the apsides will be in a given ratio to the mean motion
            of the nodes; and both those motions will be as the periodical time of
            the body P directly, and the square of the periodical time of the body
            T inversely. The increase or diminution of the eccentricity and
            inclination of the orbit PAB makes no sensible variation in the
            motions of the apsides and nodes, unless that increase or diminution
            be very great indeed.
        

        
            Cor. 17. Since the line LM becomes sometimes
            greater and sometimes less than the radius PT, let the mean quantity
            of the force LM be expressed
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            by that radius PT; and then that mean force will be to the mean force SK or SN
            (which may be also expressed by ST) as the length PT to the length ST.
            But the mean force SN or ST, by which the body T is retained in the
            orbit it describes about S, is to the force with which the body P is
            retained in its orbit about T in a ratio compounded of the ratio of
            the radius ST to the radius PT, and the duplicate ratio of the
            periodical time of the body P about T to the periodical time of the
            body T about S. And, ex aequo, the mean force LM is to the
            force by which the body P is retained in its orbit about T (or by
            which the same body P might revolve at the distance PT in the same
            periodical time about any immovable point T) in the same duplicate
            ratio of the periodical times. The periodical times therefore being
            given, together with the distance PT, the mean force LM is also given;
            and that force being given, there is given also the force MN, very
            nearly, by the analogy of the lines PT and MN.
        

        
            Cor. 18. By the same
            laws by which the body P revolves about the body T, let us suppose
            many fluid bodies to move round T at equal distances from it; and to
            be so numerous, that they may all become contiguous to each other, so
            as to form a fluid annulus, or ring, of a round figure, and
            concentrical to the body T; and the several parts of this annulus,
            performing their motions by the same law as the body P, will draw
            nearer to the body T, and move swifter in the conjunction and
            opposition of themselves and the body S, than in the quadratures. And
            the nodes of this annulus, or its intersections with the plane of the
            orbit of the body S or T, will rest at the syzygies; but out of the
            syzygies they will be carried backward, or in antecedentia;
            with the greatest swiftness in the quadratures, and more slowly in
            other places. The inclination of this annulus also will vary, and its
            axis will oscillate each revolution, and when the revolution is
            completed will return to its former situation, except only that it
            will be carried round a little by the precession of the nodes.
        

        
            Cor. 19. Suppose now the sphaerical body T,
            consisting of some matter not fluid, to be enlarged, and to extend
            itself on every side as far as that annulus, and that a channel were
            cut all round its circumference containing water; and that this sphere
            revolves uniformly about its own axis in the same periodical time.
            This water being accelerated and retarded by turns (as in the last
            Corollary), will be swifter at the syzygies, and slower at the
            quadratures, than the surface of the globe, and so will ebb and flow
            in its channel after the manner of the sea. If the attraction of the
            body's were taken away, the water would acquire no motion of flux and
            reflux by revolving round the quiescent centre of the globe. The case
            is the same of a globe moving uniformly forwards in a right line, and
            in the mean time revolving about its centre (by Cor. 5 of the Laws of
            Motion), and of a globe uniformly attracted from its rectilinear
            course (by Cor. 6, of the same Laws). But let the body S come to act
            upon it, and by its unequable attraction the water will receive this
            new motion; for there will be a stronger attraction upon that part of
            the water that is nearest to the body, and a weaker upon that part
            which is more remote. And the force LM will attract the water
            downwards at the quadratures, and depress it as far as the syzygies;
            and the force KL will attract it upwards in the syzygies, and withhold
            its descent, and make it rise as far as the quadratures; except only
            in so far as the motion of flux and reflux may be directed by the
            channel of the water, and be a little retarded by friction.
        

        
            Cor. 20. If, now, the annulus becomes hard,
            and the globe is diminished, the motion of flux and reflux will cease;
            but the oscillating motion of the inclination and the praecession of
            the nodes will remain. Let the globe have the same axis with the
            annulus, and perform its revolutions in the same times, and at its
            surface touch the annulus within, and adhere to it; then the globe
            partaking of the motion of the annulus, this whole compages will
            oscillate, and the nodes will go backward, for the globe, as we shall
            shew presently, is perfectly indifferent to the receiving of all
            impressions. The greatest angle of the inclination of the annulus
            single is when the nodes are in the syzygies. Thence in the progress
            of the nodes to the quadratures, it endeavours to diminish its
            inclination, arid by that endeavour impresses a motion upon the whole
            globe. The globe retains this motion impressed, till the annulus by a
            contrary endeavour destroys that motion, and impresses a new motion in
            a contrary direction. And by this means the greatest motion of the
            decreasing inclination happens when the nodes are in the quadratures;
            and the least angle of inclination in the octants
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            after the quadratures; and, again, the greatest motion of reclination
            happens when the nodes are in the syzygies; and the greatest angle of
            reclination in the octants following. And the case is the same of a
            globe without this annulus, if it be a little higher or a little
            denser in the equatorial than in the polar regions; for the excess of
            that matter in the regions near the equator supplies the place of the
            annulus. And though we should suppose the centripetal force of this
            globe to be any how increased, so that all its parts were to tend
            downwards, as the parts of our earth gravitate to the centre, yet the
            phenomena of this and the preceding Corollary would scarce be altered;
            except that the places of the greatest and least height of the water
            will be different: for the water is now no longer sustained and kept
            in its orbit by its centrifugal force, but by the channel in which it
            flows. And, besides, the force LM attracts the water downwards most in
            the quadratures, and the force KL or NM − LM attracts it upwards most
            in the syzygies. And these forces conjoined cease to attract the water
            downwards, and begin to attract it upwards in the octants before the
            syzygies; and cease to attract the water upwards, and begin to attract
            the water downwards in the octants after the syzygies. And thence the
            greatest height of the water may happen about the octants after the
            syzygies; and the least height about the octants after the
            quadratures; excepting only so far as the motion of ascent or descent
            impressed by these forces may by the vis insita of the water
            continue a little longer, or be stopped a little sooner by impediments
            in its channel.
        

        
            Cor. 21. For the same reason that redundant
            matter in the equatorial regions of a globe causes the nodes to go
            backwards, and therefore by the increase of that matter that
            retrogradation is increased, by the diminution is diminished, and by
            the removal quite ceases: it follows, that, if more than that
            redundant matter be taken away, that is, if the globe be either more
            depressed, or of a more rare consistence near the equator than near
            the poles, there will arise a motion of the nodes in consequentia.
        

        
            Cor. 22. And thence from the motion of the
            nodes is known the constitution of the globe. That is, if the globe
            retains unalterably the same poles, and the motion (of the nodes) be in
            antecedentia, there is a redundance of the matter near the
            equator; but if in consequentia, a deficiency. Suppose a
            uniform and exactly spherical globe to be first at rest in a free
            space: then by some impulse made obliquely upon its superficies to be
            driven from its place, and to receive a motion partly circular and
            partly right forward. Because this globe is perfectly indifferent to
            all the axes that pass through its centre, nor has a greater
            propensity to one axis or to one situation of the axis than to any
            other, it is manifest that by its own force it will never change its
            axis, or the inclination of it. Let now this globe be impelled
            obliquely by a new impulse in the same part of its superficies as
            before, and since the effect of an impulse is not at all changed by
            its coming sooner or later, it is manifest that these two impulses,
            successively impressed, will produce the same motion as if they were
            impressed at the same time: that, is, the same motion as if the globe
            had been impelled by a simple force compounded of them both (by Cor.
            2, of the Laws), that is, a simple motion about an axis of a given
            inclination. And the case is the same if the second impulse were made
            upon any other place of the equator of the first motion; and also if
            the first impulse were made upon any place in the equator of the
            motion which would be generated by the second impulse alone; and
            therefore, also, when both impulses are made in any places whatsoever;
            for these impulses will generate the same circular motion as if they
            were impressed together, and at once, in the place of the
            intersections of the equators of those motions, which would be
            generated by each of them separately. Therefore, a homogeneous and
            perfect globe will not retain several distinct motions, but will unite
            all those that are impressed on it, and reduce them into one;
            revolving, as far as in it lies, always with a simple and uniform
            motion about one single given axis, with an inclination perpetually
            invariable. And the inclination of the axis, or the velocity of the
            rotation, will not be changed by centripetal force. For if the globe
            be supposed to be divided into two hemispheres, by any plane
            whatsoever passing through its own centre, and the centre to which the
            force is directed, that force will always urge each hemisphere
            equally; and therefore will not incline the globe any way as to its
            motion round its own axis. But let there be added any where between
            the pole and the equator a heap of new matter like a mountain, and
            this, by its perpetual endeavour to recede from the centre of its
            motion, will disturb the motion of the globe, and cause its poles to
            wander about its superficies, describing circles about themselves and
            their opposite points. Neither can this enormous evagation of
            the poles be corrected, unless by placing that mountain either in one
            of the poles; in which case, by Cor. 21, the nodes of the equator will
            go forwards; or in the equatorial regions, in which case, by Cor. 20,
            the nodes will go backwards; or, lastly, by adding on the other side
            of the axis a new quantity of matter, by which the mountain may be
            balanced in its motion; and then the nodes will either go forwards or
            backwards, as the mountain and this newly added matter happen to be
            nearer to the pole or to the equator.
        

    

    
        Proposition lxvii. Theorem xxvii.

            
                The same laws of attraction being supposed, I say, that the
                exterior body S does, by radii drawn to the point O,
                the common centre of gravity of the interior bodies P and
                T, describe round that centre areas more proportional to the
                times, and an orbit more approaching to the form of an ellipsis
                having its focus in that centre, than it can describe round the
                innermost and greatest body T by radii drawn to that body.
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            For the attractions of the body S towards T and P compose its
            absolute attraction, which is more directed towards O, the common
            centre of gravity of the bodies T and P, than it is to the greatest
            body T; and which is more in a reciprocal proportion to the square of
            the distance SO, than it is to the square of the distance ST; as will
            easily appear by a little consideration.
        

    

    
        Proposition lxviii. Theorem xxviii.

            
                The same laws of attraction supposed, I say, that the exterior
                body S will, by radii drawn to O, the common
                centre of gravity of the interior bodies P and T,
                describe round that centre areas more proportional to the times,
                and an orbit more approaching to the form of an ellipsis having
                its focus in that centre, if the innermost and greatest body be
                agitated by these attractions as well as the rest, than it would
                do if that body were either at rest as not attracted, or were much
                more or much less attracted, or much more or much less agitated.
            

        

        
            This may be demonstrated after the same manner as Prop. LXVI, but by
            a more prolix reasoning, which I therefore pass over. It will be
            sufficient to consider it after this manner. From the demonstration of
            the last Proposition it is plain, that the centre, towards which the
            body S is urged by the two forces conjunctly, is very near to the
            common centre of gravity of those two other bodies. If this centre
            were to coincide with that common centre, and moreover the common
            centre of gravity of all the three bodies were at rest, the body S on
            one side, and the common centre of gravity of the other two bodies on
            the other side, would describe true ellipses about
            that quiescent common centre. This appears from Cor. 2, Prop LVIII,
            compared with what was demonstrated in Prop. LXIV, and LXV. Now this
            accurate elliptical motion will be disturbed a little by the distance
            of the centre of the two bodies from the centre towards which the
            third body S is attracted. Let there be added, moreover, a motion to
            the common centre of the three, and the perturbation will be increased
            yet more.
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            Therefore the perturbation is least when the common centre of the three bodies is at rest;
            that is, when the innermost and greatest body T is attracted according to the
            same law as the rest are; and is always greatest when the common
            centre of the three, by the diminution of the motion of the body T,
            begins to be moved, and is more and more agitated.
        

        
            Cor. And hence if more lesser bodies revolve
            about the great one, it may easily be inferred that the orbits
            described will approach nearer to ellipses; and the descriptions of
            areas will be more nearly equable, if all the bodies mutually attract
            and agitate each other with accelerative forces that are as their
            absolute forces directly, and the squares of the distances inversely;
            and if the focus of each orbit be placed in the common centre of
            gravity of all the interior bodies (that is, if the focus of the first
            and innermost orbit be placed in the centre of gravity of the greatest
            and inner most body; the focus of the second orbit in the common
            centre of gravity of the two innermost bodies; the focus of the third
            orbit in the common centre of gravity of the three innermost; and so
            on), than if the innermost body were at rest, and was made the common
            focus of all the orbits.
        

    

    
        Proposition lxix. Theorem xxix.

            
                In a system of several bodies A, B, C, D, &c., if
                any one of those bodies, as A, attract all the rest,
                B, C, D, &c., with accelerative forces that are
                reciprocally as the squares of the distances from the attracting
                body; and another body, as B, attracts also the rest.
                A, C, D, &c., with forces that are reciprocally as the
                squares of the distances from the attracting body; the absolute
                forces of the attracting bodies A and B will
                be to each other as those very bodies A and B to which those forces belong.
            

        

        
            For the accelerative attractions of all the bodies B, C, D, towards
            A, are by the supposition equal to each other at equal distances; and
            in like manner the accelerative attractions of all the bodies towards
            B are also equal to each other at equal distances. But the absolute
            attractive force of the body A is to the absolute attractive force of
            the body B as the accelerative attraction of all the bodies towards A
            to the accelerative attraction of all the bodies towards B at equal
            distances; and so is also the accelerative attraction of the body B
            towards A to the accelerative attraction of
            the body A towards B. But the accelerative attraction of the body B
            towards A is to the accelerative attraction of the body A towards B as
            the mass of the body A to the mass of the body B; because the motive
            forces which (by the 2d, 7th, and 8th Definition) are as the
            accelerative forces and the bodies attracted conjunctly are here equal
            to one another by the third Law. Therefore the absolute attractive
            force of the body A is to the absolute attractive force of the body B
            as the mass of the body A to the mass of the body B.
              Q.E.D.
        

        
            Cor. 1. Therefore if each of the bodies of
            the system A, B, C, D, &c. does singly attract all the rest with
            accelerative forces that are reciprocally as the squares of the
            distances from the attracting body, the absolute forces of all those
            bodies will be to each other as the bodies themselves.
        

        
            Cor. 2. By a like reasoning, if each of the
            bodies of the system A, B, C, D, &c., do singly attract all the
            rest with accelerative forces, which are either reciprocally or
            directly in the ratio of any power whatever of the distances from the
            attracting body; or which are defined by the distances from each of
            the attracting bodies according to any common law; it is plain that
            the absolute forces of those bodies are as the bodies themselves.
        

        
            Cor. 3. In a system of bodies whose forces
            decrease in the duplicate ratio of the distances, if the lesser
            revolve about one very great one in ellipses, having their common
            focus in the centre of that great body, and of a figure exceedingly
            accurate; and moreover by radii drawn to that great body describe
            areas proportional to the times exactly; the absolute forces of those
            bodies to each other will be either accurately or very nearly in the
            ratio of the bodies. And so on the contrary. This appears from Cor. of
            Prop. XLVIII, compared with the first Corollary of this Prop.
        

    

    
        Scholium.


        
            These Propositions naturally lead us to the analogy there is between
            centripetal forces, and the central bodies to which those forces used
            to be directed; for it is reasonable to suppose that forces which are
            directed to bodies should depend upon the nature and quantity of those
            bodies, as we see they do in magnetical experiments. And when such
            cases occur, we are to compute the attractions of the bodies by
            assigning to each of their particles its proper force, and then
            collecting the sum of them all. I here use the word attraction in
            general for any endeavour, of what kind soever, made by bodies to
            approach to each other; whether that endeavour arise from the action
            of the bodies themselves, as tending mutually to or agitating each
            other by spirits emitted; or whether it arises from the action of the
            aether or of the air, or of any medium whatsoever, whether corporeal
            or incorporeal, any how impelling bodies placed therein towards each
            other. In the same general sense I use the word impulse, not defining
            in this treatise the species or physical qualities of forces, but
            investigating the quantities and mathematical
            proportions of them; as I observed before in the Definitions. In
            mathematics we are to investigate the quantities of forces with their
            proportions consequent upon any conditions supposed; then, when we
            enter upon physics, we compare those proportions with the phenomena of
            Nature, that we may know what conditions of those forces answer to the
            several kinds of attractive bodies. And this preparation being made,
            we argue more safely concerning the physical species, causes, and
            proportions of the forces. Let us see, then, with what forces
            sphaerical bodies consisting of particles endued with attractive
            powers in the manner above spoken of must act mutually upon one
            another: and what kind of motions will follow from thence.
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        Section xii.

        Of the attractive forces of sphaerical bodies.


    

    
        Proposition lxx. Theorem xxx.

            
                
                    If to every point of a sphaerical surface there tend equal
                    centripetal forces decreasing in the duplicate ratio of the
                    distances from those points; I say, that a corpuscle placed within
                    that superficies will not be attracted by those forces any way.
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            Let HIKL, be that sphaerical superficies, and P a corpuscle placed
            within. Through P let there be drawn to this superficies to two lines
            HK, IL, intercepting very small arcs HI, KL; and because (by Cor. 3,
            Lem. VII) the triangles HPI, LPK are alike, those arcs will be
            proportional to the distances HP, LP; and any particles at HI and KL
            of the sphaerical superficies, terminated by right lines passing
            through P, will be in the duplicate ratio of those distances.
            Therefore the forces of these particles exerted upon the body P are
            equal between themselves. For the forces are as the particles
            directly, and the squares of the distances inversely. And these two
            ratios compose the ratio of equality. The attractions therefore, being
            made equally towards contrary parts, destroy each other. And by a like
            reasoning all the attractions through the whole sphaerical superficies
            are destroyed by contrary attractions. Therefore the body P will not
            be any way impelled by those attractions.   Q.E.D.
        

    

    
        Proposition lxxi. Theorem xxxi.

            
                
                    The same things supposed as above, I say, that a corpuscle
                    placed with out the sphaerical superficies is attracted towards
                    the centre of the sphere with a force reciprocally proportional to
                    the square of its distance from that centre.
                
            

        

        
            Let AHKB, ahkb, be two equal sphaerical superficies
            described about the centre S, s;
            their diameters AB, ab; and let P and p be two
            corpuscles situate without the spheres in those diameters produced.
            Let there
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            be drawn from the corpuscles the lines PHK, PIL, phk, pil,
            cutting off from the great circles AHB,
            ahb, the equal arcs HK, hk, IL, il;
            and to those lines let fall the perpendiculars SD, sd, SE, se,
            IR, ir; of which let SD, sd, cut PL, pl,
            in F and f. Let fall also to the diameters the
            perpendiculars IQ, iq. Let now the angles DPE, dpe,
            vanish; and because DS and ds, ES and es are
            equal, the lines PE, PF, and pe, pf, and the lineolao DF, df
            may be taken for equal; because their last ratio, when the angles DPE,
            dpe vanish together, is the ratio of equality. These things
            then supposed, it will be, as PI to PF so is RI to DF, and as pf
            to pi so is df or DF to ri; and, ex
            aequo, as PI x pf to PF x pi so is RI to ri,
            that is (by Cor. 3, Lem VII), so is the arc IH to the arc ih.
            Again, PI is to PS as IQ to SE, and ps to pi as se
            or SE to iq; and, ex aequo, PI x ps to
            PS x pi as IQ to iq. And compounding the ratios
            PI² x pf x ps is to pi² x PF x PS, as IH
            x IQ to ih x iq; that is, as the circular
            superficies which is described by the arc IH, as the semi-circle AKB
            revolves about the diameter AB, is to the circular superficies
            described by the arc ih as the semi-circle akb
            revolves about the diameter ab. And the forces with which
            these superficies attract the corpuscles P and p in the
            direction of lines tending to those superficies are by the hypothesis
            as the superficies themselves directly, and the squares of the
            distances of the superficies from those corpuscles inversely; that is,
            as pf x ps to PF x PS. And these forces again are
            to the oblique parts of them which (by the resolution of forces as in
            Cor. 2, of the Laws) tend to the centres in the directions of the
            lines PS, ps, as PI to PQ, and pi to pq;
            that is (because of the like triangles PIQ and PSF, piq and
            psf), as PS to PF and ps to pf. Thence ex
            aequo, the attraction of the corpuscle P towards S is to the
            attraction of the corpuscle p towards s as
            PF x pf x ps

            PS is to pf
            x PF x ps

            ps, that is, as ps² to PS² .
            And, by a like reasoning, the forces with which the superficies
            described by the revolution of the arcs KL, kl attract those
            corpuscles, will be as ps² to PS² . And in the same ratio
            will be the forces of all the circular superficies into which each of
            the sphaerical superficies may be divided by taking sd
            always equal to SD, and se equal to SE. And therefore, by
            composition, the forces of the entire sphaerical superficies exerted
            upon those corpuscles will be in the same ratio.   Q.E.D.
        

    

    
        
            Proposition lxxii. Theorem xxxii.

            
                
                    If to the several points of a sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from those points; and there be given both the density
                    of the sphere and the ratio of the diameter of the sphere to the
                    distance of the corpuscle from its centre; I say, that the force
                    with which the corpuscle is attracted is proportional to the
                    semi-diameter of the sphere.
                
            

        

        
            For conceive two corpuscles to be severally attracted by two spheres,
            one by one, the other by the other, and their distances from the
            centres of the spheres to be proportional to the diameters of the
            spheres respectively, and the spheres to be resolved into like
            particles, disposed in a like situation to the corpuscles. Then the
            attractions of one corpuscle towards the several particles of one
            sphere will be to the attractions of the other towards as many
            analogous particles of the other sphere in a ratio compounded of the
            ratio of the particles directly, and the duplicate ratio of the
            distances inversely. But the particles are as the spheres, that is, in
            a triplicate ratio of the diameters, and the distances are as the
            diameters; and the first ratio directly with the last ratio taken
            twice inversely, becomes the ratio of diameter to diameter.
              Q.E.D.
        

        
            Cor. 1. Hence if corpuscles revolve in
            circles about spheres composed of matter equally attracting, and the
            distances from the centres of the spheres be proportional to their
            diameters, the periodic times will be equal.
        

        
            Cor. 2. And, vice versa, if the
            periodic times are equal, the distances will be proportional to the
            diameters. These two Corollaries appear from Cor. 3, Prop. IV.
        

        
            Cor. 3. If to the several points of any two
            solids whatever, of like figure and equal density, there tend equal
            centripetal forces decreasing in a duplicate ratio of the distances
            from those points, the forces, with which corpuscles placed in a like
            situation to those two solids will be attracted by them, will be to
            each other as the diameters of the solids.
        

    

    
        Proposition lxxiii. Theorem xxxiii.

            
                
                    If to the several points of a given sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from the points; I say, that a corpuscle placed within
                    the sphere is attracted by a force proportional to its distance
                    from the centre.
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            In the sphere ABCD, described about the centre S, let there be placed
            the corpuscle P; and about the same centre S, with the interval SP,
            conceive described an interior sphere PEQF. It is plain (by Prop. LXX)
            that the concentric sphaerical superficies, of which the difference
            AEBF of the spheres is composed, have no effect at all upon the body
            P, their attractions being destroyed by
            contrary attractions. There remains, therefore, only the attraction of
            the interior sphere PEQF. And (by Prop, LXXII) this is as the distance
            PS.   Q.E.D.
        

    

    
        Scholium.


        
            By the superficies of which I here imagine the solids composed, I do
            not mean superficies purely mathematical, but orbs so extremely thin,
            that their thickness is as nothing; that is, the evanescent orbs of
            which the sphere will at last consist when the number of the orbs is
            increased, and their thickness diminished without end. In like manner,
            by the points of which lines, surfaces, and solids are said to be
            composed, are to be understood equal particles, whose magnitude is
            perfectly inconsiderable.
        

    

    
        Proposition lxxiv. Theorem xxxiv.

            
                
                    The same things supposed, I say, that a corpuscle situate
                    without the sphere is attracted with a force reciprocally
                    proportional to the square of its distance from the centre.
                
            

        

        
            For suppose the sphere to be divided into innumerable concentric
            sphaerical superficies, and the attractions of the corpuscle arising
            from the several superficies will be reciprocally proportional to the
            square of the distance of the corpuscle from the centre of the sphere
            (by Prop. LXXI). And, by composition, the sum of those attractions,
            that is, the attraction of the corpuscle towards the entire sphere,
            will be in the same ratio.   Q.E.D.
        

        
            Cor. 1. Hence the attractions of homogeneous
            spheres at equal distances from the centres will be as the spheres
            themselves. For (by Prop. LXXII) if the distances be proportional to
            the diameters of the spheres, the forces will be as the diameters. Let
            the greater distance be diminished in that ratio; and the distances
            now being equal, the attraction will be increased in the duplicate of
            that ratio; and therefore will be to the other attraction in the
            triplicate of that ratio; that is, in the ratio of the spheres.
        

        
            Cor. 2. At any distances whatever the
            attractions are as the spheres applied to the squares of the
            distances.
        

        
            Cor. 3. If a corpuscle placed without an
            homogeneous sphere is attracted by a force reciprocally proportional
            to the square of its distance from the centre, and the sphere consists
            of attractive particles, the force of every particle will decrease in
            a duplicate ratio of the distance from each particle.
        

    

    
        Proposition lxxv. Theorem xxxv.

            
                
                    If to the several points of a given sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from the points; I say, that another similar sphere will
                    be attracted by it with a force reciprocally proportional to the
                    square of the distance of the centres.
                
            

        

        
            For the attraction of every particle is reciprocally as the square of
            its distance from the centre of the
            attracting sphere (by Prop. LXXIV), and is therefore the same as if
            that whole attracting force issued from one single corpuscle placed in
            the centre of this sphere. But this attraction is as great as on the
            other hand the attraction of the same corpuscle would be, if that were
            itself attracted by the several particles of the attracted sphere with
            the same force with which they are attracted by it. But that
            attraction of the corpuscle would be (by Prop. LXXIV) reciprocally
            proportional to the square of its distance from the centre of the
            sphere; therefore the attraction of the sphere, equal thereto, is also
            in the same ratio.   Q.E.D.
        

        
            Cor. 1. The attractions of spheres towards
            other homogeneous spheres are as the attracting spheres applied to the
            squares of the distances of their centres from the centres of those
            which they attract.
        

        
            Cor. 2. The case is the same when the
            attracted sphere does also attract. For the several points of the one
            attract the several points of the other with the same force with which
            they themselves are attracted by the others again; and therefore since
            in all attractions (by Law III) the attracted and attracting point are
            both equally acted on, the force will be doubled by their mutual
            attractions, the proportions remaining.
        

        
            Cor. 3. Those several truths demonstrated
            above concerning the motion of bodies about the focus of the conic
            sections will take place when an attracting sphere is placed in the
            focus, and the bodies move without the sphere.
        

        
            Cor. 4. Those things which were demonstrated
            before of the motion of bodies about the centre of the conic sections
            take place when the motions are performed within the sphere.
        

    

    
        Proposition lxxvi. Theorem xxxvi.

            
                
                    If spheres be however dissimilar (as to density of matter and
                    attractive force) in the same ratio onward from the centre to the
                    circumference; but every where similar, at every given distance
                    from the centre, on all sides round about; and the attractive
                    force of every point decreases in the duplicate ratio of the
                    distance of the body attracted; I say, that the whole force with
                    which one of these spheres attracts the other will be reciprocally
                    proportional to the square of the distance of the centres.
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            Imagine several concentric similar spheres, AB, CD, EF, &c., the
            innermost of which added to the outermost may compose a matter more
            dense towards the centre, or subducted from them may leave the same
            more lax and rare. Then, by Prop. LXXV, these spheres will attract
            other similar concentric spheres GH, IK, LM,
            &c., each the other, with forces reciprocally proportional to the
            square of the distance SP. And, by composition or division, the sum of
            all those forces, or the excess of any of them above the others; that
            is, the entire force with which the whole sphere AB (composed of any
            concentric spheres or of their differences) will attract the whole
            sphere GH (composed of any concentric spheres or their differences) in
            the same ratio. Let the number of the concentric spheres be increased
            in infinitum, so that the density of the matter together with
            the attractive force may, in the progress from the circumference to
            the centre, increase or decrease according to any given law; and by
            the addition of matter not attractive, let the deficient density be
            supplied, that so the spheres may acquire any form desired; and the
            force with which one of these attracts the other will be still, by the
            former reasoning, in the same ratio of the square of the distance
            inversely.   Q.E.D.
        

        
            Cor. 1. Hence if many spheres of this kind,
            similar in all respects, attract each other mutually, the accelerative
            attractions of each to each, at any equal distances of the centres,
            will be as the attracting spheres.
        

        
            Cor. 2. And at any unequal distances, as the
            attracting spheres applied to the squares of the distances between the
            centres.
        

        
            Cor. 3. The motive attractions, or the
            weights of the spheres towards one another, will be at equal distances
            of the centres as the attracting and attracted spheres conjunctly;
            that is, as the products arising from multiplying the spheres into
            each other.
        

        
            Cor. 4. And at unequal distances, as those
            products directly, and the squares of the distances between the
            centres inversely.
        

        
            Cor. 5. These proportions take place also
            when the attraction arises from the attractive virtue of both spheres
            mutually exerted upon each other. For the attraction is only doubled
            by the conjunction of the forces, the proportions remaining as before.
        

        
            Cor. 6. If spheres of this kind revolve about
            others at rest, each about each; and the distances between the centres
            of the quiescent and revolving bodies are proportional to the
            diameters of the quiescent bodies; the periodic times will be equal.
        

        
            Cor. 7. And, again, if the periodic times are
            equal, the distances will be proportional to the diameters.
        

        
            Cor. 8. All those truths above demonstrated,
            relating to the motions of bodies about the foci of conic sections,
            will take place when an attracting sphere, of any form and condition
            like that above described, is placed in the focus.
        

        
            Cor. 9. And also when the revolving bodies
            are also attracting spheres of any condition like that above
            described.
        

    

    
        
            Proposition lxxvii. Theorem xxxvii.

            
                
                    If to the several points of spheres there tend centripetal
                    forces proportional to the distances of the points from the
                    attracted bodies; I say, that the compounded force with which two
                    spheres attract each other mutually is as the distance between the
                    centres of the spheres.
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            Case 1. Let AEBF be a sphere; S its centre; P
            a corpuscle attracted; PASB the axis of the sphere passing through the
            centre of the corpuscle; EF, ef two planes cutting the
            sphere, and perpendicular to the axis, and equi-distant, one on one
            side, the other on the other, from the centre of the sphere; G and g
            the intersections of the planes and the axis; and H any point in the
            plane EF. The centripetal force of the point H upon the corpuscle P,
            exerted in the direction of the line PH, is as the distance PH; and
            (by Cor. 2, of the Laws) the same exerted in the direction of the line
            PG, or towards the centre S, is as the length PG. Therefore the force
            of all the points in the plane EF (that is, of that whole plane) by
            which the corpuscle P is attracted towards the centre S is as the
            distance PG multiplied by the number of those points, that is, as the
            solid contained under that plane EF and the distance PG. And in like
            manner the force of the plane ef, by which the corpuscle P
            is attracted towards the centre S, is as that plane drawn into its
            distance Pg, or as the equal plane EF drawn into that
            distance Pg; and the sum of the forces of both planes as the
            plane EF drawn into the sum of the distances PG + Pg, that
            is, as that plane drawn into twice the distance PS of the centre and
            the corpuscle; that is, as twice the plane EF drawn into the distance
            PS, or as the sum of the equal planes EF + ef drawn into the
            same distance. And, by a like reasoning, the forces of all the planes
            in the whole sphere, equi-distant on each side from the centre of the
            sphere, are as the sum of those planes drawn into the distance PS,
            that is, as the whole sphere and the distance PS conjunctly.
              Q.E.D.
        

        
            Case 2. Let now the corpuscle P attract the
            sphere AEBF. And, by the same reasoning, it will appear that the force
            with which the sphere is attracted is as the distance PS.
              Q.E.D.
        

        
            Case 3. Imagine another sphere composed of
            innumerable corpuscles P; and because the force with which every
            corpuscle is attracted is as the distance of the corpuscle from the
            centre of the first sphere, and as the same sphere conjunctly, and is
            therefore the same as if it all proceeded from a single corpuscle
            situate in the centre of the sphere, the entire force with which all
            the corpuscles in the second sphere are attracted, that is, with which
            that whole sphere is attracted, will be the same as if that sphere
            were attracted by a force issuing from a single
            corpuscle in the centre of the first sphere; and is therefore
            proportional to the distance between the centres of the spheres.
              Q.E.D.
        

        
            Case 4. Let the spheres attract each other
            mutually, and the force will be doubled, but the proportion will
            remain.   Q.E.D.
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            Case 5. Let the corpuscle p be
            placed within the sphere AEBF; and because the force of the plane ef
            upon the corpuscle is as the solid contained under that plane and the
            distance pg; and the contrary force of the plane EP as the
            solid contained under that plane and the distance pG; the
            force compounded of both will be as the difference of the solids, that
            is, as the sum of the equal planes drawn into half the difference of
            the distances; that is, as that sum drawn into pS, the
            distance of the corpuscle from the centre of the sphere. And, by a
            like reasoning, the attraction of all the planes EF, ef,
            throughout the whole sphere, that is, the attraction of the whole
            sphere, is conjunctly as the sum of all the planes, or as the whole
            sphere, and as pS, the distance of the corpuscle from the
            centre of the sphere.   Q.E.D.
        

        
            Case 6. And if there be composed a new sphere
            out of innumerable corpuscles such as p, situate within the
            first sphere AEBF, it may be proved, as before, that the attraction,
            whether single of one sphere towards the other, or mutual of both
            towards each other, will be as the distance pS of the
            centres.   Q.E.D.
        

    

    
        Proposition lxxviii. Theorem xxxviii.

            
                
                    If spheres is the progress from the centre to the circumference
                    be however dissimilar and unequable, but similar on every side
                    round about at all given distances from the centre; and the
                    attractive force of every point be as the distance of the
                    attracted body; I say, that the entire force with which two
                    spheres of this kind attract each other mutually is proportional
                    to the distance between the centres of the spheres.
                
            

        

        
            This is demonstrated from the foregoing Proposition, in the same
            manner as Proposition LXXVI was demonstrated from Proposition LXXV.
        

        
            Cor. Those things that were above
            demonstrated in Prop. X and LXIV, of the motion of bodies round the
            centres of conic sections, take place when all the attractions are
            made by the force of sphaerical bodies of the condition above
            described, and the attracted bodies are spheres of the same kind.
        

    

    
        Scholium.


        
            I have now explained the two principal cases of attractions; to wit,
            when the centripetal forces decrease in a duplicate ratio of the
            distances, or increase in a simple ratio of the distances, causing the
            bodies in both cases to revolve in conic
            sections, and composing sphaerical bodies whose centripetal forces
            observe the same law of increase or decrease in the recess from the
            centre as the forces of the particles themselves do; which is very
            remarkable. It would be tedious to run over the other cases, whose
            conclusions are less elegant and important, so particularly as I have
            done these. I choose rather to comprehend and determine them all by
            one general method as follows.
        

    

    
        Lemma xxix.

            
                If about the centre S there be described any circle
                as AEB, and about the centre P there be also
                described two circles EF, ef, cutting the first in E
                And e, and the line PS in F and f; and there be let
                fall to PS the perpendiculars ED, ed; I say, that if the distance
                of the arcs EF, ef be supposed to be infinitely
                diminished, the last ratio of the evanscent line Dd to
                the evanescent line Ff is the same as that of the line
                PE to the line PS.
            

        

        
            For if the line Pe cut the arc EF in q; and the
            right line Ee, which
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            coincides with the evanescent arc Ee, be produced, and meet the right
            line PS in T; and there be let fall from S to PE the perpendicular SG;
            then, because of the like triangles DTE, dTe, DES,
            it will be as Dd to Ee so DT to TE, or DE to ES: and
            because the triangles, Eeq, ESG (by Lem. VIII, and Cor. 3,
            Lem. VII) are similar, it will be as Ee to eq or Ff
            so ES to SG; and, ex aequo, as Dd to Ff so
            DE to SG; that is (because of the similar triangles PDE, PGS), so is
            PE to PS.   Q.E.D.
        

    

    
        Proposition lxxix. Theorem xxxix.

            
                Suppose a superficies as EFfe to have its breadth
                infinitely diminished, and to be just vanishing and that the same
                superficies by its revolution round the axis PS describes
                a sphaerical concavo-convex solid, to the several equal particles
                of which there tend equal centripetal forces; I say, that the
                force with which that solid attracts a corpuscle situate in P
                Is in a ratio compounded of the ratio of the solid DE² x Ff
                And the ratio of the force with which the given particle in the
                place Ff would, attract the same corpuscle.
            

        

        
            For if we consider, first, the force of the sphaerical superficies FE which
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            is generated by the revolution of the arc FE, and is cut any where, as in
            r, by the line de, the annular part of the
            superficies generated by the revolution of the arc rE will
            be as the lineola Dd, the radius of the sphere PE remaining
            the same; as Archimedes has demonstrated in his Book of the
            Sphere and Cylinder. And the force of this superficies exerted in the
            direction of the lines PE or Pr situate all round in the
            conical superficies, will be as this annular superficies itself; that
            is as the lineola Dd, or, which is the same, as the rectangle
            under the given radius PE of the sphere and the lineola Dd;
            but that force, exerted in the direction of the line PS tending to the
            centre S, will be less in the ratio PD to PE, and therefore will be as
            PD x Dd. Suppose now the line DF to be divided into
            innumerable little equal particles, each of which call Dd,
            and then the superficies FE will be divided into so many equal annuli,
            whose forces will be as the sum of all the rectangles PD x Dd,
            that is, as ½PF² − ½PD², and therefore as DE². Let now the superficies
            FE be drawn into the altitude Ff; and the force of the solid
            EFfe exerted upon the corpuscle P will be as DE² x Ff;
            that is, if the force be given which any given particle as Ff
            exerts upon the corpuscle P at the distance PF. But if that force be
            not given, the force of the solid EFfe will be as the solid
            DE² x Ff and that force not given, conjunctly.
              Q.E.D.
        

    

    
        Proposition lxxx. Theorem xl.

            
                If to the several equal parts of a sphere ABE described
                about the centre S there tend equal centripetal forces; and from
                the several points D in the axis of the sphere AB in
                which a corpuscle, as F, is placed, there be erected the
                perpendiculars DE meeting the sphere in E, and
                if in those perpendiculars the lengths DN be taken as
                the quantity DE2
                x PS

                PE, and as the force which a particle of the sphere
                situate in the axis exerts at the distance PE upon the
                corpuscle P conjunctly; I say, that the whole force with
                which the corpuscle P is attracted towards the sphere is
                as the area ANB, comprehended under the axis of the
                sphere AB, and the crrve line ANB, the locus of the point N.
            

        

        
            For supposing the construction in the last Lemma and Theorem to
            stand, conceive the axis of the sphere AB to be divided into
            innumerable equal particles Dd, and the whole sphere to be
            divided into so many sphserical concavo-convex laminae EFfe;
            and erect the perpendicular dn. By the last Theorem, the
            force with which the laminae EFfe attracts the corpuscle P
            is as DE² x Ff and the force of one particle exerted at the
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            distance PE or PF, conjunctly. But (by the last Lemma) Dd is to Ff as PE to PS,
            and therefore Ff is equal to PS
            x Dd

            PE; and DE² x Ff is equal to Dd
            x DE2 x PS

            PE; and therefore the force of the lamina EFfe
            is as Dd x DE2
            x PS

            PE and the force of a particle exerted at the
            distance PF conjunctly; that is, by the supposition, as DN x Dd,
            or as the evanescent area DNnd. Therefore the forces of all
            the laminae exerted upon the corpuscle P are as all the areas DNnd,
            that is, the whole force of the sphere will be as the whole area ANB.
              Q.E.D.
        

        
            Cor. 1. Hence if the centripetal force
            tending to the several particles remain always the same at all
            distances, and DN be made as DE2
            x PS

            PE the whole force with which the corpuscle is attracted by
            the sphere is as the area ANB.
        

        
            Cor. 2. If the centripetal force of the
            particles be reciprocally as the distance of the corpuscle attracted
            by it, and DN be made as DE2
            x PS

            PE2, the force with which the corpuscle P is
            attracted by the whole sphere will be as the area ANB.
        

        
            Cor. 3. If the centripetal force of the
            particles be reciprocally as the cube of the distance of the corpuscle
            attracted by it, and DN be made as DE2
            x PS

            PE4, the force with which the corpuscle is
            attracted by the whole sphere will be as the area ANB.
        

        
            Cor. 4. And universally if the centripetal
            force tending to the several particles of the sphere be supposed to be
            reciprocally as the quantity V; and DN be made as 
            DE2 x PS

            PE x V; the force with which a corpuscle is attracted by the
            whole sphere will be as the area ANB.
        

    

    
        
            Proposition lxxxi. Problem xli.

            The things remaining as above, it is required to measure the area ANB.

        

        
            From the point P let there be drawn the right line PH touching the
            sphere in H; and to the axis PAB, letting fall the perpendicular HI,
            bisect PI in L; and (by Prop. XII, Book II, Elem.) PE² is equal to
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            PS² + SE² + 2PSD. But because the triangles SPH,
            SHI are alike, SE² or SH² is equal to the rectangle PSI.
            Therefore PE² is equal to the rectangle contained under PS and PS
            + SI + 2SD; that is, under PS and 2LS + 2SD; that is, under PS and
            2LD. Moreover DE² is equal to SE² − SD², or SE² − LS² + 2SLD − LD²,
            that is, 2SLD − LD² − ALB. For LS² − SE² or LS² − SA² (by Prop. VI,
            Book II, Elem.) is equal to the rectangle ALB. Therefore if instead of
            DE² we write 2SLD − LD² − ALB, the quantity 
            DE2 x PS

            PE x V, which (by Cor. 4 of the foregoing Prop.) is as the
            length of the ordinate DN, will now resolve itself into three parts
            2SLD x PS

            PE x V − LD2
            x PS

            PE x V − ALB
            x PS

            PE x V; where if instead of V
            we write the inverse ratio of the centripetal force, and instead of PE
            the mean proportional between PS and 2LD, those three parts will
            become ordinates to so many curve lines, whose areas are discovered by
            the common methods.   Q.E.D.
        

        
            Example 1. If the centripetal force tending
            to the several particles of the sphere be reciprocally as the
            distance; instead of V write PE the distance, then 2PS x LD for PE²;
            and DN will become as SL − ½LD − ALB

            2LD. Suppose DN equal to its double 2SL
            − LD − ALB

            LD; and 2SL the given part of the
            ordinate drawn into the length AB will describe the rectangular area
            2SL x AB; and the indefinite part LD, drawn perpendicularly into the
            same length with a continued motion, in such sort as in its motion one
            way or another it may either by increasing or decreasing remain always
            equal to the length LD, will describe the area 
            LB2 − LA2

            2, that is, the area SL x AB; which
            taken from the former area 2SL x AB, leaves the area SL x AB. But the
            third part ALB

            LD, drawn after the same manner with a
            continued motion perpendicularly into the same length,
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            will describe the area of an hyperbola, which subducted from the area
            SL x AB will leave ANB the area sought. Whence arises this
            construction of the Problem. At the points, L, A, B, erect the
            perpendiculars Ll, Aa, Bb; making Aa
            equal to LB, and Bb equal to LA. Making Ll and LB
            asymptotes, describe through the points a, b, the
            hyperbolic curve ab. And the chord ba being drawn,
            will inclose the area aba equal to the area sought ANB.
        

        
            Example 2. If the centripetal force tending
            to the several particles of the sphere be reciprocally as the cube of
            the distance, or (which is the same thing) as that cube applied to any
            given plane; write PE3

            2AS2 for V, and 2PS x LD for
            PE²; and DN will become as 
            SL x AS2

            PS x LD − AS2

            2PS − ALB
            x AS2

            2PS x LD2 that is
            (because PS, AS, SI are continually proportional), as 
            LSI

            LD − 1/2SI
            − ALB x SI

            2LD2. If we draw
            then these three parts into the length AB, the first 
            LSI

            LD will generate the area of an
            hyperbola; the second ½SI the area ½AB x SI; the third 
            ALB x SI

            2LD2 the area 
            ALB x SI

            2LA ALB
            x SI

            2LB, that is, ½AB x SI. From the first
            subduct the sum of the second and third, and there will remain ANB,
            the area sought. Whence arises this construction of the problem. At
            the points L, A, S, B, erect
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            the perpendiculars Ll Aa Ss, Bb, of
            which suppose Ss equal to SI; and through the point s,
            to the asymptotes Ll, LB, describe the hyperbola asb
            meeting the perpendiculars Aa, Bb, in a
            and b; and the rectangle 2ASI, subducted from the hyberbolic
            area AasbB, will leave ANB the area sought.
        

        
            Example 3. If the centripetal force tending
            to the several particles of the spheres decrease in a quadruplicate
            ratio of the distance from the particles; write 
            PE4

            2AS3 for V, then √(2PS+LD)
            for PE, and DN will become as 
            SI2 x SL

            √(2SI) x 1

            √LD3 − 
            SI2

            2√(2SI) x 1

            √LD − SI2
            x ALB

            2√(2SI) x 1

            √LD5. These three
            parts drawn into the length AB, produce so many areas, viz.
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            2SI2 x SL

            √(2SI) into (
            1

            √(LA) − 1

            √(LB) ); 
            SI2

            √(2SI) into √LB −
            √LA; and SI2
            x ALB

            3√(2SI) into (
            1

            √(LA3) − 
            1

            √(LB3) ). And
            these after due reduction come forth 2SI2
            x SL

            LI, SI², and SI² + 
            2SI3

            3LI. And these by subducting the last
            from the first, become 4SI3

            3LI. Therefore the entire force with
            which the corpuscle P is attracted towards the centre of the sphere is
            as SI3

            PI, that is, reciprocally as PS³ x PI.
              Q.E.I.
        

        
            By the same method one may determine the attraction of a corpuscle
            situate within the sphere, but more expeditiously by the following
            Theorem.
        

    

    
        Proposition lxxxii. Theorem xli.

            
                In a sphere described about the centre S with the interval SA,
                if there be taken SI, SA, SP continually proportional; I
                say, that the attraction of a corpuscle within the sphere in any
                place I is to its attraction without the sphere in the
                place P in a ratio compounded of the subduplicate ratio
                of IS, PS, the distances from the centre, and the
                subduplicate ratio of the centripetal forces tending to the centre
                in those places P and I.
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            As if the centripetal forces of the particles of the sphere be
            reciprocally as the distances of the corpuscle attracted by them; the
            force with which the corpuscle situate in I is attracted by the entire
            sphere will be to the force with which it is attracted in P in a ratio
            compounded of the subduplicate ratio of the distance SI to the
            distance SP, and the subduplicate ratio of the centripetal force in
            the place I arising from any particle in the centre to the centripetal
            force in the place P arising from the same particle in the centre;
            that is, in the subduplicate ratio of the distances SI, SP to each
            other reciprocally. These two subduplicate ratios compose the ratio of
            equality, and therefore the attractions in I and P produced by the
            whole sphere are equal. By the like calculation, if the forces of the
            particles of the sphere are reciprocally in a duplicate ratio of the
            distances, it will be found that the attraction in I is to the
            attraction in P as the distance SP to the semi-diameter SA of the
            sphere. If those forces are reciprocally in a triplicate ratio of the
            distances, the attractions in I and P will be to each other as SP² to
            SA²; if in a quadruplicate ratio, as SP³ to SA³. Therefore since the
            attraction in P was found in this last case to be reciprocally as PS³
            x PI, the attraction in I will be reciprocally as SA³ x PI, that is,
            because SA³ is given reciprocally as PI. And the progression is the
            same in infinitum. The demonstration of this Theorem is as
            follows:
        

        
            The things remaining as above constructed, and a corpuscle being in
            any place P, the ordinate DN was found to be
            as DE2 x PS

            PE x V. Therefore if IE be drawn, that
            ordinate for any other place of the corpuscle, as I, will become (mutatis
            mutandis) as DE2
            x IS

            IE x V. Suppose the centripetal forces
            flowing from any point of the sphere, as E, to be to each other at the
            distances IE and PE as PEn to IEn (where the
            number n denotes the index of the powers of PE and IE), and
            those ordinates will become as DE2
            x PS

            PE x PEn and 
            DE2 x IS

            IE x IEn whose ratio to each
            other is as PS x IE x IEn to
            IS x PE x PEn. Because SI, SE, SP are
            in continued proportion, the triangles SPE, SEI are alike; and thence
            IE is to PE as IS to SE or SA. For the ratio of IE to PE write the
            ratio of IS to SA; and the ratio of the ordinates becomes that of PS x
            IEn to SA x PEn. But the ratio of PS to SA is
            subduplicate of that of the distances PS, SI; and the ratio of IEn
            to PEn (because IE is to PE as IS to SA) is subduplicate of
            that of the forces at the distances PS, IS. Therefore the ordinates,
            and consequently the areas which the ordinates describe, and the
            attractions proportional to them, are in a ratio compounded of those
            subduplicate ratios.   Q.E.D.
        

    

    
        Proposition lxxxiii. Problem xlii.

            
                
                    To find the force with which a corpuscle placed in the centre
                    of a sphere is attracted towards any segment of that sphere whatsoever.
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            Let P be a body in the centre of that sphere and RBSD a segment
            thereof contained under the plane RDS, and thesphaerical superficies
            RBS. Let DB be cut in F by a sphaerical superficies EFG described from
            the centre P, and let the segment be divided into the parts BREFGS,
            FEDG. Let us suppose that segment to be not a purely mathematical but
            a physical superficies, having some, but a perfectly inconsiderable
            thickness. Let that thickness be called O, and (by what Archimedes
            has demonstrated) that superficies will be as PF x DF x O. Let us
            suppose besides the attractive forces of the particles of the sphere
            to be reciprocally as that power of the distances, of which n
            is index; and the force with which the superficies EFG attracts the
            body P will be (by Prop. LXXIX) as DE2
            x O

            PFn, that is, as 
            2DF x O

            PF(n-1) − 
            DF2 x O

            PFn. Let the
            perpendicular FN drawn into O be proportional
            to this quantity; and the curvilinear area BDI, which the ordinate FN,
            drawn through the length DB with a continued motion will describe,
            will be as the whole force with which the whole segment RBSD attracts
            the body P.   Q.E.I.
        

    

    
        Proposition lxxxiv. Problem xliii.

            
                
                    To find the force with which a corpuscle, placed without the
                    centre of a sphere in the axis of any segment, is attracted by that segment.
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            Let the body P placed in the axis ADB of the segment EBK be attracted
            by that segment. About the centre P, with the interval PE, let the
            spherical superficies EFK be described; and let it divide the segment
            into two parts EBKFE and EFKDE. Find the force of the first of those
            parts by Prop. LXXXI, and the force of the latter part by Prop.
            LXXXIII, and the sum of the forces will be the force of the whole
            segment EBKDE.    Q.E.I.
        

    

    
        Scholium.


        
            The attractions of sphaerical bodies being now explained, it comes
            next in order to treat of the laws of attraction in other bodies
            consisting in like manner of attractive particles; but to treat of
            them particularly is not necessary to my design. It will be sufficient
            to subjoin some general propositions relating to the forces of such
            bodies, and the motions thence arising, because the knowledge of these
            will be of some little use in philosophical inquiries.
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        Section xiii.

        Of the attractive forces of bodies which are not of a sphaerical figure.


    


    
        Proposition lxxxv. Theorem xlii.

            
                
                    If a body be attracted by another, and its attraction be vastly
                    stronger when it is contiguous to the attracting body than when
                    they are separated from one another by a very small interval; the
                    forces of the particles of the attracting body decrease, in the
                    recess of the body attracted, in more than a duplicate ratio of
                    the distance of the particles.
                
            

        

        
            For if the forces decrease in a duplicate ratio of the distances from
            the particles, the attraction towards a sphaerical body being (by
            Prop. LXXIV) reciprocally as the square of the distance of the
            attracted body from the centre of the sphere, will not be sensibly
            increased by the contact, and it will be
            still less increased by it, if the attraction, in the recess of the
            body attracted, decreases in a still less proportion. The proposition,
            therefore, is evident concerning attractive spheres. And the case is
            the same of concave sphaerical orbs attracting external bodies. And
            much more does it appear in orbs that attract bodies placed within
            them, because there the attractions diffused through the cavities of
            those orbs are (by Prop. LXX) destroyed by contrary attractions, and
            therefore have no effect even in the place of contact. Now if from
            these spheres and sphaerical orbs we take away any parts remote from
            the place of contact, and add new parts any where at pleasure, we may
            change the figures of the attractive bodies at pleasure; but the parts
            added or taken away, being remote from the place of contact, will
            cause no remarkable excess of the attraction arising from the contact
            of the two bodies. Therefore the proposition holds good in bodies of
            all figures.   Q.E.D.
        

    

    
        Proposition lxxxvi. Theorem xliii.

            
                
                    If the forces of the particles of which an attractive body is
                    composed decrease, in the recess of the attractive body, in a
                    triplicate or more than a triplicate ratio of the distance from
                    the particles, the attraction will be vastly stronger in the point
                    of contact than when the attracting and attracted bodies are
                    separated from each other, though by never so small an interval.
                
            

        

        
            For that the attraction is infinitely increased when the attracted
            corpuscle comes to touch an attracting sphere of this kind, appears,
            by the solution of Problem XLI, exhibited in the second and third
            Examples. The same will also appear (by comparing those Examples and
            Theorem XLI together) of attractions of bodies made towards
            concavo-convex orbs, whether the attracted bodies be placed without
            the orbs, or in the cavities within them. And by adding to or taking
            from those spheres and orbs any attractive matter any where without
            the place of contact, so that the attractive bodies may receive any
            assigned figure, the Proposition will hold good of all bodies
            universally.   Q.E.D.
        

    

    
        Proposition lxxxvii. Theorem xliv.

            
                
                    If two bodies similar to each other, and consisting of matter
                    equally attractive, attract separately two corpuscles proportional
                    to those bodies, and in a like situation to them, the accelerative
                    attractions of the corpuscles towards the entire bodies will be as
                    the accelerative attractions of the corpuscles towards particles
                    of the bodies proportional to the wholes, and alike situated in them.
                
            

        

        
            For if the bodies are divided into particles proportional to the
            wholes, and alike situated in them, it will be, as the attraction
            towards any particle of one of the bodies to the attraction towards
            the correspondent particle in the other body,
            so are the attractions towards the several particles of the first
            body, to the attractions towards the several correspondent particles
            of the other body; and, by composition, so is the attraction towards
            the first whole body to the attraction towards the second whole body.
              Q.E.D.
        

        
            Cor. 1 . Therefore if, as the distances of
            the corpuscles attracted increase, the attractive forces of the
            particles decrease in the ratio of any power of the distances, the
            accelerative attractions towards the whole bodies will be as the
            bodies directly, and those powers of the distances inversely. As if
            the forces of the particles decrease in a duplicate ratio of the
            distances from the corpuscles attracted, and the bodies are as A³ and
            B³, and therefore both the cubic sides of the bodies, and the distance
            of the attracted corpuscles from the bodies, are as A and B; the
            accelerative attractions towards the bodies will be as 
            A3

            A2 and 
            B3

            B2, that is, as A and B the
            cubic sides of those bodies. If the forces of the particles decrease
            in a triplicate ratio of the distances from the attracted corpuscles,
            the accelerative attractions towards the whole bodies will be as
            A3

            A3 and 
            B3

            B3, that is, equal. If the
            forces decrease in a quadruplicate ratio, the attractions towards the
            bodies will be as A3

            A4 and 
            B3

            B4, that is, reciprocally as
            the cubic sides A and B. And so in other cases.
        

        
            Cor. 2. Hence, on the other hand, from the
            forces with which like bodies attract corpuscles similarly situated,
            may be collected the ratio of the decrease of the attractive forces of
            the particles as the attracted corpuscle recedes from them; if so be
            that decrease is directly or inversely in any ratio of the distances.
        

    

    
        Proposition lxxxviii. Theorem xlv.

            
                
                    If the attractive forces of the equal particles of any body be
                    as the distance of the places from the particles, the force of the
                    whole body will tend to its centre of gravity; and will be the
                    same with the force of a globe, consisting of similar and equal
                    matter, and having its centre in the centre of gravity.
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            Let the particles A, B, of the body RSTV attract any corpuscle Z with
            forces which, supposing the particles to be equal between themselves,
            are as the distances AZ, BZ; but, if they are supposed unequal, are as
            those particles and their distances AZ, BZ, conjunctly, or (if I may
            so speak) as those particles drawn into their distances AZ, BZ
            respectively. And let those forces be expressed by the contents
            under A x AZ, and B x BZ. Join AB, and let it be cut in G, so that AG
            may be to BG as the particle B to the particle A; and G will be the
            common centre of gravity of the particles A and B. The force A x AZ
            will (by Cor. 2, of the Laws) be resolved into the forces A x GZ and A
            x AG; and the force B x BZ into the forces B x GZ and B x BG. Now the
            forces A x AG and B x BG, because A is proportional to B, and BG to
            AG, are equal, and therefore having contrary directions destroy one
            another. There remain then the forces A x GZ and B x GZ. These tend
            from Z towards the centre G, and compose the force (A
            + B) x GZ; that is, the same force as if the attractive
            particles A and B were placed in their common centre of gravity G,
            composing there a little globe.
        

        
            By the same reasoning, if there be added a third particle C, and the
            force of it be compounded with the force (A + B) x
            GZ tending to the centre G, the force thence arising will
            tend to the common centre of gravity of that globe in G and of the
            particle C; that is, to the common centre of gravity of the three
            particles A, B, C; and will be the same as if that globe and the
            particle C were placed in that common centre composing a greater globe
            there; and so we may go on in infinitum. Therefore the whole
            force of all the particles of any body whatever RSTV is the same as if
            that body, without removing its centre of gravity, were to put on the
            form of a globe.   Q.E.D.
        

        
            Cor. Hence the motion of the attracted body Z
            will be the same as if the attracting body RSTV were sphaerical; and
            therefore if that attracting body be either at rest, or proceed
            uniformly in a right line, the body attracted will move in an ellipsis
            having its centre in the centre of gravity of the attracting body.
        

    

    
        Proposition lxxxix. Theorem xlvi.

            
                
                    If there be several bodies consisting of equal particles whose
                    forces are as the distances of the places from each, the force
                    compounded of all the forces by which any corpuscle is attracted
                    will tend to the common centre of gravity of the attracting
                    bodies; and will be the same as if those attracting bodies,
                    preserving their common centre of gravity, should unite there, and
                    be formed into a globe.
                
            

        

        
            This is demonstrated after the same manner as the foregoing
            Proposition.
        

        
            Cor. Therefore the motion of the attracted
            body will be the same as if the attracting bodies, preserving their
            common centre of gravity, should unite there, and be formed into a
            globe. And, therefore, if the common centre of gravity of the
            attracting bodies be either at rest, or proceed uniformly in a right
            line, the attracted body will move in an ellipsis having its centre in
            the common centre of gravity of the attracting bodies.
        

    

    
        
            Proposition xc. Problem xliv.

            
                
                    If to the several points of any circle there tend equal
                    centripetal forces, increasing or decreasing in any ratio of the
                    distances; it is required to find the force with which a corpuscle
                    is attracted, that is, situate any where in a right line which
                    stands at right angles to the plant of the circle at its centre.
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            Suppose a circle to be described about the centre A with any interval
            AD in a plane to which the right line AP is perpendicular; and let it
            be required to find the force with which a corpuscle P is attracted
            towards the same. From any point E of the circle, to the attracted
            corpuscle P, let there be drawn the right line PE. In the right line
            PA take PF equal to PE, and make a perpendicular FK, erected at F, to
            be as the force with which the point E attracts the corpuscle P. And
            let the curve line IKL be the locus of the point K. Let that curve
            meet the plane of the circle in L. In PA take PH equal to PD, and
            erect the perpendicular HI meeting that curve in I; and the attraction
            of the corpuscle P towards the circle will be as the area AHIL drawn
            into the altitude AP.   Q.E.I.
        

        
            For let there be taken in AE a very small line Ee. Join Pe,
            and in PE, PA take PC, Pf equal to Pe. And because
            the force, with which any point E of the annulus described about the
            centre A with the interval AE in the aforesaid plane attracts to
            itself the body P, is supposed to be as FK; and, therefore, the force
            with which that point attracts the body P towards A is as 
            AP x FK

            PE; and the force with which the whole
            annulus attracts the body P towards A is as the annulus and 
            AP x FK

            PE conjunctly; and that annulus also is
            as the rectangle under the radius AE and the breadth Ee, and
            this rectangle (because PE and AE, Ee and CE are
            proportional) is equal to the rectangle PE x CE or PE x Ff;
            the force with which that annulus attracts the body P towards A will
            be as PE x Ff and AP x
            FK

            PE conjunctly; that is, as the content
            under Ff x FK x AP, or as the area FKkf drawn into
            AP. And therefore the sum of the forces with which all the annuli, in
            the circle described about the centre A with the interval AD, attract
            the body P towards A, is as the whole area AHIKL drawn into AP.
              Q.E.D.
        

        
            Cor. 1. Hence if the forces of the points
            decrease in the duplicate ratio of the
            distances, that is, if FK be as 
            1

            PF2 and therefore the
            area AHIKL as 1

            PA − 1

            PH; the attraction of the
            corpuscle P towards the circle will be as 1 − 
            PA

            PH; that is, as 
            AH

            PH.
        

        
            Cor. 2. And universally if the forces of the
            points at the distances D be reciprocally as any power Dn
            of the distances; that is, if FK be as 1

            Dn and therefore the area
            AHIKL as 1

            PAn-1 − 
            1

            PHn-1; the
            attraction of the corpuscle P towards the circle will be as 
            1

            PAn-2 − 
            1

            PHn-1.
        

        
            Cor. 3. And if the diameter of the circle be
            increased in infinitum, and the number n be
            greater than unity; the attraction of the corpuscle P towards the
            whole infinite plane will be reciprocally as PAn-2, because
            the other term PA

            PAn-1 vanishes.
        

    

    
        Proposition xci. Problem xlv.

            
                
                    To find the attraction of a corpuscle situate in the axis of a
                    round solid, to whose several points there tend equal centripetal
                    forces decreasing in any ratio of the distances whatsoever.
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            Let the corpuscle P, situate in the axis AB of the solid DECG, be
            attracted towards that solid. Let the solid be cut by any circle as
            RFS, perpendicular to the axis: and in its semi-diameter FS, in any
            plane PALKB passing through the axis, let there be taken (by Prop. XC)
            the length FK proportional to the force with which the corpuscle P is
            attracted towards that circle. Let the locus of the point K be the
            curve line LKI, meeting the planes of the outermost circles AL and BI
            in L and I; and the attraction of the corpuscle P towards the solid
            will be as the area LABI.   Q.E.I.
        

        
            Cor. 1. Hence if the solid be a cylinder
            described by the parallelogram ADEB revolved about the axis AB, and
            the centripetal forces tending to the several points be reciprocally
            as the squares of the distances from the points; the attraction of the
            corpuscle P towards this cylinder will be as AB − PE + PD. For the
            ordinate FK (by Cor. 1, Prop. XC) will be as 1 − 
            PF

            PR. The part 1 of this quantity, drawn
            into the length AB, describes
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            the area 1 x AB; and the other part PF

            PR, drawn into the length PB describes the area 1
            into (PE − AD) (as may be easily shewn from the quadrature of
            the curve LKI); and, in like manner, the same part drawn into the
            length PA describes the area 1 into (PD − AD),
            and drawn into AB, the difference of PB and PA, describes 1
            into (PE − PD), the difference of the areas. From the first
            content 1 x AB take away the last content 1 into
            (PE − PD), and there will remain the area LABI equal to
            1 into (AB − PE + PD). Therefore the force,
            being proportional to this area, is as AB − PE +
            PD.
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            Cor. 2. Hence also is known the force by
            which a spheroid AGBC attracts any body P situate externally in its
            axis AB. Let NKRM be a conic section whose ordinate ER perpendicular
            to PE may be always equal to the length of the line PD, continually
            drawn to the point D in which that ordinate cuts the spheroid. From
            the vertices A, B, of the spheriod, let there be erected to its axis
            AB the perpendiculars AK, BM, respectively equal to AP, BP, and
            therefore meeting the conic section in K and M; and join KM cutting
            off from it the segment KMRK. Let S be the centre of the spheroid, and
            SC its greatest semi-diameter; and the force with which the spheroid
            attracts the body P will be to the force with which a sphere described
            with the diameter AB attracts the same body as 
            AS x CS2 − PS x KMRK

            PS2 + CS2 − AS2
            is to AS3

            3PS2. And by a
            calculation founded on the same principles may be found the forces of
            the segments of the spheroid.
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            Cor. 3. If the corpuscle be placed within the
            spheroid and in its axis, the attraction will be as its distance from
            the centre. This may be easily collected from the following reasoning,
            whether the particle be in the axis or in any other given diameter.
            Let AGOF be an attracting spheroid, S its centre, and P the body
            attracted. Through the body P let there be drawn the semi-diameter
            SPA, and two right lines DE, FG meeting the spheroid in D and E, F and
            G; and let PCM, HLN be the superficies of two
            interior spheroids similar and concentrical to the exterior, the first
            of which passes through the body P, and cuts the right lines DE, FG in
            B and C; and the latter cuts the same right lines in H and I, K and L.
            Let the spheroids have all one common axis, and the parts of the right
            lines intercepted on both sides DP and BE, FP and CG, DH and IE, FK
            and LG, will be mutually equal; because the right lines DE, PB, and
            HI, are bisected in the same point, as are also the right lines FG,
            PC, and KL. Conceive now DPF, EPG to represent opposite cones
            described with the infinitely small vertical angles DPF, EPG, and the
            lines DH, EI to be infinitely small also. Then the particles of the
            cones DHKF, GLIE, cut off by the spheroidical superficies, by reason
            of the equality of the lines DH and EI, will be to one another as the
            squares of the distances from the body P, and will therefore attract
            that corpuscle equally. And by a like reasoning if the spaces DPF,
            EGCB be divided into particles by the superficies of innumerable
            similar spheroids concentric to the former and having one common axis,
            all these particles will equally attract on both sides the body P
            towards contrary parts. Therefore the forces of the cone DPF, and of
            the conic segment EGCB, are equal, and by their contrariety destroy
            each other. And the case is the same of the forces of all the matter
            that lies without the interior spheroid PCBM. Therefore the body P is
            attracted by the interior spheroid PCBM alone, and therefore (by Cor.
            3, Prop. LXXII) its attraction is to the force with which the body A
            is attracted by the whole spheroid AGOD as the distance PS to the
            distance AS.   Q.E.D.
        

    

    
        Proposition xcii. Problem xlvi.

            
                
                    An attracting body being given, it is required to find the
                    ratio of the decrease of the centripetal forces tending to its several points.
                
            

        

        
            The body given must be formed into a sphere, a cylinder, or some
            regular figure, whose law of attraction answering to any ratio of
            decrease may be found by Prop. LXXX, LXXXI, and XCI. Then, by
            experiments, the force of the attractions must be found at several
            distances, and the law of attraction towards the whole, made known by
            that means, will give the ratio of the decrease of the forces of the
            several parts; which was to be found.
        

    

    
        Proposition xciii. Theorem xlvii.

            
                If a solid be plane on one side, and infinitely extended on all
                other sides, and consist of equal particles equally attractive,
                whose forces decrease, in the recess from the solid, in the ratio
                of any power greater than the square of the distances; and a
                corpuscle placed towards either part of the plane is attracted by
                the force of the whole solid; I say that the attractive force of
                the whole solid, in the recess from its plane superficies, will
                decrease in the ratio of a power whose side is the distance of the
                corpuscle from the plane, and its index less by 3 than
                the index of the power of the distances.
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            Case 1. Let LGl be the plane by
            which the solid is terminated. Let the solid lie on that hand of the
            plane that is towards I, and let it be resolved into innumerable
            planes mHM, nIN, oKO, &c., parallel
            to GL. And first let the attracted body C be placed without the solid.
            Let there be drawn CGHI perpendicular to those innumerable planes, and
            let the attractive forces of the points of the solid decrease in the
            ratio of a power of the distances whose index is the number n
            not less than 3. Therefore (by Cor. 3, Prop. XC) the force with which
            any plane mHM attracts the point C is reciprocally as CHn-2.
            In the plane mHM take the length HM reciprocally
            proportional to CHn-2, and that force will be as HM. In
            like manner in the several planes lGL, nIN, oKO,
            &c., take the lengths GL, IN, KO, &c., reciprocally
            proportional to CGn-2, CIn-2, CKn-2,
            &c., and the forces of those planes will be as the lengths so
            taken, and therefore the sum of the forces as the sum of the lengths,
            that is, the force of the whole solid as the area GLOK produced
            infinitely towards OK. But that area (by the known methods of
            quadratures) is reciprocally as CGn-3, and therefore the
            force of the whole solid is reciprocally as CGn-3.
              Q.E.D.
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            Case 2. Let the corpuscle C be now placed on
            that hand of the plane lGL that is within the solid, and
            take the distance CK equal to the distance CG. And the part of the
            solid LGloKO terminated by the parallel planes lGL,
            oKO, will attract the corpuscle C, situate in the middle,
            neither one way nor another, the contrary actions of the opposite
            points destroying one another by reason of their equality. Therefore
            the corpuscle C is attracted by the force only of the solid situate
            beyond the plane OK. But this force (by Case 1) is reciprocally as CKn-3,
            that is, (because CG, CK are equal) reciprocally as CGn-3.
              Q.E.D.
        

        
            Cor. 1. Hence if the solid LGIN be terminated
            on each side by two infinite parallel places LG, IN, its attractive
            force is known, subducting from the attractive force of the whole
            infinite solid LGKO the attractive force of the more distant part NIKO
            infinitely produced towards KO.
        

        
            Cor. 2. If the more distant part of this
            solid be rejected, because its attraction compared with the attraction
            of the nearer part is inconsiderable, the
            attraction of that nearer part will, as the distance increases,
            decrease nearly in the ratio of the power CGn-3.
        

        
            Cor. 3. And hence if any finite body, plane
            on one side, attract a corpuscle situate over against the middle of
            that plane, and the distance between the corpuscle and the plane
            compared with the dimensions of the attracting body be extremely
            small; and the attracting body consist of homogeneous particles, whose
            attractive forces decrease in the ratio of any power of the distances
            greater than the quadruplicate; the attractive force of the whole body
            will decrease very nearly in the ratio of a power whose side is that
            very small distance, and the index less by 3 than the index of the
            former power. This assertion does not hold good, however, of a body
            consisting of particles whose attractive forces decrease in the ratio
            of the triplicate power of the distances; because, in that case, the
            attraction of the remoter part of the infinite body in the second
            Corollary is always infinitely greater than the attraction of the
            nearer part.
        

    

    
        Scholium.


        
            If a body is attracted perpendicularly towards a given plane, and
            from the law of attraction given, the motion of the body be required;
            the Problem will be solved by seeking (by Prop. XXXIX) the motion of
            the body descending in a right line towards that plane, and (by Cor.
            2, of the Laws) compounding that motion with an uniform motion
            performed in the direction of lines parallel to that plane. And, on
            the contrary, if there be required the law of the attraction tending
            towards the plane in perpendicular directions, by which the body may
            be caused to move in any given curve line, the Problem will be solved
            by working after the manner of the third Problem.
        

        
            But the operations may be contracted by resolving the ordinates into
            converging series. As if to a base A the length B be ordinately
            applied in any given angle, and that length be as any power of the
            base A m

            n; and there be sought the force with
            which a body, either attracted towards the base or driven from it in
            the direction of that ordinate, may be caused to move in the curve
            line which that ordinate always describes with its superior extremity;
            I suppose the base to be increased by a very small part O, and I
            resolve the ordinate (A+O)
            m

            n into an infinite
            series Am

            n + 
            m

            nOAm
            − n

            n + 
            mm − mn

            2nnOOAm
            − 2n

            n &c., and I
            suppose the force proportional to the term of this series in which O
            is of two dimensions, that is, to the term 
            mm − mn

            2nn OOA 
            m-2n

            n. Therefore the force
            sought is as  
            mm − mn

            nn A m-2n

            n, or, which is the
            same thing, as mm
            − mn

            nn B m-2n

            n. As if the ordinate
            describe a parabola, m being = 2, and n = 1, the
            force will be as the given quantity 2B°, and therefore is given.
            Therefore with a given force the body will move in a parabola, as Galileo
            has demonstrated. If the ordinate describe an hyperbola, m
            being = 0 − 1, and n = 1, the force will be as 2A-3
            or 2B3; and therefore a force which is as the cube of the
            ordinate will cause the body to move in an hyperbola. But leaving this
            kind of propositions, I shall go on to some others relating to motion
            which I have hot yet touched upon.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 1.14




    
        Section xiv.

        Of the motion of very small bodies when agitated by centripetal forces tending to the several parts of any very great body.


    


    
        Proposition xciv. Theorem xlviii.

            
                
                    If two similar mediums be separated from each other by a space
                    terminated on both sides by parallel planes, and a body in its
                    passage through that space be attracted or impelled
                    perpendicularly towards either of those mediums, and not agitated
                    or hindered by any other force; and the attraction be every where
                    the same at equal distances from either plane, taken towards the
                    same hand of the plane; I say, that the sine of incidence upon
                    either plane will be to the sine of emergence of the other plane
                    in a given ratio.
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            Case 1. Let Aa and Bb be
            two parallel planes, and let the body light upon the first plane Aa
            in the direction of the line GH, and in its whole passage through the
            intermediate space let it be attracted or impelled towards the medium
            of incidence, and by that action let it be made to describe a curve
            line HI, and let it emerge in the direction of the line IK. Let there
            be erected IM perpendicular to Bb the plane of emergence, and
            meeting the line of incidence GH prolonged in M, and the plane of
            incidence Aa in R; and let the line of emergence KI be
            produced and meet HM in L. About the centre L, with the interval LI,
            let a circle be described cutting both HM in P and Q, and MI produced
            in N; and, first, if the attraction or impulse be supposed uniform,
            the curve HI (by what Galileo has demonstrated) be a
            parabola, whose property is that of a rectangle under
            its given latus rectum and the line IM is equal to the square of HM;
            and moreover the line HM will be bisected in L. Whence if to MI there
            be let fall the perpendicular LO, MO, OR will be equal: and adding the
            equal lines ON, OI, the wholes MN, IR will be equal also. Therefore
            since IR is given, MN is also given, and the rectangle NMI is to the
            rectangle under the latus rectum and IM, that is, to HM² in a given
            ratio. But the rectangle NMI is equal to the rectangle PMQ, that is,
            to the difference of the squares ML², and PL² or LI²; and HM² hath a
            given ratio to its fourth part ML²; therefore the ratio of ML² − LI²
            to ML² is given, and by conversion the ratio of LI² to ML², and its
            subduplicate, the ratio of LI to ML. But in every triangle, as LMI,
            the sines of the angles are proportional to the opposite sides.
            Therefore the ratio of the sine of the angle of incidence LMR to the
            sine of the angle of emergence LIR is given.   Q.E.D.
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            Case 2. Let now the body pass successively
            through several spaces terminated with parallel planes AabB,
            EbcC, &c., and let it be acted on by a force which is
            uniform in each of them separately, but different in the different
            spaces; and by what was just demonstrated, the sine of the angle of
            incidence on the first plane Aa is to the sine of emergence
            from the second plane Bb in a given ratio; and this sine of
            incidence upon the second plane Bb will be to the sine of
            emergence from the third plane Cc in a given ratio; and this
            sine to the sine of emergence from the fourth plane Dd in a
            given ratio; and so on in infinitum; and, by equality, the
            sine of incidence on the first plane to the sine of emergence from the
            last plane in a given ratio. Let now the intervals of the planes be
            diminished, and their number be infinitely increased, so that the
            action of attraction or impulse, exerted according to any assigned
            law, may become continual, and the ratio of the sine of incidence on
            the first plane to the sine of emergence from the last plane being all
            along given, will be given then also.   Q.E.D.
        

    

    
        Proposition xcv. Theorem xlix.

            
                
                    The same things being supposed, I say, that the velocity of the
                    body before its incidence is to its velocity after emergence as
                    the sine of emergence to the sine of incidence.
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            Make AH and Id equal, and erect the perpendiculars AG, dK
            meeting the lines of incidence and emergence GH, IK, in G and K. In GH
            take TH equal to IK, and to the plane Aa let fall a
            perpendicular Tv. And (by Cor. 2 of the Laws of Motion) let
            the motion of the body be resolved into two, one perpendicular to the
            planes Aa, Bb, Cc,
            &c, and another parallel to them. The force of attraction or
            impulse, acting in directions perpendicular to those planes, does not
            at all alter the motion in parallel directions; and therefore the body
            proceeding with this motion will in equal times go through those equal
            parallel intervals that lie between the line AG and the point H, and
            between the point I and the line dK; that is, they will
            describe the lines GH, IK in equal times. Therefore the velocity
            before incidence is to the velocity after emergence as GH to IK or TH,
            that is, as AH or Id to vH; that is (supposing TH
            or IK radius), as the sine of emergence to the sine of incidence.
              Q.E.D.
        

    

    
        Proposition xcvi. Theorem L.

            
                
                    The same things being supposed, and that the motion before
                    incidence is swifter than afterwards; I say, that if the line of
                    incidence be inclined continually, the body will be at last
                    reflected, and the angle of reflexion will be equal to the angle of incidence.
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            For conceive the body passing between the parallel planes Aa,
            Bb, Cc, &c., to describe parabolic arcs as
            above; and let those arcs be HP, PQ, QR, &c. And let the obliquity
            of the line of incidence GH to the first plane Aa be such
            that the sine of incidence may be to the radius of the circle whose
            sine it is, in the same ratio which the same sine of incidence hath to
            the sine of emergence from the plane Dd into the space DdeE;
            and because the sine of emergence is now become equal to radius, the
            angle of emergence will be a right one, and therefore the line of
            emergence will coincide with the plane Dd. Let the body come
            to this plane in the point R; and because the line of emergence
            coincides with that plane, it is manifest that the body can proceed no
            farther towards the plane Ee. But neither can it proceed in
            the line of emergence Rd; because it is perpetually attracted
            or impelled towards the medium of incidence. It will return,
            therefore, between the planes Cc, Dd, describing an
            arc of a parabola QRq, whose principal vertex (by what Galileo
            has demonstrated) is in R, cutting the plane Cc in the same
            angle at q, that it did before at Q; then going on in the
            parabolic arcs qp, ph, &c., similar and equal to the
            former arcs QP, PH, &c., it will cut the rest of the planes in the
            same angles at p, h, &c., as it did before in P, H,
            &c., and will emerge at last with the same obliquity at h
            with which it first impinged on that plane at H. Conceive now the
            intervals of the planes Aa, Bb, Cc, Dd,
            Ee, &c., to be infinitely diminished, and the number in
            finitely increased, so that the action of attraction or impulse,
            exerted according to any assigned law, may become continual; and, the
            angle of emergence remaining all along equal to the angle of
            incidence, will be equal to the same also at last.   Q.E.D.
        

    

    
        
            Scholium.


        
            These attractions bear a great resemblance to the reflexions and
            refractions of light made in a given ratio of the secants, as was
            discovered by Snellius; and consequently in a given ratio of
            the sines, as was exhibited by Des Cartes. For it is now
            certain from the phenomena of Jupiter's Satellites,
            confirmed by the observations of different astronomers, that light is
            propagated in succession, and requires about seven or eight minutes to
            travel from the sun to the earth. Moreover, the rays of light that are
            in our air (as lately was discovered by Grimaldus, by the
            admission of light into a dark room through a small hole, which I have
            also tried) in their passage near the angles of bodies, whether
            transparent or opaque (such as the circular and rectangular edges of
            gold, silver and brass coins, or of knives, or broken pieces of stone
            or glass), are bent or inflected round those bodies as if they were
            attracted to them; and those rays which in their passage come nearest
            to the bodies are the most inflected, as if they were most attracted:
            which tiling I myself have also carefully observed. And those which
            pass at greater distances are less inflected; and those at still
            greater distances are a little inflected the contrary way, and form
            three fringes of colours. In the figure s represents the
            edge of a knife, or any
            [image: Mathematical Principles of Natural Philosophy figure: 246]
            kind of wedge AsB; and gowog, fnunf, emtme,
            dlsld, are rays inflected towards the knife in the arcs owo,
            nvn, mtm, lsl; which inflection is greater or less according to
            their distance from the knife. Now since this inflection of the rays
            is performed in the air without the knife, it follows that the rays
            which fall upon the knife are first inflected in the air before they
            touch the knife. And the case is the same of the rays falling upon
            glass. The refraction, therefore, is made not in the point of
            incidence, but gradually, by a continual inflection of the rays: which
            is done partly in the air before they touch the glass, partly (if I
            mistake not) within the glass, after they have entered it; as is
            represented in the rays ckzc, biyb, ahxa, falling upon r,
            q, p, and inflected between k and z, i and
            y, h and x. Therefore because of the analogy there
            is between the propagation of the rays of light and the motion of
            bodies, I thought it not amiss to add the following Propositions for
            optical uses: not at all considering the nature of the rays of light,
            or inquiring whether they are bodies or not; but only determining the
            trajectories of bodies which are extremely like the trajectories of
            the rays.
        

    

    
        
            Proposition xcvii. Problem xlvii.

            
                
                    Supposing the sine of incidence upon any superficies to be in a
                    given ratio to the sine of emergence; and that the inflection of
                    the paths of those bodies near that superficies is performed in a
                    very short space, which may be considered as a point; it is
                    required to determine such a superficies as may cause all the
                    corpuscles issuing from any one given place to converge to another given place.
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            Let A be the place from whence the corpuscles diverge; B the place to
            which they should converge; CDE the curve line which by its revolution
            round the axis AB describes the superficies sought; D, E, any two
            points of that curve: and EF, EG, perpendiculars let fall on the paths
            of the bodies AD, DB. Let the point D approach to and coalesce with
            the point E; and the ultimate ratio of the line DF by which AD is
            increased, to the line DG by which DB is diminished, will be the same
            as that of the sine of incidence to the sine of emergence. Therefore
            the ratio of the increment of the line AD to the decrement of the line
            DB is given; and therefore if in the axis AB there be taken any where
            the point C through which the curve CDE must pass, and CM the
            increment of AC be taken in that given ratio to CN the decrement of
            BC, and from the centres A, B, with the intervals AM, BN, there be
            described two circles cutting each other in D; that point D will touch
            the curve sought CDE, and, by touching it any where at pleasure, will
            determine that curve.   Q.E.I.
        

        
            Cor. 1. By causing the point A or B to go off
            sometimes in infinitum, and sometimes to move towards other
            parts of the point C, will be obtained all those figures which Cartesius
            has exhibited in his Optics and Geometry relating to refractions. The
            invention of which Cartesius having thought fit to conceal,
            is here laid open in this Proposition.
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            Cor. 2. If a body lighting on any superficies
            CD in the direction of a right line AD, drawn according to any law,
            should emerge in the direction of another right line DK; and from the
            point C there be drawn curve lines CP, CQ, always perpendicular to AD,
            DK; the increments of the lines PD, QD, and therefore the lines
            themselves PD, QD, generated by those increments, will be as the sines
            of incidence and emergence to each other, and è contra.
        

    


    
        Proposition xcviii. Problem xlviii.

            
                The same things supposed; if round the axis AB any
                attractive superficies be described as CD, regular or
                irregular, through which the bodies issuing from the given place
                A must pass; it is required to find a second attractive
                superficies EF, which may make those bodies converge to a
                given place B.
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            Let a line joining AB cut the first superficies in C and the second
            in E, the point D being taken any how at pleasure. And supposing the
            sine of incidence on the first superficies to the sine of emergence
            from the same, and the sine of emergence from the second superficies
            to the sine of incidence on the same, to be as any given quantity M to
            another given quantity N; then produce AB to G, so that BG may be to
            CE as M − N to N; and AD to H, so that AH may be equal to AG; and DF
            to K, so that DK may be to DH as N to M. Join KB, and about the centre
            D with the interval DH describe a circle meeting KB produced in L, and
            draw BF parallel to DL; and the point F will touch the line EF, which,
            being turned round the axis AB, will describe the superficies sought.
              Q.E.F.
        

        
            For conceive the lines CP, CQ, to be every where perpendicular to AD,
            DF, and the lines ER, ES to FB, FD respectively, and therefore QS to
            be always equal to CE; and (by Cor. 2, Prop. XCVII) PD will be to QD
            as M to N, and therefore as DL to DK, or FB to FK; and by division as
            DL − FB or PH − PD − FB to FD or FQ − QD; and by composition as PH −
            FB to FQ, that is (because PH and CG, QS and CE, are equal), as CE +
            BG − FR to CE − FS. But (because BG is to CE as M − N to N) it comes
            to pass also that CE + BG is to CE as M to N; and therefore, by
            division, FR is to FS as M to N; and therefore (by Cor. 2, Prop XCVII)
            the superficies EF compels a body, falling upon it in the direction
            DF, to go on in the line FR to the place B.   Q.E.D.
        

    


    
        Scholium.


        
            In the same manner one may go on to three or more superficies. But of
            all figures the spherical is the most proper for optical uses. If the
            object glasses of telescopes were made of two glasses of a sphaerical
            figure, containing water between them, it is not unlikely that the
            errors of the refractions made in the extreme parts of the superficies
            of the glasses may be accurately enough corrected by the refractions
            of the water. Such object glasses are to be preferred before elliptic
            and hyperbolic glasses, not only because they may be formed with more
            ease and accuracy, but because the pencils of rays situate without the
            axis of the glass would be more accurately refracted by them. But the
            different refrangibility of different rays is the real obstacle that
            hinders optics from being made perfect by sphaerical or any other
            figures. Unless the errors thence arising can be corrected, all the
            labour spent in correcting the others is quite thrown away.
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Book 2.1



    
        
        Section I.

        Of the motion of bodies that are resisted in the ratio of the velocity.

    

    
        Proposition i. Theorem I.

            
                
                    If a body is resisted in the ratio of its velocity, the motion
                    lost by resistance is as the space gone over in its motion.
                
            

        

        
            For since the motion lost in each equal particle of time is as the
            velocity, that is, as the particle of space gone over, then, by
            composition, the motion lost in the whole time will be as the whole
            space gone over.   Q.E.D.
        

        
            Cor. Therefore if the body, destitute of all
            gravity, move by its innate force only in free spaces, and there be
            given both its whole motion at the beginning, and also the motion
            remaining after some part of the way is gone over, there will be given
            also the whole space which the body can describe in an infinite time.
            For that space will be to the space now described as the whole motion
            at the beginning is to the part lost of that motion.
        

    

    
        Lemma I.
Quantities proportional to their differences are continually proportional.


        
            Let A be to A − B as B to B − C and C to C − D, &c., and, by
            conversion, A will be to B as B to C and C to D, &c.
              Q.E.D.
        

    

    
        Proposition ii. Theorem ii.

            
                
                    If a body is resisted in the ratio of its velocity, and moves,
                    by its vis insita only, through a similar medium, and
                    the times be taken equal, the velocities in the beginning of each
                    of the times are in a geometrical progression, and the spaces
                    described in each of the times are as the velocities.
                
            

        

        
            Case 1. Let the time be divided into equal
            particles; and if at the very beginning of each particle we suppose
            the resistance to act with one single impulse which is as the
            velocity, the decrement of the velocity in each of the
            particles of time will be as the same velocity. Therefore the
            velocities are proportional to their differences, and therefore (by
            Lem. 1, Book II) continually proportional. Therefore if out of an
            equal number of particles there be compounded any equal portions of
            time, the velocities at the beginning of those times will be as terms
            in a continued progression, which are taken by intervals, omitting
            every where an equal number of intermediate terms. But the ratios of
            these terms are compounded of the equal ratios of the intermediate
            terms equally repeated, and therefore are equal. Therefore the
            velocities, being proportional to those terms, are in geometrical
            progression. Let those equal particles of time be diminished, and
            their number increased in infinitum, so that the impulse of
            resistance may become continual; and the velocities at the beginnings
            of equal times, always continually proportional, will be also in this
            case continually proportional.   Q.E.D.
        

        
            Case 2. And, by division, the differences of
            the velocities, that is, the parts of the velocities lost in each of
            the times, are as the wholes; but the spaces described in each of the
            times are as the lost parts of the velocities (by Prop. 1, Book I),
            and therefore are also as the wholes.   Q.E.D.
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            Corol. Hence if to the rectangular asymptotes
            AC, CH, the hyperbola BG is described, and AB, DG be drawn
            perpendicular to the asymptote AC, and both the velocity of the body,
            and the resistance of the medium, at the very beginning of the motion,
            be expressed by any given line AC, and, after some time is elapsed, by
            the indefinite line DC; the time may be expressed by the area ABGD,
            and the space described in that time by the line AD. For if that area,
            by the motion of the point D, be uniformly increased in the same
            manner as the time, the right line DC will decrease in a geometrical
            ratio in the same manner as the velocity; and the parts of the right
            line AC, described in equal times, will decrease in the same ratio.
        

    

    
        Proposition iii. Problem I.

            
                
                    To define the motion of a body which, in a similar medium,
                    ascends or descends in a right line, and is resisted in the ratio
                    of its velocity, and acted upon by an uniform force of gravity.
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            The body ascending, let the gravity be expounded by any given
            rectangle BACH; and the resistance of the medium, at the beginning of
            the ascent, by the rectangle BADE, taken on the contrary side of the
            right line AB. Through the point B, with the rectangular asymptotes
            AC, CH, describe an hyperbola, cutting the perpendiculars DE, de,
            in G, g; and the body ascending
            will in the time DGgd describe the space EGge; in
            the time DGBA, the space of the whole ascent EGB; in the time ABKI,
            the space of descent BFK; and in the time IKki the space of
            descent KFfk; and the velocities of the bodies (proportional
            to the resistance of the medium) in these periods of time will be
            ABED, ABed, O, ABFI, ABfi respectively; and the
            greatest velocity which the body can acquire by descending will be
            BACH.
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            For let the rectangle BACH be resolved into in numerable rectangles Ak,
            Kl, Lm, Mn, &c., which shall be as the
            increments of the velocities produced in so many equal times; then
            will O, Ak, Al, Am, An, &c.,
            be as the whole velocities; and therefore (by supposition) as the
            resistances of the medium in the beginning of each of the equal times.
            Make AC to AK, or ABHC to ABkK, as the force of gravity to
            the resistance in the beginning of the second time; then from the
            force of gravity subduct the resistances, and ABHC, KkHC, LlHC,
            MmHC, &c., will be as the absolute forces with which the
            body is acted upon in the beginning of each of the times, and
            therefore (by Law I) as the increments of the velocities, that is, as
            the rectangles Ak, Kl, Lm, Mn,
            &c., and therefore (by Lem. 1, Book II) in a geometrical
            progression. Therefore, if the right lines Kk, Ll, Mm,
            Nn, &c., are produced so as to meet the hyperbola in q,
            r, s, t, &c. the areas ABqK, KqrL, LrsM,
            MstN, &c., will be equal, and therefore analogous to the
            equal times and equal gravitating forces. But the area ABqK
            (by Corol. 3, Lem. VII and VIII, Book I) is to the area Bkq
            as Kq to ½kq, or AC to ½AK, that is, as the force of
            gravity to the resistance in the middle of the first time. And by the
            like reasoning, the areas qKLr, rLMs,
            sMNt, &c., are to the areas qklr, rlms,
            smnt, &c., as the gravitating forces to the resistances in
            the middle of the second, third, fourth time, and so on. Therefore
            since the equal areas BAKq, qKLr, rLMs,
            sMNt, &c., are analogous to the gravitating
            forces, the areas Bkq, qklr, rlms, smnt, &c.,
            will be analogous to the resistances in the middle of each of the
            times, that is (by supposition), to the velocities, and so to the
            spaces described. Take the sums of the analogous quantities, and the
            areas Bkq, Blr, Bms, But, &c.,
            will be analogous to the whole spaces described; and also the areas ABqK,
            ABrL, ABsM, ABtN, &c., to the times.
            Therefore the body, in descending, will in any time ABrL
            describe the space Blr, and in the time LrtN the
            space rlnt.   Q.E.D.   And the like
            demonstration holds in ascending motion.
        

        
            Corol. 1. Therefore the greatest velocity
            that the body can acquire by falling is to the velocity acquired in
            any given time as the given force of gravity which perpetually acts
            upon it to the resisting force which opposes it at the end of that
            time.
        

        
            Corol. 2. But the
            time being augmented in an arithmetical progression, the sum of that
            greatest velocity and the velocity in the ascent, and also their
            difference in the descent, decreases in a geometrical progression.
        

        
            Corol. 3. Also the differences of the spaces,
            which are described in equal differences of the times, decrease in the
            same geometrical progression.
        

        
            Corol. 4. The space described by the body is
            the difference of two spaces, whereof one is as the time taken from
            the beginning of the descent, and the other as the velocity; which
            [spaces] also at the beginning of the descent are equal among
            themselves.
        

    

    
        Proposition iv. Problem ii.

            
                
                    Supposing the force of gravity in any similar medium to be
                    uniform, and to tend perpendicularly to the plane of the horizon;
                    to define the motion of a projectile therein, which suffers
                    resistance proportional to its velocity.
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            Let the projectile go from any place D in the direction of any right
            line DP, and let its velocity at the beginning of the motion be
            expounded by the length DP. From the point P let fall the
            perpendicular PC on the horizontal line DC, and cut DC in A, so that
            DA may be to AC as the resistance of the medium arising from the
            motion upwards at the beginning to the force of gravity; or (which
            comes to the same) so that the rectangle under DA and DP may be to
            that under AC and CP as the whole resistance at the beginning of the
            motion to the force of gravity. With the asymptotes DC, CP describe
            any hyperbola GTBS cutting the perpendiculars DG, AB in G and B;
            complete the parallelogram DGKC, and let its side GK cut AB in Q. Take
            a line N in the same ratio to QB as DC is in to CP; and from any point
            R of the right line DC erect RT perpendicular to it, meeting the
            hyperbola in T, and the right lines EH, GK, DP in I, t, and
            V; in that perpendicular take Vr equal to 
            tGT

            N, or which is the same thing, take Rr
            equal to GTIE

            N; and the projectile in the time DRTG
            will arrive at the point r describing the curve line DraF,
            the locus of the point r; thence it will come to its
            greatest height a in the perpendicular AB; and afterwards ever
            approach to the asymptote PC. And its velocity in any point r
            will be as the tangent rL to the curve.   Q.E.I.
        

        
            For N is to QB as DC to CP or DR to RV, and therefore RV is equal to
            DR x QB

            N, and Rr (that is, RV − Vr,
            or DR x QB − tGT

            N ) is equal to 
            DR x AB − RDGT

            N. Now let the time be expounded by the
            area RDGT and (by Laws, Cor. 2), distinguish the motion of the body
            into two others, one of ascent, the other lateral. And since the
            resistance is as the motion, let that also be distinguished into two
            parts proportional and contrary to the parts of the motion: and
            therefore the length described by the lateral motion will be (by Prop.
            II, Book II) as the line DR, and the height (by Prop. III, Book II) as
            the area DR x AB − RDGT, that is, as the line Rr. But in the
            very beginning of the motion the area RDGT is equal to the rectangle
            DR x AQ, and therefore that line Rr (or 
            DR x AB − DR x AQ

            N ) will then be to DR as AB − AQ or QB
            to N, that is, as CP to DC; and therefore as the motion upwards to the
            motion lengthwise at the beginning. Since, therefore, Rr is
            always as the height, and DR always as the length, and Rr is
            to DR at the beginning as the height to the length, it follows, that Rr
            is always to DR as the height to the length; and therefore that the
            body will move in the line DraF, which is the locus of the
            point r.   Q.E.D.
        

        
            Cor. 1. Therefore Rr is equal to
            DR x AB

            N − RDGT

            N , and therefore if RT be
            produced to X so that RX may be equal to DR
            x AB

            N, that is, if the parallelogram ACPY
            be completed, and DY cutting CP in Z be drawn, and RT be produced till
            it meets DY in X; Xr will be equal to 
            RDGT

            N, and therefore proportional to the
            time.
        

        
            Cor. 2. Whence if innumerable lines CR, or,
            which is the same, innumerable lines ZX, be taken in a geometrical
            progression, there will be as many lines Xr in an
            arithmetical progression. And hence the curve DraF is easily
            delineated by the table of logarithms.
        

        
            Cor. 3. If a parabola be constructed to the
            vertex D, and the diameter DG produced downwards, and its latus rectum
            is to 2 DP as the whole resistance at the beginning of the notion to
            the gravitating force, the velocity with which the body ought to go
            from the place D, in the direction of the right line DP, so as in an
            uniform resisting medium to describe the curve DraF, will be
            the same as that with which it ought to go from the same place D in
            the direction of the same right line DP, so as to describe
            [image: Mathematical Principles of Natural Philosophy figure: 256]
            a parabola in a non-resisting medium. For the latus rectum of this
            parabola, at the very beginning of the motion, is
            DV2

            Vr; and Vr is 
            tGT

            N 
            DR x Tt

            2N. But a right line, which, if drawn,
            would touch the hyperbola GTS in G, is parallel to DK, and therefore Tt
            is CK x DR

            DC, and N is 
            QB x DC

            CP. And therefore Vr is equal
            to DR2 x CK x CP

            2DC2 x QB, that is, (because
            DR and DC, DV and DP are proportionals), to 
            DV2 x CK x CP

            2DP2 x QB; and the latus
            rectum DV2

            Vr comes out 
            2DP2 x QB

            CK x CP, that is (because QB and CK,
            DA, and AC are proportional), 
            2DP2 x DA

            AC x CP, and therefore ist to 2DP as DP
            x DA to CP x AC; that is, as the resistance to the gravity.
              Q.E.D.
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            Cor. 4. Hence if a body be projected from any
            place D with a given velocity, in the direction of a right line DP
            given by position, and the resistance of the medium, at the beginning
            of the motion, be given, the curve DraF, which that body will
            describe, may be found. For the velocity being given, the latus rectum
            of the parabola is given, as is well known. And taking 2DP to that
            latus rectum, as the force of gravity to the resisting force, DP is
            also given. Then cutting DC in A, so that CP x AC may be to DP x DA in
            the same ratio of the gravity to the resistance, the point A will be
            given. And hence the curve DraF is also given.
        

        
            Cor. 5. And, on the contrary, if the curve DraF
            be given, there will be given both the velocity of the body and the
            resistance of the medium in each of the places r. For the
            ratio of CP x AC to DP x DA being given, there is given both the
            resistance of the medium at the beginning of the motion, and the latus
            rectum of the parabola; and thence the velocity at the beginning of
            the motion is given also. Then from the length of the tangent L
            there is given both the velocity proportional to it, and the
            resistance proportional to the velocity in any place r.
        

        
            Cor. 6. But since the length 2DP is to the
            latus rectum of the parabola as the gravity to the resistance in D;
            and, from the velocity augmented, the resistance is augmented in the
            same ratio, but the latus rectum of the parabola is augmented in the
            duplicate of that ratio, it is plain that the length 2DP is augmented
            in that simple ratio only; and is therefore always proportional to the
            velocity; nor will it be augmented or diminished by the change of the
            angle CDP, unless the velocity be also changed.
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            Cor. 7. Hence appears the method of
            determining the curve DraF nearly from the phenomena, and
            thence collecting the resistance and velocity with which the body is
            projected. Let two similar and equal bodies be projected with the same
            velocity, from the place D, in different angles CDP, CDp; and
            let the places F, f, where they fall upon the horizontal
            plane DC, be known. Then taking any length for DP or Dp
            suppose the resistance in D to be to the gravity in any ratio
            whatsoever, and let that ratio be expounded by any length SM. Then, by
            computation, from that assumed length DP, find the lengths DP, Df;
            and from the ratio Ff

            DF, found by calculation, subduct the
            same ratio as found by experiment; and let the difference be expounded
            by the perpendicular MN. Repeat the same a second and a third time, by
            assuming always a new ratio SM of the resistance to the gravity, and
            collecting a new difference MN. Draw the affirmative differences on
            one side of the right line SM, and the negative on the other side; and
            through the points N, N, N, draw a regular curve NNN. cutting the
            right line SMMM in X, and SX will be the true ratio of the resistance
            to the gravity, which was to be found. From this ratio the length DF
            is to be collected by calculation; and a length, which is to the
            assumed length DP as the length DF known by experiment to the length
            DF just now found, will be the true length DP. This being known, you
            will have both the curve line DraF which the body describes,
            and also the velocity and resistance of the body in each place.
        

    

    
        Scholium.


        
            But, yet, that the resistance of bodies is in the ratio of the
            velocity, is more a mathematical hypothesis than a physical one. In
            mediums void of all tenacity, the resistances made to bodies are in
            the duplicate ratio of the velocities. For by the action of a swifter
            body, a greater motion in proportion to a
            greater velocity is communicated to the same quantity of the medium in
            a less time; and in an equal time, by reason of a greater quantity of
            the disturbed medium, a motion is communicated in the duplicate ratio
            greater; and the resistance (by Law II and III) is as the motion
            communicated. Let us, therefore, see what motions arise from this law
            of resistance.
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Book 2.2



    
        Section ii.

        Of the motion of bodies that are resisted in the duplicate ratio of their velocities.


    

    
        Proposition v. Theorem iii.

            
                
                    If a body is resisted in the duplicate ratio of its velocity,
                    and moves by its innate force only through a similar medium; and
                    the times be taken in a geometrical progression, proceeding from
                    less to greater terms: I say, that the velocities at the beginning
                    of each of the times are in the same geometrical progression
                    inversely; and that the spaces are equal, which are described in
                    each of the times.
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            For since the resistance of the medium is proportional to the square
            of the velocity, and the decrement of the velocity is proportional to
            the resistance: if the time be divided into innumerable equal
            particles, the squares of the velocities at the beginning of each of
            the times will be proportional to the differences of the same
            velocities. Let those particles of time be AK, KL, LM, &c., taken
            in the right line CD; and erect the perpendiculars AB, Kk, Ll,
            Mm, &c., meeting the hyperbola BklmG, described
            with the centre C, and the rectangular asymptotes CD, CH, in B, k,
            l, m, &c.; then AB will be to Kk as CK to CA, and,
            by division, AB − Kk to Kk as AK to CA, and
            alternately, AB − Kk to AK as Kk to CA; and
            therefore as AB x Kk to AB x CA. Therefore since AK and AB x
            CA are given, AB − Kk will be as AB x KA; and, lastly, when
            AB and Kk coincide, as AB². And, by the like reasoning, Kk
            − Ll, Ll − Mm, &c., will be as Kk²,
            Ll², &c. Therefore the squares of the lines AB, Kk,
            Ll, Mm, &c., are as their differences; and,
            therefore, since the squares of the velocities were shewn above to be
            as their differences, the progression of both will be alike. This
            being demonstrated it follows also that the areas described by these
            lines are in a like progression with the spaces described by these
            velocities. Therefore if the velocity at the beginning of the first
            time AK be expounded by the line AB, and the
            velocity at the beginning of the second time KL by the line Kk
            and the length described in the first time by the area AKkB,
            all the following velocities will be expounded by the following lines
            Ll, Mm, &c. and the lengths described, by the
            areas Kl, Lm. &c. And, by composition, if the
            whole time be expounded by AM, the sum of its parts, the whole length
            described will be expounded by AMmB the sum of its parts. Now
            conceive the time AM to be divided into the parts AK, KL, LM, &c.
            so that CA, CK, CL, CM, &c. may be in a geometrical progression;
            and those parts will be in the same progression, and the velocities
            AB, Kk, Ll, Mm, &c., will be in the
            same progression inversely, and the spaces described Ak, Kl,
            Lm, &c., will be equal.   Q.E.D.
        

        
            Cor. 1. Hence it appears, that if the time be
            expounded by any part AD of the asymptote, and the velocity in the
            beginning of the time by the ordinate AB, the velocity at the end of
            the time will be expounded by the ordinate DG; and the whole space
            described by the adjacent hyperbolic area ABGD; and the space which
            any body can describe in the same time AD, with the first velocity AB,
            in a non-resisting medium, by the rectangle AB x AD.
        

        
            Cor 2. Hence the space described in a
            resisting medium is given, by taking it to the space described with
            the uniform velocity AB in a nonresisting medium, as the hyperbolic
            area ABGD to the rectangle AB x AD.
        

        
            Cor. 3. The resistance of the medium is also
            given, by making it equal, in the very beginning of the motion, to an
            uniform centripetal force, which could generate, in a body falling
            through a non-resisting medium, the velocity AB in the time AC. For if
            BT be drawn touching the hyperbola in B, and meeting the asymptote in
            T, the right line AT will be equal to AC, and will express the time in
            which the first resistance, uniformly continued, may take away the
            whole velocity AB
        

        
            Cor. 4. And thence is also given the
            proportion of this resistance to the force of gravity, or any other
            given centripetal force.
        

        
            Cor. 5. And, vice versa, if there
            is given the proportion of the resistance to any given centripetal
            force, the time AC is also given, in which a centripetal force equal
            to the resistance may generate any velocity as AB; and thence is given
            the point B, through which the hyperbola, having CH, CD for its
            asymptotes, is to be described; as also the space ABGD, which a body,
            by beginning its motion with that velocity AB, can describe in any
            time AD, in a similar resisting medium.
        

    

    
        Proposition vi. Theorem iv.

            
                
                    Homogeneous and equal spherical bodies, opposed by resistances
                    that are in the duplicate ratio of the velocities, and moving on
                    by their innate force only, will, in times which are reciprocally
                    as the velocities at the beginning, describe equal spaces, and
                    lose parts of their velocities proportional to the wholes.
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            To the rectangular asymptotes CD, CH describe any hyperbola BbEe,
            cutting the perpendiculars AB, ab, DE, de in B, b,
            E, e; let the initial velocities be expounded by the
            perpendiculars AB, DE, and the times by the lines Aa, Dd.
            Therefore as Aa is to Dd, so (by the hypothesis) is
            DE to AB, and so (from the nature of the hyperbola) is CA to CD; and,
            by composition, so is Ca to Cd. Therefore the areas
            ABba, DEed, that is, the spaces described, are equal
            among themselves, and the first velocities AB, DE are proportional to
            the last ab, de; and therefore, by division, proportional to
            the parts of the velocities lost, AB − ab, DE − de.
              Q.E.D.
        

    

    
        Proposition vii. Theorem V.

            
                
                    If spherical bodies are resisted in the duplicate ratio of
                    their velocities, in times which are as the first motions
                    directly, and the first resistances inversely, they will lose
                    parts of their motions proportional to the wholes, and will
                    describe spaces proportional to those times and the first
                    velocities conjunctly.
                
            

        

        
            For the parts of the motions lost are as the resistances and times
            conjunctly. Therefore, that those parts may be proportional to the
            wholes, the resistance and time conjunctly ought to be as the motion.
            Therefore the time will be as the motion directly and the resistance
            inversely. Wherefore the particles of the times being taken in that
            ratio, the bodies will always lose parts of their motions proportional
            to the wholes, and therefore will retain velocities always
            proportional to their first velocities. And because of the given ratio
            of the velocities, they will always describe spaces which are as the
            first velocities and the times conjunctly.   Q.E.D.
        

        
            Cor. 1. Therefore if bodies equally swift are
            resisted in a duplicate ratio of their diameters, homogeneous globes
            moving with any velocities whatsoever, by describing spaces
            proportional to their diameters, will lose parts of their motions
            proportional to the wholes. For the motion of each globe will be as
            its velocity and mass conjunctly, that is, as the velocity and the
            cube of its diameter; the resistance (by supposition) will be as the
            square of the diameter and the square of the velocity conjunctly; and
            the time (by this proposition) is in the former ratio directly, and in
            the latter inversely, that is, as the diameter directly and the
            velocity inversely; and therefore the space, which is proportional to
            the time and velocity is as the diameter.
        

        
            Cor. 2. If bodies equally swift are resisted
            in a sesquiplicate ratio of their diameters, homogeneous globes,
            moving with any velocities whatsoever, by
            describing spaces that are in a sesquiplicate ratio of the diameters,
            will lose parts of their motions proportional to the wholes.
        

        
            Cor. 3. And universally; if equally swift
            bodies are resisted in the ratio of any power of the diameters, the
            spaces, in which homogeneous globes, moving with any velocity
            whatsoever, will lose parts of their motions proportional to the
            wholes, will be as the cubes of the diameters applied to that power.
            Let those diameters be D and E; and if the resistances, where the
            velocities are supposed equal, are as Dn and En;
            the spaces in which the globes, moving with any velocities whatsoever,
            will lose parts of their motions proportional to the wholes, will be
            as D3−n and E3−n. And therefore homogeneous
            globes, in describing spaces proportional to D3−n and E3−n,
            will retain their velocities in the same ratio to one another as at
            the beginning.
        

        
            Cor. 4. Now if the globes are not
            homogeneous, the space described by the denser globe must be augmented
            in the ratio of the density. For the motion, with an equal velocity,
            is greater in the ratio of the density, and the time (by this Prop.)
            is augmented in the ratio of motion directly, and the space described
            in the ratio of the time.
        

        
            Cor. 5. And if the globes move in different
            mediums, the space, in a medium which, caeteris paribus,
            resists the most, must be diminished in the ratio of the greater
            resistance. For the time (by this Prop.) will be diminished in the
            ratio of the augmented resistance, and the space in the ratio of the
            time.
        

    

    
        Lemma ii.

            
                
                    The moment of any genitum is equal to the moments of each of
                    the generating sides drawn into the indices of the powers of those
                    sides, and into their co-efficients continually.
                
            

        

        
            I call any quantity a genitum which is not made by addition
            or subduction of divers parts, but is generated or produced in
            arithmetic by the multiplication, division, or extraction of the root
            of any terms whatsoever; in geometry by the invention of contents and
            sides, or of the extremes and means of proportionals. Quantities of
            this kind are products, quotients, roots, rectangles, squares, cubes,
            square and cubic sides, and the like. These quantities I here consider
            as variable and indetermined, and increasing or decreasing, as it
            were, by a perpetual motion or flux; and I understand their
            momentaneous increments or decrements by the name of moments; so that
            the increments may be esteemed as added or affirmative moments; and
            the decrements as subducted or negative ones. But take care not to
            look upon finite particles as such. Finite particles are not moments,
            but the very quantities generated by the moments. We are to conceive
            them as the just nascent principles of finite magnitudes. Nor do we in
            this Lemma regard the magnitude of the moments, but their first
            proportion, as nascent. It will be the same thing,
            if, instead of moments, we use either the velocities of the increments
            and decrements (which may also be called the motions, mutations, and
            fluxions of quantities), or any finite quantities proportional to
            those velocities. The co-efficient of any generating side is the
            quantity which arises by applying the genitum to that side.
        

        
            Wherefore the sense of the Lemma is, that if the moments of any
            quantities A, B, C, &c., increasing or decreasing by a perpetual
            flux, or the velocities of the mutations which are proportional to
            them, be called a, b, c, &c., the moment or mutation of
            the generated rectangle AB will be aB + bA; the
            moment of the generated content ABC will be aBC + bAC
            + cAB; and the moments of the generated powers A², A³, A4,
            A½, A3/2, A⅓, A⅔,
            A−1, A−2, A−½ will be 2aA, 3aA²,
            4aA³, ½aA−½, 3/2aA½,
            ⅓aA−⅔, ⅔aA−⅓, −aA−2,
            −2aA−3, −½aA−3/2
            respectively; and in general, that the moment of any power A 
            n

            m, will be n

            m aA 
            n−m

            m. Also, that the moment of the
            generated quantity A²B bill be 2aAB + bA²; the moment of the
            generated quantity A³ B4 C² will be 3aA² B4
            C² + 4bA³B³C² + 2cA³B4C; and the moment
            of the generated quantity A3

            B2 or A³B−2 will
            be 3aA²B−2−2bA³B−3; and so on.
            The Lemma is thus demonstrated.
        

        
            Case 1. Any rectangle, as AB, augmented by a
            perpetual flux, when, as yet, there wanted of the sides A and B half
            their moments ½a and ½b, was A−½a into B−½b,
            or AB − ½a B − ½b A + ¼ab; but as soon as
            the sides A and B are augmented by the other half moments, the
            rectangle becomes A + ½a into B + ½b, or AB + ½a
            B + ½b A + ¼ab. From this rectangle subduct the
            former rectangle, and there will remain the excess aB + bA.
            Therefore with the whole increments a and b of the
            sides, the increment aB + bA of the rectangle is
            generated.   Q.E.D.
        

        
            Case 2. Suppose AB always equal to G, and
            then the moment of the content ABC or GC (by Case 1) will be gC
            + cG, that is (putting AB and aB + bA
            for G and g), aBC + bAC + cAB.
            And the reasoning is the same for contents under ever so many sides.
              Q.E.D.
        

        
            Case 3. Suppose the sides A, B, and C, to be
            always equal among themselves; and the moment aB + bA,
            of A², that is, of the rectangle AB, will be 2aA; and the
            moment aBC + bAC + cAB of A³, that is,
            of the content ABC, will be 3aA². And by the same reasoning
            the moment of any power An is naAn−1.
              Q.E.D
        

        
            Case 4. Therefore since 
            1

            A into A is 1, the moment of 
            1

            A drawn into A,
            together with 1

            A drawn into a, will be the
            moment of 1, that is, nothing. Therefore the moment of 
            1

            A, or of A−1, is 
            −a

            A2. And generally since
            1

            An into An is
            1, the moment of 1

            An drawn into An
            together with 1

            An into naAn−1
            will be nothing. And, therefore, the moment of 
            1

            An or A−n will
            be −na

            An+1.   Q.E.D.
        

        
            Case 5. And since A½ into A½
            is A, the moment of A½ drawn into 2A½ will be a
            (by Case 3); and, therefore, the moment of A½ will be
            a

            2A1/2 or ½aA−½.
            And, generally, putting A
            m

            n equal to B, then Am
            will be equal to Bn, and therefore maAm−1
            equal to nbBn−1, and maA−1
            equal to nbB−1, or nbA−
            m

            n; and therefore
            m

            naAm−n

            n is equal to b,
            that is, equal to the moment of A
            m

            n.   Q.E.D.
        

        
            Case 6. Therefore the moment of any generated
            quantity AmBn is the moment of Am
            drawn into Bn, together with the moment of Bn
            drawn into Am, that is, maAm−1 Bn
            + nbBn−1 Am; and that whether the
            indices m and n of the powers be whole numbers or
            fractions, affirmative or negative. And the reasoning is the same for
            contents under more powers.   Q.E.D.
        

        
            Cor. 1. Hence in quantities continually
            proportional, if one term is given, the moments of the rest of the
            terms will be as the same terms multiplied by the number of intervals
            between them nd the given term. Let A, B, C, D, E, F, be continually
            proportional; then if the term C is given, the moments of the rest of
            the terms will be among themselves as −2A, −B, D, 2E, 3F.
        

        
            Cor. 2. And if in four proportionals the two
            means are given, the moments of the extremes will be as those
            extremes. The same is to be understood of the sides of any given
            rectangle.
        

        
            Cor. 3. And if the sum or difference of two
            squares is given, the moments of the sides will be reciprocally as the
            sides.
        

    

    
        Scholium.


        
            In a letter of mine to Mr. J. Collins, dated December
            10, 1672, having described a method of tangents, which I suspected to
            be the same with Slusius's method, which at that time was
            not made public, I subjoined these words: This is one particular,
            or rather a Corollary, of a general method, which
            extends itself, without any troublesome calculation, not only to the
            drawing of tangents to any curve lines, whether geometrical or
            mechanical, or any how respecting right lines or other curves, but
            also to the resolving other abstruser kinds of problems about the
            crookedness, areas, lengths, centres of gravity of curves, &c.;
            nor is it (as Hudden's method de Maximis &
            Minimis) limited to equations which are free from surd quantities.
            This method I have interwoven with that other of working in
            equations, by reducing them to infinite series.
                 So far that
            letter. And these last words relate to a treatise I composed on that
            subject in the year 1671. The foundation of that general method is
            contained in the preceding Lemma.
        

    

    
        Proposition viii. Theorem vi.

            
                
                    If a body in an uniform medium, being uniformly acted upon by
                    the force of gravity, ascends or descends in a right line; and the
                    whole space described be distinguished into equal parts, and in
                    the beginning of each of the parts (by adding or subducting the
                    resisting force of the medium to or from the force of gravity,
                    when the body ascends or descends] you collect the absolute
                    forces; I say, that those absolute forces are in a geometrical progression.
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            For let the force of gravity be expounded by the given line AC; the
            force of resistance by the indefinite line AK; the absolute force in
            the descent of the body by the difference KC: the velocity of the body
            by a line AP, which shall be a mean proportional between AK and AC,
            and therefore in a subduplicate ratio of the resistance; the increment
            of the resistance made in a given particle of time by the lineola KL,
            and the contemporaneous increment of the velocity by the lineola PQ;
            and with the centre C, and rectangular asymptotes CA, CH, describe any
            hyperbola BNS meeting the erected perpendiculars AB, KN, LO in B, N
            and O. Because AK is as AP², the moment KL of the one will be as the
            moment 2APQ of the other, that is, as AP x KC; for the increment PQ of
            the velocity is (by Law II) proportional to the generating force KC.
            Let the ratio of KL be compounded with the ratio KN, and the rectangle
            KL x KN will become as AP x KC x KN; that is (because the rectangle KC
            x KN is given), as AP. But the ultimate ratio of the hyperbolic area
            KNOL to the rectangle KL x KN becomes, when the points K and L
            coincide, the ratio of equality. Therefore that hyperbolic evanescent
            area is as AP. Therefore the whole hyperbolic area ABOL is composed of
            particles KNOL which are always proportional to the velocity AP; and
            therefore is itself proportional to the space described with that
            velocity. Let that area be now divided into equal parts as
            ABMI, IMNK, KNOL, &c., and the absolute forces AC, IC, KC, LC,
            &c., will be in a geometrical progression.   Q.E.D.
              And by a like reasoning, in the ascent of the body,
            taking, on the contrary side of the point A, the equal areas ABmi,
            imnk, knol, &c., it will appear that the absolute forces
            AC, iC, kC, lC, &c., are continually
            proportional. Therefore if all the spaces in the ascent and descent
            are taken equal, all the absolute forces lC, kC, iC,
            AC, IC, KC, LC, &c., will be continually proportional.
              Q.E.D.
        

        
            Cor. 1. Hence if the space described be
            expounded by the hyperbolic area ABNK, the force of gravity, the
            velocity of the body, and the resistance of the medium, may be
            expounded by the lines AC, AP, and AK respectively; and vice
            versa.
        

        
            Cor. 2. And the greatest velocity which the
            body can ever acquire in an infinite descent will be expounded by the
            line AC.
        

        
            Cor. 3. Therefore if the resistance of the
            medium answering to any given velocity be known, the greatest velocity
            will be found, by taking it to that given velocity in a ratio
            subduplicate of the ratio which the force of gravity bears to that
            known resistance of the medium.
        

    

    
        Proposition ix. Theorem vii.

            
                
                    Supposing what is above demonstrated, I say, that if the
                    tangents of the angles of the sector of a circle, and of an
                    hyperbola, be taken proportional to the velocities, the radius
                    being of a fit magnitude, all the time of the ascent to the
                    highest place will be as the sector of the circle, and all the
                    time of descending from the highest place as the sector of the hyperbola.
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            To the right line AC, which expresses the force of gravity, let AD be
            drawn perpendicular and equal. From the centre D with the
            semi-diameter AD describe as well the quadrant AtE of a
            circle, as the rectangular hyperbola AVZ, whose axis is AK, principal
            vertex A, and asymptote DC. Let Dp, DP be drawn; and the
            circular sector AtD will be as all the time of the ascent to
            the highest place; and the hyperbolic sector ATD as all the time of
            descent from the highest place; if so be that the tangents Ap,
            AP of those sectors be as the velocities.
        

        
            Case 1. Draw Dvq cutting off the
            moments or least particles tDv and qDp,
            described in the same time, of the sector ADt and of the
            triangle ADp. Since those particles (because of the common
            angle D) are in a duplicate ratio of the sides, the particle tDv
            will be as qDp x tD2

            pD2, that is (because
            tD is given), as qDp

            pD2. But pD² is
            AD² + Ap², that is, AD² + AD x Ak, or AD x Ck;
            and qDp is ½AD x pq. Therefore tDv,
            the particle of the sector, is as pq

            Ck; that is, as the least decrement pq
            of the velocity directly, and the force Ck which diminishes
            the velocity, inversely; and therefore as the particle of time
            answering to the decrement of the velocity. And, by composition, the
            sum of all the particles tDv in the sector ADt
            will be as the sum of the particles of time answering to each of the
            lost particles pq of the decreasing velocity Ap,
            till that velocity, being diminished into nothing, vanishes; that is,
            the whole sector ADt is as the whole time of ascent to the
            highest place.   Q.E.D.
        

        
            Case 2. Draw DQV cutting off the least
            particles TDV and PDQ of the sector DAV, and of the triangle DAQ; and
            these particles will be to each other as DT² to DP², that is (if TX
            and AP are parallel), as DX² to DA² or TX² to AP²; and, by division,
            as DX² − TX² to DA² − AP² . But, from the nature of the hyperbola, DX²
            − TX² is AD²; and, by the supposition, AP² is AD x AK. Therefore the
            particles are to each other as AD² to AD² − AD x AK; that is, as AD to
            AD − AK or AC to CK: and therefore the particle TDV of the sector is
            PDQ x AC

            CK; and therefore (because AC and AD
            are given) as PQ

            CK; that is, as the increment of the
            velocity directly, and as the force generating the increment
            inversely; and therefore as the particle of the time answering to the
            increment. And, by composition, the sum of the particles of time, in
            which all the particles PQ of the velocity AP are generated, will be
            as the sum of the particles of the sector ATD; that is, the whole time
            will be as the whole sector.   Q.E.D.
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            Cor. 1. Hence if AB be equal to a fourth part
            of AC, the space which a body will describe by falling in any time
            will be to the space which the body could describe, by moving
            uniformly on in the same time with its greatest velocity AC, as the
            area ABNK, which expresses the space described in falling to the area
            ATD, which expresses the time. For since AC is to AP as AP to AK, then
            (by Cor. 1, Lem. II, of this Book) LK is to PQ as 2AK to AP, that is,
            as 2AP to AC, and thence LK is to ½PQ as AP to ¼AG or AB; and KN is to
            AC or AD as AB to CK; and therefore, ex
            aequo, LKNO to DPQ as AP to CK. But DPQ was to DTV as CK to AC.
            Therefore, ex aequo, LKNO is to DTV as AP to AC; that is, as
            the velocity of the falling body to the greatest velocity which the
            body by falling can acquire. Since, therefore, the moments LKNO and
            DTV of the areas ABNK and ATD are as the velocities, all the parts of
            those areas generated in the same time will be as the spaces described
            in the same time; and therefore the whole areas ABNK and ADT,
            generated from the beginning, will be as the whole spaces described
            from the beginning of the descent.   Q.E.D.
        

        
            Cor. 2. The same is true also of the space
            described in the ascent. That is to say, that all that space is to the
            space described in the same time, with the uniform velocity AC, as the
            area ABuk is to the sector ADt.
        

        
            Cor. 3. The velocity of the body, falling in
            the time ATD, is to the velocity which it would acquire in the same
            time in a non-resisting space, as the triangle APD to the hyperbolic
            sector ATD. For the velocity in a non-resisting medium would be as the
            time ATD, and in a resisting medium is as AP, that is, as the triangle
            APD. And those velocities, at the beginning of the descent, are equal
            among themselves, as well as those areas ATD, APD.
        

        
            Cor. 4. By the same argument, the velocity in
            the ascent is to the velocity with which the body in the same time, in
            a non-resisting space, would lose all its motion of ascent, as the
            triangle ApD to the circular sector AtD; or as the
            right line Ap to the arc At.
        

        
            Cor. 5. Therefore the time in which a body,
            by falling in a resisting medium, would acquire the velocity AP, is to
            the time in which it would acquire its greatest velocity AC, by
            falling in a non-resisting space, as the sector ADT to the triangle
            ADC: and the time in which it would lose its velocity Ap, by
            ascending in a resisting medium, is to the time in which it would lose
            the same velocity by ascending in a non-resisting space, as the arc At
            if to its tangent Ap.
        

        
            Cor. 6. Hence from the given time there is
            given the space described in the ascent or descent. For the greatest
            velocity of a body descending in infinitum is given (by
            Corol. 2 and 3, Theor. VI, of this Book); and thence the time is given
            in which a body would acquire that velocity by falling in a
            non-resisting space. And taking the sector ADT or ADt to the
            triangle ADC in the ratio of the given time to the time just now
            found, there will be given both the velocity AP or Ap, and
            the area ABNK or ABnk, which is to the sector ADT, or ADt,
            as the space sought to the space which would, in the given time, be
            uniformly described with that greatest velocity found just before.
        


        
            Cor. 7. And by going backward, from the given
            space of ascent or descent ABnk or ABNK, there will be given
            the time ADt or ADT.
        


        

    

    
        Proposition x. Problem iii.

            
                
                    Suppose the uniform force of gravity to tend directly to the
                    plane of the horizon, and the resistance to be as the density of
                    the medium and the square of the velocity conjunctly: it is
                    proposed to find the density of the medium in each place, which
                    shall make the body move in any given curve line; the velocity of
                    the body and the resistance of the medium in each place.
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            Let PQ, be a plane perpendicular to the plane of the scheme itself;
            PFHQ a curve line meeting that plane in the points P and Q; G, H, I, K
            four places of the body going on in this curve from F to Q; and GB,
            HC, ID, KE four parallel ordinates let fall from these points to the
            horizon, and standing on the horizontal line PQ, at the points B, C,
            D, E; and let the distances BC, CD, DE, of the ordinates be equal
            among themselves. From the points G and H let the right lines GL, HN,
            be drawn touching the curve in G and H, and meeting the ordinates CH,
            DI, produced upwards, in L and N: and complete the parallelogram HCDM.
            And the times in which the body describes the arcs GH, HI, will be in
            a subduplicate ratio of the altitudes LH, NI, which the bodies would
            describe in those times, by falling from the tangents; and the
            velocities will be as the lengths described GH, HI directly, and the
            times inversely. Let the times be expounded by T and t, and
            the velocities by GH

            T and HI

            t; and the decrement of the velocity
            produced in the time t will be expounded by 
            GH

            T − HI

            t . This decrement arises from
            the resistance which retards the body, and from the gravity which
            accelerates it. Gravity, in a falling body, which in its fall
            describes the space NI, produces a velocity with which it would be
            able to describe twice that space in the same time, as Galileo
            has demonstrated; that is, the velocity 2NI

            t : but if the body describes the arc
            HI, it augments that arc only by the length HI − HN or 
            MI x NI

            HI; and therefore generates only the
            velocity 2MI x NI

            t x HI. Let this velocity be added to
            the beforementioned decrement, and we shall have the decrement of the
            velocity arising from the resistance alone, that is, 
            GH

            T − HI

            t + 2MI
            x NI

            t x HI . Therefore
            since, in the same time, the action of gravity generates, in a falling
            body, the velocity 2NI

            t, the resistance will be to the
            gravity as GH

            T − HI

            t + 2MI
            x NI

            t x HI or as 
            t x GH

            T − HI + 2MI
            x NI

            HI to 2NI.
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            Now for the abscissas CB, CD, CE, put −o, o, 2o. For the
            ordinate CH put P; and for MI put any series Qo + Ro²
            + So³ +, &c. And all the terms of the series after the
            first, that is, Ro² + So³ +, &c., will be NI;
            and the ordinates DI, EK, and BG will be P − Qo − Ro²
            − So³ −, &c., P − 2Qo − 4Ro² − 8So³ −,
            &c., and P + Qo − Ro² + So³ −, &c.,
            respectively. And by squaring the differences of the ordinates BG − CH
            and CH − DI, and to the squares thence produced adding the squares of
            BC and CD themselves, you will have oo + QQoo − 2QRo³
            +, &c., and oo + QQoo + 2QRo³ +,
            &c., the squares of the arcs GH, HI; whose roots o√(1+QQ)
            − QRoo

            √(1+QQ) , and o√(1+QQ)
            + QRoo

            √(1+QQ) are the arcs GH and
            HI. Moreover, if from the ordinate CH there be subducted half the sum
            of the ordinates BG and DI, and from the ordinate DI there be
            subducted half the sum of the ordinates CH and EK, there will remain Roo
            and Roo + 3So³, the versed sines of the arcs GI and
            HK. And these are proportional to the lineolae LH and NI, and
            therefore in the duplicate ratio of the infinitely small times T and t:
            and thence the ratio t

            T is √(
            R + 3So

            R) or 
            R + 3/2So

            R ; and t
            x GH

            T − HI + 2MI
            x NI

            HI , by substituting the
            values of t

            T, GH, HI, MI and NI just found,
            becomes 3Soo

            2R √(1+QQ). And since 2NI is
            2Roo, the resistance will be now to the gravity as 
            3Soo

            2R √(1+QQ), that is, as
            3S√(1+qq) to 4RR.
        

        
            And the velocity will be such, that a body going off therewith from
            any place H, in the direction of the tangent HN, would describe, in
            vacuo, a parabola, whose diameter is HC, and its latus rectum
            HN2

            NI or 1+QQ

            R.
        

        
            And the resistance is as the density of the medium and the square of
            the velocity conjunctly; and therefore the density of the medium is as
            the resistance directly, and the square of the velocity inversely;
            that is, as  3S√(1+QQ)

            4RR directly and 
            1+QQ

            R inversely; that is, as 
            S

            R√(1+QQ).   Q.E.I.
        

        
            Cor. 1. If the tangent HN be produced both
            ways, so as to meet any ordinate AF in T HT

            AC will be equal to √(1+QQ);
            and therefore in what has gone before may be put for √(1+QQ).
            By this means the resistance will be to the gravity as 3S x HT to 4RR
            x AC; the velocity will be as HT

            AC√R, and the density of the medium
            will be as S x AC

            R x HT.
        

        
            Cor. 2. And hence, if the curve line PFHQ be
            defined by the relation between the base or abscissa AC and the
            ordinate CH, as is usual, and the value of the ordinate be resolved
            into a converging series, the Problem will be expeditiously solved by
            the first terms of the series; as in the following examples.
        

        
            Example 1. Let the line PFHQ be a semi-circle
            described upon the diameter PQ, to find the density of the medium that
            shall make a projectile move in that line.
        

        
            Bisect the diameter PQ in A; and call AQ, n; AC, a;
            CH, e; and CD, o; then DI² or AQ² − AD² = nn
            − aa − 2ao − oo, or ee − 2ao − oo; and the root being
            extracted by our method, will give DI = e −
            ao

            e − oo

            2e − aaoo

            2e3 − 
            ao3

            2e3 − 
            a3o3

            2e5 − , &c.
            Here put nn for ee + aa, and DI will become
            = e − ao

            e − nnoo

            2e3 − 
            anno3

            2e5 −, &c
        

        
            Such series I distinguish into successive terms after this manner: I
            call that the first term in which the infinitely small quantity o
            is not found; the second, in which that quantity is of one dimension
            only; the third, in which it arises to two dimensions; the fourth, in
            which it is of three; and so ad infinitum. And the first
            term, which here is e, will always denote the length of the
            ordinate CH, standing at the beginning of the indefinite quantity o.
            The second term, which here is ao

            e, will denote the difference between
            CH and DN; that is, the lineola MN which is cut off by completing the
            parallelogram HCDM; and therefore always determines the position of
            the tangent HN; as, in this case, by taking MN to HM as 
            ao

            e to o, or a to e.
            The third term, which here is nnoo

            2e3, will represent the
            lineola IN, which lies between the tangent and the curve; and
            therefore determines the angle of contact IHN, or the curvature which
            the curve line 
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            has in H. If that lineola IN is of a finite magnitude, it will be expressed by
            the third term, together with those that follow in infinitum.
            But if that lineola be diminished in infinitum, the terms
            following become in finitely less than the third term, and therefore
            may be neglected. The fourth term determines the variation of the
            curvature; the fifth, the variation of the variation; and so on.
            Whence, by the way, appears no contemptible use of these series in the
            solution of problems that depend upon tangents, and the curvature of
            curves.
        

        
            Now compare the series e − 
            ao

            e − nnoo

            2e3 − 
            anno3

            2e5 − &c., with
            the series P − Qo − Roo − So³
            − &c., and for P, Q, R and S, put e, 
            a

            e, nn

            2e3 and 
            ann

            2e5, and for √(1
            + QQ) put √(1 + 
            aa

            ee ) or 
            n

            e : and the density of the medium will
            come out as a

            ne; that is (because n is
            given), as a

            e or AC

            CH, that is, as that length of the
            tangent HT, which is terminated at the semi-diameter AF standing
            perpendicularly on PQ: and the resistance will be to the gravity as 3a
            to 2n, that is, as 3AC to the diameter PQ of the circle; and
            the velocity will be as √(CH). Therefore if
            the body goes from the place F, with a due velocity, in the direction
            of a line parallel to PQ, and the density of the medium in each of the
            places H is as the length of the tangent HT, and the resistance also
            in any place H is to the force of gravity as 3AC to PQ, that body will
            describe the quadrant FHQ of a circle.   Q.E.I.
        

        
            But if the same body should go from the place P, in the direction of
            a line perpendicular to PQ, and should begin to move in an arc of the
            semi circle PFQ, we must take AC or a on the contrary side
            of the centre A; and therefore its sign must be changed, and we must
            put −a for +a. Then the density of the medium would
            come out as −a

            e. But nature does not admit of a
            negative density, that is, a density which accelerates the motion of
            bodies; and therefore it cannot naturally come to pass that a body by
            ascending from P should describe the quadrant PF of a circle. To
            produce such an effect, a body ought to be accelerated by an impelling
            medium, and not impeded by a resisting one.
        

        
            Example 2. Let the line PFQ be a parabola,
            having its axis AF perpendicular to the
            horizon PQ, to find the density of the medium, which will make a
            projectile move in that line.
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            From the nature of the parabola, the rectangle PDQ is equal to the
            rectangle under the ordinate DI and some given right line; that is, if
            that right line be called b; PC, a; PQ, c;
            CH, e; and CD, o; the rectangle a + o
            into c − a − o or ac − aa − 2ao + co − oo, is
            equal to the rectangle b into DI, and therefore DI is equal
            to ac − aa

            b + c
            − 2a

            bo − oo

            b . Now the second term
            c−2a

            bo of this series is to be put
            for Qo, and the third term oo

            b for Roo. But since there are
            no more terms, the co-efficient S of the fourth term will vanish; and
            therefore the quantity S

            R√(1+QQ), to which the density of the
            medium is proportional, will be nothing. Therefore, where the medium
            is of no density, the projectile will move in a parabola; as Galileo
            hath heretofore demonstrated.   Q.E.I.
        

        
            Example 3. Let the line AGK be an hyperbola,
            having its asymptote NX perpendicular to the horizontal plane AK, to
            find the density of the medium that will make a projectile move in
            that line.
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            Let MX be the other asymptote, meeting the ordinate DG produced in V;
            and from the nature of the hyperbola, the rectangle of XV into VG will
            be given. There is also given the ratio of DN to VX, and therefore the
            rectangle of DN into VG is given. Let that be bb: and,
            completing the parallelogram DNXZ, let BN be called a; BD, o;
            NX, c; and let the given ratio of VZ to ZX or DN be 
            m

            n. Then DN will be equal to a − o,
            VG equal to bb

            a − o, VZ equal to 
            m

            n x (a − o), and GD or
            NX − VZ − VG equal to c −
            m

            n a + m

            no − bb

            a−o . Let the term 
            bb

            a−o be resolved into the converging
            series bb

            a + bb

            aao + bb

            a3oo + 
            bb

            a4o3 ,
            &c., and GD will become equal to c − 
            m

            na − bb

            a + m

            no − bb

            aao − bb

            a3o2 − 
            bb

            a4o3 ,
            &c. The second term 
            m

            no − bb

            aao of this series is to be
            used for Qo; the third 
            bb

            a3o2 ,
            with its sign changed for Ro²; and the fourth 
            bb

            a4o3 ,
            with its sign changed also for So³, and their coefficients
            m

            n − bb

            aa , 
            bb

            a3 and 
            bb

            a4 are to be put for Q, R,
            and S in the former rule. Which being done, the density of the medium
            will come out as bb

            a4

            bb

            a3 √(1 + 
            mm

            nn − 2mbb

            naa + b4

            a4) or
            1

            √(aa + mm

            nnaa − 2mbb

            n + b4

            aa) , that is, if in
            VZ you take VY equal to VG, as 1

            XY. For aa and
            m2

            n2a2 − 
            2mbb

            n + b4

            aa are the squares of XZ and
            ZY. But the ratio of the resistance to gravity is found to be that of
            3XY to 2YG; and the velocity is that with which the body would
            describe a parabola, whose vertex is G, diameter DG, latus rectum
            XY2

            VG. Suppose, therefore, that the
            densities of the medium in each of the places G are reciprocally as
            the distances XY, and that the resistance in any place G is to the
            gravity as 3XY to 2YG; and a body let go from the place A, with a due
            velocity, will describe that hyperbola AGK.   Q.E.I.
        

        
            Example 4. Suppose, indefinitely, the line
            AGK to be an hyperbola described with the centre
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            X, and the asymptotes MX, NX, so that, having constructed the
            rectangle XZDN, whose side ZD cuts the hyperbola in G and its
            asymptote in V, VG may be reciprocally as any power DNn of
            the line ZX or DN, whose index is the number n: to find the
            density of the medium in which a projected body will describe this
            curve.
        

        
            For BN, BD, NX, put A, O, C, respectively, and let VZ be to XZ or DN
            as d to e, and VG be equal to 
            bb

            DNn; then DN will be equal
            to A − O, VG = bb

            (A − O)n ,
            VZ = d

            e (A − O), and GD or NX − VZ −
            VG equal to
        

        C − d

            eA + d

            eO − bb

            (A − O)n .
        

        
            Let the term bb

            (A − O)n be resolved into
            an infinite series
        

        bb

            An + 
            nbb

            An + 1 x O + 
            nn + n

            2An + 2 x bb O2
            + n3 + 3nn + 2n

            6An + 3 x bb O3,&c.,
        

        
            And GD will be equal to

        C − d

            eA + bb

            An + 
            d

            e O − nbb

            An + 1 O − 
            + nn + n

            2An + 2bb O2 −
            + n3 + 3nn + 2n

            6An + 3 bbO3,
            &c.
        

        
            The second term d

            e O − nbb

            An+1 O of this
            series is to be used for Qo, the third 
            nn+n

            2An+2bb O2
            for Roo, the fourth 
            n3+3nn+2n

            6An+3bbO3
            for So³. And thence the density of the medium 
            S

            R√(1+QQ), in any place G, will be
        

        n+2

            3√(A2 + dd

            eeA2− 
            2dnbb

            eAnA+ 
            nnb4

            A2n ),
        

        
            and therefore if in VZ you take VY equal to n x VG, that
            density is reciprocally as XY. For A² and 
            dd

            eeA2 − 
            2dnbb

            eAnA + 
            nnb4

            A2n are the squares
            of XZ and ZY. But the resistance in the same place G is to the force
            of gravity as 3S x XY

            A to 4RR, that is, as XY to
            2nn + 2n

            n + 2 VG. And the velocity there is the
            same wherewith the projected body would move in a parabola, whose
            vertex is G, diameter GD, and latus rectum 1
            + QQ

            R or 2XY2

            (nn + n) x VG.   Q.E.I.
        

    

    
        Scholium.
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            In the same manner that the density of the medium comes out to be as
            S x AC

            R x HT, in Cor. 1, if the resistance is
            put as any power Vn of the velocity V, the density of the
            medium will come out to be as 
            S

            R4−n/2
            x ( AC

            HT)n−1
        

        
            And therefore if a curve can be found, such that the ratio of
            S

            R4−n/2
            to  ( 
            HT

            AC )n−1, or of
            S2

            R4−n to (1+QQ)n−1
            may be given; the body, in an uniform medium, whose resistance is as
            the power Vn of the velocity V, will move in this curve.
            But let us return to more simple curves.
        

        
            Because there can be no motion in a parabola except in a
            non-resisting medium, but in the hyperbolas here described it is
            produced by a perpetual resistance; it is evident that the line which
            a projectile describes in an uniformly
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            resisting medium approaches nearer to these hyperbolas than to a
            parabola. That line is certainly of the hyperbolic kind, but about the
            vertex it is more distant from the asymptotes, and in the parts remote
            from the vertex draws nearer to them than these hyperbolas here
            described. The difference, however, is not so great between the one
            and the other but that these latter may be commodiously enough used in
            practice instead of the former. And perhaps these may prove more
            useful than an hyperbola that is more accurate, and at the same time
            more compounded. They may be made use of, then, in this manner.
        

        
            Complete the parallelogram XYGT, and the right line GT will touch the
            hyperbola in G, and therefore the density of the medium in G is
            reciprocally as the tangent GT, and the velocity there as √
            (GT2

            GV); and the resistance is to
            the force of gravity as GT to 
            2nn + 2n

            n + 2 x GV.
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            Therefore if a body projected from the place A, in the direction of
            the right line AH, describes the hyperbola AGK and AH produced meets
            the asymptote NX in H, and AI drawn parallel to it meets the other
            asymptote MX in I; the density of the medium in A will be reciprocally
            as AH, and the velocity of the body as √(
            AH2

            AI), and the resistance there
            to the force of gravity as AH to 
            2nn + 2n

            n + 2 x AI. Hence the
            following rules are deduced.
        

        
            Rule 1. If the density of the medium at A,
            and the velocity with which the body is projected remain the same, and
            the angle NAH be changed, the lengths AH, AI, HX will remain.
            Therefore if those lengths, in any one case,
            are found, the hyperbola may afterwards be easily determined from any
            given angle NAH.
        

        
            Rule 2. If the angle NAH, and the density of
            the medium at A, re main the same, and the velocity with which the
            body is projected be changed, the length AH will continue the same;
            and AI will be changed in a duplicate ratio of the velocity
            reciprocally.
        

        
            Rule 3. If the angle NAH, the velocity of the
            body at A, and the accelerative gravity remain the same, and the
            proportion of the resistance at A to the motive gravity be augmented
            in any ratio; the proportion of AH to AI will be augmented in the same
            ratio, the latus rectum of the abovementioned parabola remaining the
            same, and also the length AH2

            AI proportional to it; and therefore AH
            will be diminished in the same ratio, and AI will be diminished in the
            duplicate of that ratio. But the proportion of the resistance to the
            weight is augmented, when either the specific gravity is made less,
            the magnitude remaining equal, or when the density of the medium is
            made greater, or when, by diminishing the magnitude, the resistance
            becomes diminished in a less ratio than the weight.
        

        
            Rule 4. Because the density of the medium is
            greater near the vertex of the hyperbola than it is in the place A,
            that a mean density may be preserved, the ratio of the least of the
            tangents GT to the tangent AH ought to be found, and the density in A
            augmented in a ratio a little greater than that of half the sum of
            those tangents to the least of the tangents GT.
        

        
            Rule 5. If the lengths AH, AI are given, and
            the figure AGK is to be described, produce HN to X, so that HX may be
            to AI as n + 1 to 1; and with the centre X, and the
            asymptotes MX, NX, describe an hyperbola through the point A, such
            that AI may be to any of the lines VG as XVn to XIn.
        

        
            Rule 6. By how much the greater the number n
            is, so much the more accurate are these hyperbolas in the ascent of
            the body from A, and less accurate in its descent to K; and the
            contrary. The conic hyperbola keeps a mean ratio between these, and is
            more simple than the rest. Therefore if the hyperbola be of this kind,
            and you are to find the point K, where the projected body falls upon
            any right line AN passing through the point A, let AN produced meet
            the asymptotes MX, NX in M and N, and take NK equal to AM.
        

        
            Rule 7. And hence appears an expeditious
            method of determining this hyperbola from the phenomena. Let two
            similar and equal bodies be projected with the same velocity, in
            different angles HAK, hAk, and let them fall upon
            the plane of the horizon in K and k; and note the proportion
            of AK to Ak. Let it be as d to e. Then
            erecting a perpendicular AI of any length, assume any how the length
            AH or Ah, and thence graphically, or
            by scale and compass, collect the lengths AK, Ak (by Rule 6).
            If the ratio of AK to Ak be the same with that of d
            to e, the length of AH was
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            rightly assumed. If not, take on the indefinite right line SM, the
            length SM equal to the assumed AH; and erect a perpendicular MN equal
            to the difference AK

            Ak − d

            e of the ratios drawn into any
            given right line. By the like method, from several assumed lengths AH,
            you may find several points N; and draw through them all a regular
            curve NNXN, cutting the right line SMMM in X. Lastly, assume AH equal
            to the abscissa SX, and thence find again the length AK; and the
            lengths, which are to the assumed length AI, and this last AH, as the
            length AK known by experiment, to the length AK last found, will be
            the true lengths AI and AH, which were to be found. But these being
            given, there will be given also the resisting force of the medium in
            the place A, it being to the force of gravity as AH to 4/3AI.
            Let the density of the medium be increased by Rule 4, and if the
            resisting force just found be increased in the same ratio, it will
            become still more accurate.
        

        
            Rule 8. The lengths AH, HX being found; let
            there be now required the position of the line AH, according to which
            a projectile thrown with that given velocity shall fall upon any point
            K. At the joints A and K, erect the lines AC, KF perpendicular to the
            horizon; whereof let AC be drawn downwards, and be equal to AI or ½HX.
            With the asymptotes AK, KF, describe an hyperbola, whose conjugate
            shall pass through the point C; and from the centre A, with the
            interval AH, describe a circle cutting that hyperbola in the point H;
            then the projectile thrown in the direction of the right line AH will
            fall upon the point K.   Q.E.I.   For the point H,
            because of the given length AH, must be somewhere in the circumference
            of the described circle. Draw CH meeting AK and KF in E and F; and
            because CH, MX are parallel, and AC, AI equal, AE will be equal to AM,
            and therefore also equal to KN. But CE is to AE as FH to KN, and
            therefore CE and FH are equal. Therefore the point H falls upon the
            hyperbolic curve described with the asymptotes AK, KF whose conjugate
            passes through the point C; and is therefore found in the
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            common intersection of this hyperbolic curve
            and the circumference of the described circle.   Q.E.D. It
            is to be observed that this operation is the same, whether the right
            line AKN be parallel to the horizon, or inclined thereto in any angle;
            and that from two intersections H, h, there arise two angles
            NAH, NAh; and that in mechanical practice it is sufficient
            once to describe a circle, then to apply a ruler CH, of an
            indeterminate length, so to the point C, that its part FH, intercepted
            between the circle and the right line FK, may be equal to its part CE
            placed between the point C and the right line AK
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            What has been said of hyperbolas may be easily applied to parabolas.
            For if a parabola be represented by XAGK, touched by a right line XV
            in the vertex X, and the ordinates IA, VG be as any powers XIn,
            XVn, of the abscissas XI, XV; draw XT, GT, AH, whereof let
            XT be parallel to VG, and let GT, AH touch the parabola in G and A:
            and a body projected from any place A, in the direction of the right
            line AH, with a due velocity, will describe this parabola, if the
            density of the medium in each of the places G be reciprocally as the
            tangent GT. In that case the velocity in G will be the same as would
            cause a body, moving in a nonresisting space, to describe a conic
            parabola, having G for its vertex, VG produced downwards for its
            diameter, and 2GT2

            (nn − n) x VG for its latus
            rectum. And the resisting force in G will be to the force of gravity
            as GT to 2nn −
            2n

            n − 2VG. Therefore if NAK
            represent an horizontal line, and both the density of the medium at A,
            and the velocity with which the body is projected, remaining the same,
            the angle NAH be any how altered, the lengths AH, AI, HX will remain;
            and thence will be given the vertex X of the parabola, and the
            position of the right line XI; and by taking VG to IA as XVn
            to XIn, there will be given all the points G of the
            parabola, through which the projectile will pass.
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Book 2.3



    
        Section iii.

        
            
                Of the motions of bodies which are resisted partly in the ratio
                of the velocities, and partly in the duplicate of the same ratio.
            

        

    

    
        Proposition xi. Theorem viii.

            
                
                    If a body be resisted partly in the ratio and partly in the
                    duplicate ratio of its velocity, and moves in a similar medium by
                    its innate force only; and the times be taken in arithmetical
                    progression; then quantities reciprocally proportional to the
                    velocities, increased by a certain given quantity, will be in
                    geometrical progression.
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            With the centre C, and the rectangular asymptotes CADd and
            CH, describe an hyperbola BEe, and let AB, DE, de,
            be parallel to the asymptote CH. In the asymptote CD let A, G be given
            points; and if the time be expounded by the hyperbolic area ABED
            uniformly increasing, I say, that the velocity may be expressed by the
            length DF, whose reciprocal GD, together with the given line CG,
            compose the length CD increasing in a geometrical progression.
        

        
            For let the areola DEed be the least given increment of the
            time, and Dd will be reciprocally as DE, and therefore
            directly as CD. Therefore the decrement of 1

            GD, which (by Lem. II. Book II) is
            Dd

            GD2, will be also as
            CD

            GD2 or 
            CG+GD

            GD2, that is, as 
            1

            GD + CG

            GD2 . Therefore the
            time ABED uniformly increasing by the addition of the given particles
            EDde, it follows that 1

            GD decreases in the same ratio with
            the velocity. For the decrement of the velocity is as the resistance,
            that is (by the supposition), as the sum of two quantities, whereof
            one is as the velocity, and the other as the square of the velocity;
            and the decrement of 1

            GD is as the sum of the quantities
            1

            GD and CG

            GD2, whereof the first is
            1

            GD itself, and the last 
            CG

            GD2 is as 
            1

            GD2 : therefore 
            1

            GD is as the velocity, the decrements
            of both being analogous. And if the quantity GD reciprocally
            proportional to 1

            GD, be augmented by the given
            quantity CG; the sum CD, the time ABED uniformly increasing, will
            increase in a geometrical progression.   Q.E.D.
        

        
            Cor. 1. Therefore,
            if, having the points A and G given, the time be expounded by the
            hyperbolic area ABED, the velocity may be expounded by 
            1

            GD the reciprocal of GD.
        

        
            Cor. 2. And by taking GA to GD as the
            reciprocal of the velocity at the beginning to the reciprocal of the
            velocity at the end of any time ABED, the point G will be found. And
            that point being found the velocity may be found from any other time
            given.
        

    

    
        Proposition xii. Theorem ix.

            
                
                    The same things being supposed, I say, that if the spaces
                    described are taken in arithmetical progression, the velocities
                    augmented by a certain given quantity will be in geometrical progression.
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            In the asymptote CD let there be given the point R, and, erecting the
            perpendicular RS meeting the hyperbola in S, let the space described
            be expounded by the hyperbolic area RSED; and the velocity will be as
            the length GD, which, together with the given line CG, composes a
            length CD decreasing in a geometrical progression, while the space
            RSED increases in an arithmetical progression.
        

        
            For, because the increment EDde of the space is given, the
            lineola Dd, which is the decrement of GD, will be
            reciprocally as ED, and therefore directly as CD; that is, as the sum
            of the same GD and the given length CG. But the decrement of the
            velocity, in a time reciprocally proportional thereto, in which the
            given particle of space DdeE is described, is as the
            resistance and the time conjunctly, that is, directly as the sum of
            two quantities, whereof one is as the velocity, the other as the
            square of the velocity, and inversely as the velocity; and therefore
            directly as the sum of two quantities, one of which is given, the
            other is as the velocity. Therefore the decrement both of the velocity
            and the line GD is as a given quantity and a decreasing quantity
            conjunctly; and, because the decrements are analogous, the decreasing
            quantities will always be analogous; viz., the velocity, and the line
            GD.   Q.E.D.
        

        
            Cor. 1. If the velocity be expounded by the
            length GD, the space described will be as the hyperbolic area DESR.
        

        
            Cor. 2. And if the point R be assumed any
            how, the point G will be found, by taking GR to GD as the velocity at
            the beginning to the velocity after any space RSED is described. The
            point G being given, the space is given from the given velocity: and
            the contrary.
        

        
            Cor. 3. Whence since (by Prop. XI) the
            velocity is given from the given time, and
            (by this Prop.) the space is given from the given velocity; the space
            will be given from the given time: and the contrary.
        

    

    
        Proposition xiii. Theorem X.

            
                
                    Supposing that a body attracted downwards by an uniform gravity
                    ascends or descends in a right line; and that the same is resisted
                    partly in the ratio of its velocity, and partly in the duplicate
                    ratio thereof: I say, that, if right lines parallel to the
                    diameters of a circle and an hyperbola, be drawn through the ends
                    of the conjugate diameters, and the velocities be as some segments
                    of those parallels drawn from a given point, the times will be as
                    the sectors of the areas cut off by right lines drawn from the
                    centre to the ends of the segments; and the contrary.
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            Case 1. Suppose first that the body is
            ascending, and from the centre D, with any semi-diameter DB, describe
            a quadrant BETF of a circle, and through the end B of the
            semi-diameter DB draw the indefinite line BAP, parallel to the
            semi-diameter DF. In that line let there be given the point A, and
            take the segment AP proportional to the velocity. And since one part
            of the resistance is as the velocity, and another part as the square
            of the velocity, let the whole resistance be as AP² + 2BAP. Join DA,
            DP, cutting the circle in E and T, and let the gravity be expounded by
            DA², so that the gravity shall be to the resistance in P as DA² to AP²
            + 2BAP; and the time of the whole ascent will be as the sector EDT of
            the circle.
        

        
            For draw DVQ, cutting off the moment PQ of the velocity AP, and the
            moment DTV of the sector DET answering to a given moment of time; and
            that decrement PQ of the velocity will be as the sum of the forces of
            gravity DA² and of resistance AP² + 2BAP, that is (by Prop. XII Book
            II, Elem.), as DP². Then the area DPQ, which is proportional to PQ, is
            as DP², and the area DTV, which is to the area DPQ as DT² to DP², is
            as the given quantity DT². Therefore the area EDT decreases uniformly
            according to the rate of the future time, by subduction of given
            particles DTV, and is therefore proportional to the time of the whole
            ascent.   Q.E.D.
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            Case 2. If the velocity in the ascent of the
            body be expounded by the length AP as before, and the resistance be
            made as AP² + 2BAP, and if the force of
            gravity be less than can be expressed by DA²; take BD of such a
            length, that AB² − BD² maybe proportional
            to the gravity, and let DF be perpendicular and equal to
            DB, and through the vertex F describe the hyperbola FTVE, whose
            conjugate semi-diameters are DB and DF, and which cuts DA in E, and
            DP, DQ in T and V; and the time of the whole ascent will be as the
            hyperbolic sector TDE.
        

        
            For the decrement PQ of the velocity, produced in a given particle of
            time, is as the sum of the resistance AP² + 2BAP and of the gravity
            AB² − BD², that is, as BP² −
            BD². But the area DTV is to the area DPQ as DT² to DP²; and,
            therefore, if GT be drawn perpendicular to DF, as GT² or GD²
            − DF² to BD², and as GD² to BP², and, by division, as DF² to
            BP² − BD². Therefore since the area DPQ is
            as PQ, that is, as BP² − BD², the area DTV
            will be as the given quantity DF². Therefore the area EDT decreases
            uniformly in each of the equal particles of time, by the subduction of
            so many given particles DTV, and therefore is proportional to the
            time.   Q.E.D.
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            Case 3. Let AP be the velocity in the descent
            of the body, and AP² + 2BAP the force of
            resistance, and BD² − AB² the force of
            gravity, the angle DBA being a right one. And if with the centre D,
            and the principal vertex B, there be described a rectangular hyperbola
            BETV cutting DA, DP, and DQ produced in E, T, and V; the sector DET of
            this hyperbola will be as the whole time of descent.
        

        
            For the increment PQ of the velocity, and the area DPQ proportional
            to it, is as the excess of the gravity above the resistance, that is,
            as BD² − AB² − 2BAxAP − AP² or BD²
            − BP². And the area DTV is to the area DPQ as DT² to DP²; and
            therefore as GT² or GD² − BD² to BP², and
            as GD² to BD², and, by division, as BD² to BD² −
            BP². Therefore since the area DPQ is as BD²
            − BP², the area DTV will be as the given quantity BD².
            Therefore the area EDT increases uniformly in the several equal
            particles of time by the addition of as many given particles DTV, and
            therefore is proportional to the time of the descent.
              Q.E.D.
        

        
            Cor. If with the centre D and the
            semi-diameter DA there be drawn through the vertex A an arc At
            similar to the arc ET, and similarly subtending the angle ADT, the
            velocity AP will be to the velocity which the body in the time EDT, in
            a non−resisting space, can lose in its ascent, or acquire in its
            descent, as the area of the triangle DAP to the area of the sector DAt;
            and therefore is given from the time given. For the velocity in a
            non-resisting medium is proportional to the time, and therefore to
            this sector; in a resisting medium, it is as the triangle; and in both
            mediums, where it is least, it approaches to the ratio of equality, as
            the sector and triangle do.
        


        

    

    
        Scholium


        
            One may demonstrate also that case in the ascent of the body, where
            the force of gravity is less than can be expressed by DA² or AB² +
            BD², and greater than can be expressed by AB² − DB², and must be
            expressed by AB². But I hasten to other things.
        

    

    
        Proposition xiv. Theorem xi.

            
                
                    The same things being supposed, I say, that the space described
                   in the ascent or descent is as the difference of the area by which
                   the time is expressed, and of some other area which is augmented
                   or diminished in an arithmetical progression; if the forces
                   compounded of the resistance and the gravity be taken, in a
                   geometrical progression.
                
            

        

        
            Take AC (in these three figures) proportional to the gravity, and AK
            to the resistance; but take them on the same side of the point A, if the
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            body is descending, otherwise on the
            contrary. Erect Ab, which make to DB as DB² to 4BAC: and to
            the rectangular asymptotes CK, CH, describe the hyperbola bN;
            and, erecting KN perpendicular to CK, the area AbNK will be
            augmented or diminished in an arithmetical progression, while the
            forces CK are taken in a geometrical progression. I say, therefore,
            that the distance of the body from its greatest altitude is as the
            excess of the area AbNK above the area DET.
        

        
            For since AK is as the resistance, that is, as AP² x 2BAP; assume any
            given quantity Z, and put AK equal to AP2+2BAP

            Z; then (by
            Lem. II of this Book) the moment KL of AK will be equal to 
            2APQ + 2BA x PQ

            Z or 2BPQ

            Z, and the moment KLON of the area AbNK
            will be equal to 2BPQ x LO

            Z or BPQ
            x BD3

            2Z x CK x AB.
        

        
            Case 1. Now if the body ascends, and the
            gravity be as AB² + BD², BET being a circle, the line AC, which is
            proportional to the gravity, will be AB2+BD2

            Z, and DP² or AP² + 2BAP + AB² + BD²
            will be AK x Z + AC x Z or CK x Z; and therefore the area DTV will be
            to the area DPQ as DT² or DB² to CK x Z.
        

        
            Case 2. If the body ascends, and the gravity
            be as AB² − BD², the line AC will be AB2+BD2

            Z, and DT² will be to DP² as DF² or DB²
            to BP² − BD² or AP² + 2BAP + AB² − BD², that is, to AK x Z + AC x Z or CK x Z.
            [image: Mathematical Principles of Natural Philosophy figure: 283-2]
            And therefore the area DTV will be to the area DPQ as DB² to CK x Z.
        

        
            Case 3. And by the same reasoning, if the
            body descends, and therefore the gravity is as BD² - AB², and the line
            AC becomes equal to BD2-AB2

            Z; the area DTV will be to the area
            DPQ, as DB² to CK x Z: as above.
        

        
            Since, therefore, these areas are always in this ratio, if for the
            area DTV, by which the moment of the time,
            always equal to itself, is expressed, there be put any determinate
            rectangle, as BD x m, the area DPQ, that is, ½BD x PQ, will
            be to BD x m as CK x Z to BD². And thence PQ x BD³ becomes
            equal to 2BD x m x CK x Z, and the moment KLON of the area AbNK,
            found before, becomes BP x BD x m

            AB. From the area DET subduct its
            moment DTV or BD x m, and there will remain 
            AP x BD x m

            AB. Therefore the difference of the
            moments, that is, the moment of the difference of the areas, is equal
            to AP x BD x m

            AB; and therefore (because of the given
            quantity BD x m

            AB ) as the velocity AP; that is, as
            the moment of the space which the body describes in its ascent or
            descent. And therefore the difference of the areas, and that space,
            increasing or decreasing by proportional moments, and beginning
            together or vanishing together, are proportional.   Q.E.D.
        

        
            Cor. If the length, which arises by applying
            the area DET to the line BD, be called M; and another length V be
            taken in that ratio to the length M, which the line DA has to the line
            DE; the space which a body, in a resisting medium, describes in its
            whole ascent or descent, will be to the space which a body, in a
            non-resisting medium, falling from rest, can describe in the same
            time, as the difference of the aforesaid areas to 
            BD x V2

            AB; and therefore is given from the
            time given. For the space in a non-resisting medium is in a duplicate
            ratio of the time, or as V²; and, because BD and AB are given, as
            BD x V2

            AB. This area is equal to the area
            DA2 x BD x M2

            DE2 x AB and the moment of M
            is m; and therefore the moment ot this area is 
            DA2 x BD x 2M x m

            DE2 x AB. But this moment is
            to the moment of the difference of the aforesaid areas DET and AbNK,
            viz., to AB x BD x m

            AB, as DA2
            x BD x M

            DE2 to ½BD x AP, or as
            DA2

            DE2 into DET to DAP; and,
            therefore, when the areas DET and DAP are least, in the ratio of
            equality. Therefore the area BD x
            V2

            AB and the difference of the areas DET
            and AbNK, when all these areas are least, have equal moments;
            and are therefore equal. Therefore since the velocities, and therefore
            also the spaces in both mediums described together, in the beginning
            of the descent, or the end of the ascent, approach to equality, and
            therefore are then one to another as the area
            BD x V2

            AB, and the difference of the areas DET
            and AbNK; and moreover since the space, in a non-resisting
            medium, is perpetually as BD x V2

            AB, and the space, in a resisting
            medium, is perpetually as the difference of the areas DET and AbNK;
            it necessarily follows, that the spaces, in both mediums, described in
            any equal times, are one to another as that area 
            BD x V2

            AB, and the difference of the areas DET
            and AbNK.   Q.E.D.
        

    

    
        Scholium.


        
            The resistance of spherical bodies in fluids arises partly from the
            tenacity, partly from the attrition, and partly from the density of
            the medium. And that part of the resistance which arises from the
            density of the fluid is, as I said, in a duplicate ratio of the
            velocity; the other part, which arises from the tenacity of the fluid,
            is uniform, or as the moment of the time; and, therefore, we might now
            proceed to the motion of bodies, which are resisted partly by an
            uniform force, or in the ratio of the moments of the time, and partly
            in the duplicate ratio of the velocity. But it is sufficient to have
            cleared the way to this speculation in Prop. VIII and IX foregoing,
            and their Corollaries. For in those Propositions, instead of the
            uniform resistance made to an ascending body arising from its gravity,
            one may substitute the uniform resistance which arises from the
            tenacity of the medium, when the body moves by its vis insita
            alone; and when the body ascends in a right line, add this uniform
            resistance to the force of gravity, and subduct it when the body
            descends in a right line. One might also go on to the motion of bodies
            which are resisted in part uniformly, in part in the ratio of the
            velocity, and in part in the duplicate ratio of the same velocity. And
            I have opened a way to this in Prop. XIII and XIV foregoing, in which
            the uniform resistance arising from the tenacity of the medium may be
            substituted for the force of gravity, or be compounded with it as
            before. But I hasten to other things.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 2.4



    
        Section iv.

        Of the circular motion of bodies in resisting mediums.


    

    
        Lemma iii.

            
                Let PQR be a spiral cutting all the radii SP,
                SQ, SR, &c., in equal angles. Draw the right line PT touching
                the spiral in any point P, and cutting the radius SQ
                In T; draw PO, QO perpendicular to the
                spiral, and meeting in O, and join SO. I say,
                that if the points P and Q approach and
                coincide, the angle PSO will become a right angle, and
                the ultimate ratio of the rectangle TQ x 2PS to PQ²
                Will be the ratio of equality.
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            For from the right angles OPQ, OQR, subduct the equal angles SPQ,
            SQR, and there will remain the equal angles OPS, OQS. Therefore a
            circle which passes through the points OSP will pass also through the
            point Q. Let the points P and Q coincide, and this circle will touch
            the spiral in the place of coincidence PQ, and will therefore cut the
            right line OP perpendicularly. Therefore OP will become a diameter of
            this circle, and the angle OSP, being in a semi-circle, becomes a
            right one.   Q.E.D.
        

        
            Draw QD, SE perpendicular to OP, and the ultimate ratios of the lines
            will be as follows: TQ to PD as TS or PS to PE, or 2PO to 2PS; and PD
            to PQ as PQ to 2PO; and, ex aequo perturbatè, to TQ to PQ as
            PQ to 2PS. Whence PQ² becomes equal to TQ x 2PS.   Q.E.D.
        

    

    
        Proposition xv. Theorem xii.

            
                
                    If the density of a medium in each place thereof be
                    reciprocally as the distance of the places from an immovable
                    centre, and the centripetal force be in the duplicate ratio of the
                    density; I say, that a body may revolve in a spiral which cuts all
                    the radii drawn from that centre in a given angle.
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            Suppose every thing to be as in the foregoing Lemma, and produce SQ
            to V so that SV may be equal to SP. In any time let a body, in a
            resisting medium, describe the least arc PQ, and in double the time
            the least arc PR; and the decrements of those arcs arising from the
            resistance, or their differences from the arcs which would be
            described in a non-resisting medium in the same times, will be to each
            other as the squares of the times in which they are generated;
            therefore the decrement of the arc PQ is the
            fourth part of the decrement of the arc PR. Whence also if the area QSr
            be taken equal to the area PSQ, the decrement of the arc PQ will be
            equal to half the lineola Rr; and therefore the force of
            resistance and the centripetal force are to each other as the lineola
            ½Rr and TQ which they generate in the same time. Because the
            centripetal force with which the body is urged in P is reciprocally as
            SP², and (by Lem. X, Book I) the lineola TQ, which is generated by
            that force, is in a ratio compounded of the ratio of this force and
            the duplicate ratio of the time in which the arc PQ is described (for
            in this case I neglect the resistance, as being infinitely less than
            the centripetal force), it follows that TQ x SP², that is (by the last
            Lemma), ½PQ² x SP, will be in a duplicate ratio of the time, and
            therefore the time is as PQ x√SP; and the
            velocity of the body, with which the arc PQ is described in that time,
            as PQ

            PQ x √SP or 
            1

            √SP, that is, in the subduplicate
            ratio of SP reciprocally. And, by a like reasoning, the velocity with
            which the arc QR is described, is in the subduplicate ratio of SQ
            reciprocally. Now those arcs PQ and QR are as the describing
            velocities to each other; that is, in the subduplicate ratio of SQ to
            SP, or as SQ to √(SP x SQ); and, because of
            the equal angles SPQ, SQr, and the equal areas PSQ, QSr,
            the arc PQ is to the arc Qr as SQ to SP. Take the differences
            of the proportional consequents, and the arc PQ will be to the arc Rr
            as SQ to SP − √(SP x SQ), or ½VQ. For the
            points P and Q coinciding, the ultimate ratio of SP
            − √(SP x SQ) to ½VQ is the ratio of equality. Because the
            decrement of the arc PQ arising from the resistance, or its double Rr,
            is as the resistance and the square of the time conjunctly, the
            resistance will be as Rr

            PQ2 x SP. But PQ was to Rr
            as SQ to ½VQ, and thence Rr

            PQ2 x SP becomes as
            ½VQ

            PQ x SP x SQ, or as 
            ½OS

            OP x SP2. For the points P
            and Q coinciding, SP and SQ coincide also, and the angle PVQ becomes a
            right one; and, because of the similar triangles PVQ, PSO, PQ becomes
            to ½VQ as OP to ½OS. Therefore OS

            OP x SP2 is as the
            resistance, that is, in the ratio of the density of the medium in P
            and the duplicate ratio of the velocity conjunctly. Subduct the
            duplicate ratio of the velocity, namely, the ratio 
            1

            SP, and there will remain the density
            of the medium in P, as OS

            OP x SP. Let the spiral be given,
            and, because of the given ratio of OS to OP, the density of the medium
            in P will be as 1

            SP. Therefore in a medium whose
            density is reciprocally as SP the distance from
            the centre, a body will revolve in this spiral.   Q.E.D.
        

        
            Cor. 1. The velocity in any place P, is
            always the same wherewith a body in a non-resisting medium with the
            same centripetal force would revolve in a circle, at the same distance
            SP from the centre.
        

        
            Cor. 2. The density of the medium, if the
            distance SP be given, is as OS

            OP, but if that distance is not given,
            as OS

            OP x SP. And thence a spiral may be
            fitted to any density of the medium.
        

        
            Cor. 3. The force of the resistance in any
            place P is to the centripetal force in the same place as ½OS to OP.
            For those forces are to each other as ½Rr and TQ, or as
            ¼VQ x PQ

            SQ and ½PQ2

            SP, that is, as ½VQ and PQ, or ½OS and
            OP. The spiral therefore being given, there is given the proportion of
            the resistance to the centripetal force; and, vice versa, from that
            proportion given the spiral is given.
        

        
            Cor. 4. Therefore the body cannot revolve in
            this spiral, except where the force of resistance is less than half
            the centripetal force. Let the resistance be made equal to half the
            centripetal force, and the spiral will coincide with the right line
            PS, and in that right line the body will descend to the centre with a
            velocity that is to the velocity, with which it was proved before, in
            the case of the parabola (Theor. X, Book I), the descent would be made
            in a non-resisting medium, in the subduplicate ratio of unity to the
            number two. And the times of the descent will be here reciprocally as
            the velocities, and therefore given.
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            Cor. 5. And because at equal distances from
            the centre the velocity is the same in the spiral PQR as it is in the
            right line SP, and the length of the spiral is to the length of the
            right line PS in a given ratio, namely, in the ratio of OP to OS; the
            time of the descent in the spiral will be to the time of the descent
            in the right line SP in the same given ratio, and therefore given.
        

        
            Cor. 6. If from the centre S, with any two
            given intervals, two circles are described; and these circles
            remaining, the angle which the spiral makes with the radius PS be any
            how changed; the number of revolutions which the body can complete in
            the space between the circumferences of those circles, going round in
            the spiral from one circumference to another, will be as 
            PS

            OS, or as the tangent of the angle
            which the spiral makes with the radius PS; and the
            time of the same revolutions will be as OP

            OS, that is, as the secant of the same
            angle, or reciprocally as the density of the medium.
        

        [image: Mathematical Principles of Natural Philosophy figure: 290]

        
            Cor. 7. If a body, in a medium whose density
            is reciprocally as the distances of places from the centre, revolves
            in any curve AEB about that centre, and cuts the first radius AS in
            the same angle in B as it did before in A, and that with a velocity
            that shall be to its first velocity in A reciprocally in a
            subduplicate ratio of the distances from the centre (that is, as AS to
            a mean proportional between AS and BS) that body will continue to
            describe innumerable similar revolutions BFC, CGD, &c., and by its
            intersections will distinguish the radius AS into parts AS, BS, CS,
            DS, &c., that are continually proportional. But the times of the
            revolutions will be as the perimeters of the orbits AEB, BFC, CGD,
            &c., directly, and the velocities at the beginnings A, B, C of
            those orbits inversely; that is as AS3/2,
            BS3/2,
            CS3/2. And the
            whole time in which the body will arrive at the centre, will be to the
            time of the first revolution as the sum of all the continued
            proportionals AS3/2,
            BS3/2,
            CS3/2, going on
            ad infinitum, to the first term AS3/2;
            that is, as the first term AS3/2
            to the difference of the two first AS3/2
            − BS3/2, or as ⅔AS to AB
            very nearly. Whence the whole time may be easily found.
        

        
            Cor. 8. From hence also may be deduced, near
            enough, the motions of bodies in mediums whose density is either
            uniform, or observes any other assigned law. From the centre S, with
            intervals SA, SB, SC, &c., continually proportional, describe as
            many circles; and suppose the time of the revolutions between the
            perimeters of any two of those circles, in the medium whereof we
            treated, to be to the time of the revolutions between the same in the
            medium proposed as the mean density of the proposed medium between
            those circles to the mean density of the medium whereof we treated,
            between the same circles, nearly: and that the secant of the angle in
            which the spiral above determined, in the medium whereof we treated,
            cuts the radius AS, is in the same ratio to the secant of the angle in
            which the new spiral, in the proposed medium, cuts the same radius:
            and also that the number of all the revolutions between the same two
            circles is nearly as the tangents of those angles. If this be done
            every where between every two circles, the motion will be continued
            through all the circles. And by this means one may without difficulty
            conceive at what rate and in what time bodies ought to revolve in any
            regular medium.
        

        
            Cor. 9. And although
            these motions becoming eccentrical should be performed in spirals
            approaching to an oval figure, yet, conceiving the several revolutions
            of those spirals to be at the same distances from each other, and to
            approach to the centre by the same degrees as the spiral above
            described, we may also understand how the motions of bodies may be
            performed in spirals of that kind.
        

    

    
        Proposition xvi. Theorem xiii.

            
                
                    If the density of the medium in each of the places be
                    reciprocally as the distance of the places from the immoveable
                    centre, and the centripetal force be reciprocally as any power of
                    the same distance, I say, that the body may revolve in a spiral
                    intersecting all the radii drawn from that centre in a given angle.
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            This is demonstrated in the same manner as the foregoing Proposition.
            For if the centripetal force in P be reciprocally as any power SPn+1
            of the distance SP whose index is n + 1; it will be
            collected, as above, that the time in which the body describes any arc
            PQ, will be as PQ x PS½n; and
            the resistance in P as Rr

            PQ2 x SPn, or
            as (1 − ½n) x VQ

            PQ x SPn x SQ, and therefore
            as (1 − ½n) x OS

            OP x SPn+1, that is (because
            (1 − ½n) x OS

            OP is a given quantity), reciprocally
            as SPn+1. And therefore, since the velocity is reciprocally
            as SP½n, the density in P will be reciprocally as SP.
        

        
            Cor. 1. The resistance is to the centripetal
            force as (1 − ½n) x OS to OP.
        

        
            Cor. 2. If the centripetal force be
            reciprocally as SP³, 1 − ½n will be = 0; and therefore the
            resistance and density of the medium will be nothing, as in Prop. IX,
            Book I.
        

        
            Cor. 3. If the centripetal force be
            reciprocally as any power of the radius SP, whose index is greater
            than the number 3, the affirmative resistance will be changed into a
            negative.
        

    

    
        Scholium.


        
            This Proposition and the former, which relate to mediums of unequal
            density, are to be understood of the motion of bodies that are so
            small, that the greater density of the medium on one side of the body
            above that on the other is not to be considered. I suppose also the
            resistance, caeteris paribus, to be proportional to its
            density. Whence, in mediums whose force of
            resistance is not as the density, the density must be so much
            augmented or diminished, that either the excess of the resistance may
            be taken away, or the defect supplied.
        

    

    
        Proposition xvii. Problem iv.

            
                
                    To find the centripetal force and the resisting force of the
                    medium, by which a body, the law of the velocity being given,
                    shall revolve in a given spiral.
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            Let that spiral be PQR. From the velocity, with which the body goes
            over the very small arc PQ, the time will be given; and from the
            altitude TQ, which is as the centripetal force, and the square of the
            time, that force will be given. Then from the difference RSr
            of the areas PSQ and QSR described in equal particles of time, the
            retardation of the body will be given; and from the retardation will
            be found the resisting force and density of the medium.
        

    

    
        Proposition xviii. Problem V.

            
                
                    The law of centripetal force being given, to find the density
                    of the medium in each of the places thereof, by which a body may
                    describe a given spiral.
                
            

        

        
            From the centripetal force the velocity in each place must be found;
            then from the retardation of the velocity the density of the medium is
            found, as in the foregoing Proposition.
        

        
            But I have explained the method of managing these Problems in the
            tenth Proposition and second Lemma of this Book; and will no longer
            detain the reader in these perplexed disquisitions. I shall now add
            some things relating to the forces of progressive bodies, and to the
            density and resistance of those mediums in which the motions hitherto
            treated of, and those akin to them, are performed.
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The Mathematical Principles of Natural Philosophy
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Book 2.5



    
        Section V.

        Of the density and compression of fluids; and of hydrostatics.

    

    
        The Definition of a Fluid.

            
                
                    A fluid is any body whose parts yield to any force impressed on
                    it, by yielding, are easily moved among themselves.
                
            

        

    

    
        Proposition xix. Theorem xiv

            
                
                    All the parts of a homogeneous and unmoved fluid included in
                    any unmoved vessel, and compressed on every side (setting aside
                    the consideration of condensation, gravity, and all centripetal
                    forces), will be equally pressed on every side, and remain in
                    their places without any motion arising from that pressure.
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            Case 1. Let a fluid be included in the
            spherical vessel ABC, arid uniformly compressed on every side: I say,
            that no part of it will be moved by that pressure. For if any part, as
            D, be moved, all such parts at the same distance from the centre on
            every side must necessarily be moved at the same time by a like
            motion; because the pressure of them all is similar and equal; and all
            other motion is excluded that does not arise from that pressure. But
            if these parts come all of them nearer to the centre, the fluid must
            be condensed towards the centre, contrary to the supposition. If they
            recede from it, the fluid must be condensed towards the circumference;
            which is also contrary to the supposition. Neither can they move in
            any one direction retaining their distance from the centre, because
            for the same reason, they may move in a contrary direction; but the
            same part cannot be moved contrary ways at the same time. Therefore no
            part of the fluid will be moved from its place.   Q.E.D.
        

        
            Case 2. I say now, that all the spherical
            parts of this fluid are equally pressed on every side. For let EF be a
            spherical part of the fluid; if this be not pressed equally on every
            side, augment the lesser pressure till it be pressed equally on every
            side; and its parts (by Case 1) will remain in their places. But
            before the increase of the pressure, they would remain in their places
            (by Case 1); and by the addition of a new pressure they will be moved,
            by the definition of a fluid, from those places. Now these two
            conclusions contradict each other. Therefore it was false to say that
            the sphere EF was not pressed equally on every side.
              Q.E.D.
        

        
            Case 3. I say besides, that different
            spherical parts have equal pressures. For the contiguous spherical
            parts press each other mutually and equally in the point of contact
            (by Law III). But (by Case 2) they are pressed on every side with the
            same force. Therefore any two spherical parts not contiguous,
            since an intermediate spherical part can touch both, will be pressed
            with the same force.   Q.E.D.
        

        
            Case 4. I say now, that all the parts of the
            fluid are every where pressed equally. For any two parts may be
            touched by spherical parts in any points whatever; and there they will
            equally press those spherical parts (by Case 3), and are reciprocally
            equally pressed by them (by Law III).   Q.E.D.
        

        
            Case 5. Since, therefore, any part GHI of the
            fluid is inclosed by the rest of the fluid as in a vessel, and is
            equally pressed on every side; and also its parts equally press one
            another, and are at rest among themselves; it is manifest that all the
            parts of any fluid as GHI, which is pressed equally on every side, do
            press each other mutually and equally, and are at rest among
            themselves.   Q.E.D.
        

        
            Case 6. Therefore if that fluid be included
            in a vessel of a yielding substance, or that is not rigid, and be not
            equally pressed on every side, the same will give way to a stronger
            pressure, by the Definition of fluidity.
        

        
            Case 7. And therefore, in an inflexible or
            rigid vessel, a fluid will not sustain a stronger pressure on one side
            than on the other, but will give way to it, and that in a moment of
            time; because the rigid side of the vessel does not follow the
            yielding liquor. But the fluid, by thus yielding, will press against
            the opposite side, and so the pressure will tend on every side to
            equality. And because the fluid, as soon as it endeavours to recede
            from the part that is most pressed, is withstood by the resistance of
            the vessel on the opposite side, the pressure will on every side be
            reduced to equality, in a moment of time, without any local motion:
            and from thence the parts of the fluid (by Case 5) will press each
            other mutually and equally, and be at rest among themselves.
              Q.E.D.
        

        
            Cor. Whence neither will a motion of the
            parts of the fluid among themselves be changed by a pressure
            communicated to the external superficies, except so far as either the
            figure of the superficies may be somewhere altered, or that all the
            parts of the fluid, by pressing one another more in tensely or
            remissly, may slide with more or less difficulty among them selves.
        

    

    
        Proposition xx. Theorem xv.

            
                
                    If all the parts of a spherical fluid, homogeneous at equal
                    distances from the centre, lying on a spherical concentric bottom,
                    gravitate towards the centre of the whole, the bottom will sustain
                    the weight of a cylinder, whose base is equal to the superficies
                    of the bottom, and whose altitude is the same with that of the incumbent fluid.
                
            

        

        
            Let DHM be the superficies of the bottom, and AEI the upper
            superficies of the fluid. Let the fluid be distinguished into
            concentric orbs of equal thickness, by the innumerable spherical
            superficies BFK, CGL: and
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            conceive the force of gravity to act only in the upper superficies of
            every orb, and the actions to be equal on the equal parts of all the
            superficies. Therefore the upper superficies AE is pressed by the
            single force of its own gravity, by which all the parts of the upper
            orb, and the second superficies BFK, will (by Prop. XIX), according to
            its measure, be equally pressed. The second superficies BFK is pressed
            likewise by the force of its own gravity, which, added to the former
            force, makes the pressure double. The third superficies GGL is,
            according to its measure, acted on by this pressure and the force of
            its own gravity besides, which makes its pressure triple. And in like
            manner the fourth superficies receives a quadruple pressure, the fifth
            superficies a quintuple, and so on. Therefore the pressure acting on
            every superficies is not as the solid quantity of the incumbent fluid,
            but as the number of the orbs reaching to the upper surface of the
            fluid; and is equal to the gravity of the lowest orb multiplied by the
            number of orbs: that is, to the gravity of a solid whose ultimate
            ratio to the cylinder above-mentioned (when the number of the orbs is
            increased and their thickness diminished, ad infinitum, so
            that the action of gravity from the lowest superficies to the
            uppermost may become continued) is the ratio of equality. Therefore
            the lowest superficies sustains the weight of the cylinder above
            determined.   Q.E.D.   And by a like reasoning the
            Proposition will be evident, where the gravity of the fluid decreases
            in any assigned ratio of the distance from the centre, and also where
            the fluid is more rare above and denser below.   Q.E.D.
        

        
            Cor. 1. Therefore the bottom is not pressed
            by the whole weight of the incumbent fluid, but only sustains that
            part of it which is described in the Proposition; the rest of the
            weight being sustained archwise by the spherical figure of the fluid.
        

        
            Cor. 2. The quantity of the pressure is the
            same always at equal distances from the centre, whether the
            superficies pressed be parallel to the horizon, or perpendicular, or
            oblique; or whether the fluid, continued upwards from the compressed
            superficies, rises perpendicularly in a rectilinear direction, or
            creeps obliquely through crooked cavities and canals, whether those
            passages be regular or irregular, wide or narrow. That the pressure is
            not altered by any of these circumstances, may be collected by
            applying the demonstration of this Theorem to the several cases of
            fluids.
        

        
            Cor. 3. From the same demonstration it may
            also be collected (by Prop. XIX), that the parts of a heavy fluid
            acquire no motion among themselves by the pressure of the incumbent
            weight, except that motion which arises from condensation.
        

        
            Cor. 4. And therefore
            if another body of the same specific gravity, incapable of
            condensation, be immersed in this fluid, it will acquire no motion by
            the pressure of the incumbent weight: it will neither descend nor
            ascend, nor change its figure. If it be spherical, it will remain so,
            notwithstanding the pressure; if it be square, it will remain square;
            and that, whether it be soft or fluid; whether it swims freely in the
            fluid, or lies at the bottom. For any internal part of a fluid is in
            the same state with the submersed body; and the case of all submersed
            bodies that have the same magnitude, figure, and specific gravity, is
            alike. If a submersed body, retaining its weight, should dissolve and
            put on the form of a fluid, this body, if before it would have
            ascended, descended, or from any pressure assume a new figure, would
            now likewise ascend, descend, or put on a new figure; and that,
            because its gravity and the other causes of its motion remain. But (by
            Case 5, Prop. XIX) it would now be at rest, and retain its figure.
            Therefore also in the former case.
        

        
            Cor. 5. Therefore a body that is specifically
            heavier than a fluid contiguous to it will sink; and that which is
            specifically lighter will ascend, and attain so much motion and change
            of figure as that excess or defect of gravity is able to produce. For
            that excess or defect is the same thing as an impulse, by which a
            body, otherwise in equilibrio with the parts of the fluid,
            is acted on; and may be compared with the excess or defect of a weight
            in one of the scales of a balance.
        

        
            Cor. 6. Therefore bodies placed in fluids
            have a twofold gravity the one true and absolute, the other apparent,
            vulgar, and comparative. Absolute gravity is the whole force with
            which the body tends downwards; relative and vulgar gravity is the
            excess of gravity with which the body tends downwards more than the
            ambient fluid. By the first kind of gravity the parts of all fluids
            and bodies gravitate in their proper places; and therefore their
            weights taken together compose the weight of the whole. For the whole
            taken together is heavy, as may be experienced in vessels full of
            liquor; and the weight of the whole is equal to the weights of all the
            parts, and is therefore composed of them. By the other kind of gravity
            bodies do not gravitate in their places; that is, compared with one
            another, they do not preponderate, but, hindering one another's
            endeavours to descend, remain in their proper places, as if they were
            not heavy. Those things which are in the air, and do not preponderate,
            are commonly looked on as not heavy. Those which do preponderate are
            commonly reckoned heavy, in as much as they are not sustained by the
            weight of the air. The common weights are nothing else but the excess
            of the true weights above the weight of the air. Hence also, vulgarly,
            those things are called light which are less heavy, and, by yielding
            to the preponderating air, mount upwards. But these are only
            comparatively light, and not truly so, because they descend
            in vacuo. Thus, in water, bodies which, by their greater or
            less gravity, descend or ascend, are comparatively
            and apparently heavy or light; and their comparative and apparent
            gravity or levity is the excess or defect by which their true gravity
            either exceeds the gravity of the water or is exceeded by it. But
            those things which neither by preponderating descend, nor, by yielding
            to the preponderating fluid, ascend, although by their true weight
            they do increase the weight of the whole, yet comparatively, and in
            the sense of the vulgar, they do not gravitate in the water. For these
            cases are alike demonstrated.
        

        
            Cor. 7. These things which have been
            demonstrated concerning gravity take place in any other centripetal
            forces.
        

        
            Cor. 8. Therefore if the medium in which any
            body moves be acted on either by its own gravity, or by any other
            centripetal force, and the body be urged more powerfully by the same
            force; the difference of the forces is that very motive force, which,
            in the foregoing Propositions, I have considered as a centripetal
            force. But if the body be more lightly urged by that force, the
            difference of the forces becomes a centrifugal force, and is to be
            considered as such.
        

        
            Cor. 9. But since fluids by pressing the
            included bodies do not change their external figures, it appears also
            (by Cor. Prop. XIX) that they will not change the situation of their
            internal parts in relation to one another; and therefore if animals
            were immersed therein, and that all sensation did arise from the
            motion of their parts, the fluid will neither hurt the immersed
            bodies, nor excite any sensation, unless so far as those bodies may be
            condensed by the compression. And the case is the same of any system
            of bodies encompassed with a compressing fluid. All the parts of the
            system will be agitated with the same motions as if they were placed
            in a vacuum, and would only retain their comparative gravity; unless
            so far as the fluid may somewhat resist their motions, or be requisite
            to conglutinate them by compression.
        

    

    
        Proposition xxi. Theorem xvi.

            
                
                    Let the density of any fluid be proportional to the
                    compression, and its parts be attracted downwards by a centripetal
                    force reciprocally proportional to the distances from the centre:
                    I say, that, if those distances be taken continually proportional,
                    the densities of the fluid at the same distances will be also
                    continually proportional.
                
            

        

        
            Let ATV denote the spherical bottom of the fluid, S the centre, SA,
            SB, SC, SD, SE, SF, &c., distances continually proportional. Erect
            the perpendiculars AH, BI, CK, DL, EM, FN, &c., which shall be as
            the densities of the medium in the places A, B, C, D, E, F; and the
            specific gravities in those places will be AH

            AS, BI

            BS, CK

            CS, &c., or, which is all one, as
             AH

            AB, BI

            BC, CK

            CD, &c. Suppose, first, these
            gravities to be uniformly continued from A to B, from B to C, from C
            to D, &c., the decrements in the points
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            B, C, D, &c., being taken by steps. And these gravities drawn into
            the altitudes AB, BC, CD, &c., will give the pressures AH, BI, CK,
            &c., by which the bottom ATV is acted on (by Theor. XV). Therefore
            the particle A sustains all the pressures AH, BI, CK, DL, &c.,
            proceeding in infinitum; and the particle B sustains the
            pressures of all but the first AH; and the particle C all but the two
            first AH, BI; and so on: and therefore the density AH of the first
            particle A is to the density BI of the second particle B as the sum of
            all AH + BI + CK + DL, in infinitum, to the sum of all BI +
            CK + DL, &c. And BI the density of the second particle B is to CK
            the density of the third C, as the sum of all BI + CK + DL, &c.,
            to the sum of all CK + DL, &c. Therefore these sums are
            proportional to their differences AH, BI, CK, &c., and therefore
            continually proportional (by Lem. 1 of this Book); and therefore the
            differences AH, BI, CK, &c., proportional to the sums, are also
            continually proportional. Wherefore since the densities in the places
            A, B, C, &c., are as AH, BI, CK, &c., they will also be
            continually proportional. Proceed intermissively, and, ex aequo,
            at the distances SA, SC, SE, continually proportional, the densities
            AH, CK, EM will be continually proportional. And by the same
            reasoning, at any distances SA, SD, SG, continually proportional, the
            densities AH, DL, GO, will be continually proportional. Let now the
            points A, B, C, D, E, &c., coincide, so that the progression of
            the specific gravities from the bottom A to the top of the fluid may
            be made continual; and at any distances SA, SD, SG, continually
            proportional, the densities AH, DL, GO, being all along continually
            proportional, will still remain continually proportional.
              Q.E.D.
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            Cor. Hence if the density of the fluid in two
            places, as A and E, be given, its density in any other place Q may be
            collected. With the centre S, and the rectangular asymptotes SQ, SX,
            describe an hyperbola cutting the perpendiculars AH, EM, QT in a,
            e, and q, as also the perpendiculars HX, MY, TZ, let
            fall upon the asymptote SX, in h, m, and t. Make
            the area YmtZ to the given area YmhX as the given
            area EeqQ to the given area EeaA; and the line Zt
            produced will cut off the line QT proportional to the density. For if
            the lines SA, SE, SQ are continually proportional, the areas EeqQ,
            EeaA will be equal, and thence the
            areas YmtZ, XhmY, proportional to them, will be also
            equal; and the lines SX, SY, SZ, that is, AH, EM, QT continually
            proportional, as they ought to be. And if the lines SA, SE, SQ, obtain
            any other order in the series of continued proportionals, the lines
            AH, EM, QT, because of the proportional hyperbolic areas, will obtain
            the same order in another series of quantities continually
            proportional.
        

    

    
        Proposition xxii. Theorem xvii.

            
                
                    Let the density of any fluid be proportional to the
                    compression, and its parts be attracted downwards by a gravitation
                    reciprocally proportional to the squares of the distances from the
                    centre: I say, that if the distances be taken in harmonic
                    progression, the densities of the fluid at those distances will be
                    in a geometrical progression.
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            Let S denote the centre, and SA, SB, SC, SD, SE, the distances in
            geometrical progression. Erect the perpendiculars AH, BI, CK, &c.,
            which shall be as the densities of the fluid in the places A, B, C, D,
            E, &c., and the specific gravities thereof in those places will be
            as AH

            SA2, 
            BI

            SB2, 
            CK

            SC2, &c. Suppose these
            gravities to be uniformly continued, the first from A to B, the second
            from B to C, the third from C to D, &c. And these drawn into the
            altitudes AB, BC, CD, DE, &c., or, which is the same thing, into
            the distances SA, SB, SC, &c., proportional to those altitudes,
            will give AH

            SA, BI

            SB, CK

            SC, &c., the exponents of the
            pressures. Therefore since the densities are as the sums of those
            pressures, the differences AH − BI, BI − CK, &c., of the densities
            will be as the differences of those sums AH

            SA, BI

            SB, CK

            SC, &c. With the centre S, and the
            asymptotes SA, Sx, describe any hyperbola, cutting the
            perpendiculars AH, BI, CK, &c., in a, b, c, &c., and
            the perpendiculars Ht, In, Kw, let fall
            upon the asymptote Sx, in h, i, k; and the
            differences of the densities tu, uw, &c., will be as
            AH

            SA, BI

            SB, &c. And the rectangles tu
            x th, uw x ui, &c., or tp, uq, &c., as
            AH x th

            SA, BI
            x ui

            SB, &c., that is, as Aa, Bb,
            &c. For, by the nature of the hyperbola, SA is to AH or St
            as th to Ac, and therefore 
            AH x th

            SA is equal to Aa. And, by a
            like reasoning, BI
            x ui

            SB is equal to Bb, &c. But
            Aa, Bb, Cc, &c., are continually
            proportional, and therefore proportional to their differences Aa
            − Bb, Bb − Cc, &c., therefore the
            rectangles tp, uq, &c., are proportional to those
            differences; as also the sums of the rectangles tp + uq, or
            tp + uq + wr to the sums of the differences Aa − Cc
            or Aa − Dd. Suppose several of these terms, and the
            sum of all the differences, as Aa − Ff, will be
            proportional to the sum of all the rectangles, as zthn.
            Increase the number of terms, and diminish the distances of the points
            A, B, C, &c., in infinitum, and those rectangles will
            become equal to the hyperbolic area zthn, and therefore the
            difference Aa − Ff is proportional to this area.
            Take now any distances, as SA, SD, SF, in harmonic progression, and
            the differences Aa − Dd, Dd − Ff
            will be equal; and therefore the areas thlx, xluz,
            proportional to those differences will be equal among themselves, and
            the densities St, Sx, Sz, that is, AH, DL,
            FN, continually proportional.   Q.E.D.
        

        
            Cor. Hence if any two densities of the fluid,
            as AH and BI, be given, the area thiu, answering to their
            difference tu, will be given; and thence the density FN will
            be found at any height SF, by taking the area thnz to that
            given area thiu as the difference Aa − Ff
            to the difference Aa − Bb.
        

    

    
        Scholium.


        
            By a like reasoning it may be proved, that if the gravity of the
            particles of a fluid be diminished in a triplicate ratio of the
            distances from the centre; and the reciprocals of the squares of the
            distances SA, SB, SC, &c., (namely, SA3

            SA2, 
            SA3

            SB2, 
            SA3

            SC2 ) be taken in an
            arithmetical progression, the densities AH, BI, CK, &c., will be
            in a geometrical progression. And if the gravity be diminished in a
            quadruplicate ratio of the distances, and the reciprocals of the cubes
            of the distances (as SA4

            SA3, 
            SA4

            SB3, 
            SA4

            SC3, &c.,) be taken in
            arithmetical progression, the densities AH, BI, CK, &c., will be
            in geometrical progression. And so in infinitum. Again; if
            the gravity of the particles of the fluid be the same at all
            distances, and the distances be in arithmetical progression, the
            densities will be in a geometrical progression as Dr. Halley
            has found. If the gravity be as the distance, and the squares of the
            distances be in arithmetical progression, the densities will be in
            geometrical progression. And so in infinitum. These things
            will be so, when the density of the fluid condensed by compression is
            as the force of compression; or, which is the same thing, when the
            space possessed by the fluid is reciprocally as this force. Other laws
            of condensation may be supposed, as that the cube of the compressing
            force may be as the biquadrate of the density;
            or the triplicate ratio of the force the same with the quadruplicate
            ratio of the density: in which case, if the gravity he reciprocally as
            the square of the distance from the centre; the density will be
            reciprocally as the cube of the distance. Suppose that the cube of the
            compressing force be as the quadrato-cube of the density; and if the
            gravity be reciprocally as the square of the distance, the density
            will be reciprocally in a sesquiplicate ratio of the distance. Suppose
            the compressing force to be in a duplicate ratio of the density, and
            the gravity reciprocally in a duplicate ratio of the distance, and the
            density will be reciprocally as the distance. To run over all the
            cases that might be offered would be tedious. But as to our own air,
            this is certain from experiment, that its density is either
            accurately, or very nearly at least, as the compressing force; and
            therefore the density of the air in the atmosphere of the earth is as
            the weight of the whole incumbent air, that is, as the height of the
            mercury in the barometer.
        

    

    
        Proposition xxiii. Theorem xviii.

            
                
                    If a fluid be composed of particles mutually flying each other,
                    and the density be as the compression, the centrifugal forces of
                    the particles will be reciprocally proportional to the distances
                    of their centres. And, vice versa, particles flying each
                    other, with forces that are reciprocally proportional to the
                    distances of their centres, compose an elastic fluid, whose
                    density is as the compression.
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            Let the fluid be supposed to be included in a cubic space ACE, and
            then to be reduced by compression into a lesser cubic space ace;
            and the distances of the particles retaining a like situation with
            respect to each other in both the spaces, will be as the sides AB, ab
            of the cubes; and the densities of the mediums will be reciprocally as
            the containing spaces AB³, ab³. In the plane side of the
            greater cube ABCD take the square DP equal to the plane side db
            of the lesser cube: and, by the supposition, the pressure with which
            the square DP urges the inclosed fluid will be to the pressure with
            which that square db urges the inclosed fluid as the
            densities of the mediums are to each other, that is, as ab³
            to AB³. But the pressure with which the square DB urges the included
            fluid is to the pressure with which the square DP urges the same fluid
            as the square DB to the square DP, that is, as AB² to ab².
            Therefore, ex aequo, the pressure with which the square DB
            urges the fluid is to the pressure with which the square db
            urges the fluid as ab to AB. Let the planes FGH, fgh,
            be drawn through the middles of the two cubes, and divide the fluid
            into two parts. These parts will press each other mutually with the
            same forces with which they are themselves
            pressed by the planes AC, ac, that is, in the proportion of
            ab to AB: and therefore the centrifugal forces by which these
            pressures are sustained are in the same ratio. The number of the
            particles being equal, and the situation alike, in both cubes, the
            forces which all the particles exert, according to the planes FGH, fgh,
            upon all, are as the forces which each exerts on each. Therefore the
            forces which each exerts on each, according to the plane FGH in the
            greater cube, are to the forces which each exerts on each, according
            to the plane fgh in the lesser cube, as ab to AB,
            that is, reciprocally as the distances of the particles from each
            other.   Q.E.D.
        

        
            And, vice versa, if the forces of the single particles are
            reciprocally as the distances, that is, reciprocally as the sides of
            the cubes AB, ab; the sums of the forces will be in the same
            ratio, and the pressures of the sides DB, db as the sums of
            the forces; and the pressure of the square DP to the pressure of the
            side DB as ab² to AB² . And, ex aequo, the
            pressure of the square DP to the pressure of the side db as
            ab³ to AB³; that is, the force of compression in the one to
            the force of compression in the other as the density in the former to
            the density in the latter.   Q.E.D.
        

    

    
        Scholium.


        
            By a like reasoning, if the centrifugal forces of the particles are
            reciprocally in the duplicate ratio of the distances between the
            centres, the cubes of the compressing forces will be as the
            biquadrates of the densities. If the centrifugal forces be
            reciprocally in the triplicate or quadruplicate ratio of the
            distances, the cubes of the compressing forces will be as the
            quadratocubes, or cubo-cubes of the densities. And universally, if D
            be put for the distance, and E for the density of the compressed
            fluid, and the centrifugal forces be reciprocally as any power Dn
            of the distance, whose index is the number n, the
            compressing forces will be as the cube roots of the power En+2,
            whose index is the number n + 2; and the contrary. All these
            things are to be understood of particles whose centrifugal forces
            terminate in those particles that are next them, or are diffused not
            much further. We have an example of this in magnetical bodies. Their
            attractive virtue is terminated nearly in bodies of their own kind
            that are next them. The virtue of the magnet is contracted by the
            interposition of an iron plate, and is almost terminated at it: for
            bodies further off are not attracted by the magnet so much as by the
            iron plate. If in this manner particles repel others of their own kind
            that lie next them, but do not exert their virtue on the more remote,
            particles of this kind will compose such fluids as are treated of in
            this Proposition. If the virtue of any particle diffuse itself every
            way in infinitum, there will be required a greater force to
            produce an equal condensation of a greater quantity of the fluid.
            But whether elastic fluids do really consist
            of particles so repelling each other, is a physical question. We have
            here demonstrated mathematically the property of fluids consisting of
            particles of this kind, that hence philosophers may take occasion to
            discuss that question.
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        Section vi.

        Of the motion and resistance of funependulous bodies.


    

    
        Proposition xxiv. Theorem xix.

            
                The quantities of matter in funependulous bodies, whose centres
                of oscillation are equally distant from the centre of suspension,
                are in a ratio compounded of the ratio of the weights and the
                duplicate ratio of the times of the oscillations in vacuo.
            

        

        
            For the velocity which a given force can generate in a given matter
            in a given time is as the force and the time directly, and the matter
            inversely. The greater the force or the time is, or the less the
            matter, the greater velocity will be generated. This is manifest from
            the second Law of Motion. Now if pendulums are of the same length, the
            motive forces in places equally distant from the perpendicular are as
            the weights: and therefore if two bodies by oscillating describe equal
            arcs, and those arcs are divided into equal parts; since the times in
            which the bodies describe each of the correspondent parts of the arcs
            are as the times of the whole oscillations, the velocities in the
            correspondent parts of the oscillations will be to each other as the
            motive forces and the whole times of the oscillations directly, and
            the quantities of matter reciprocally: and therefore the quantities of
            matter are as the forces and the times of the oscillations directly
            and the velocities reciprocally. But the velocities reciprocally are
            as the times, and therefore the times directly and the velocities
            reciprocally are as the squares of the times; and therefore the
            quantities of matter are as the motive forces and the squares of the
            times, that is, as the weights and the squares of the times.
              Q.E.D.
        

        
            Cor. 1. Therefore if the times are equal, the
            quantities of matter in each of the bodies are as the weights.
        

        
            Cor. 2. If the weights are equal, the
            quantities of matter will be as the squares of the times.
        

        
            Cor. 3. If the quantities of matter are
            equal, the weights will be reciprocally as the squares of the times.
        

        
            Cor. 4. Whence since the squares of the
            times, caeteris paribus, are as the lengths of the
            pendulums, therefore if both the times and quantities of matter are
            equal, the weights will be as the lengths of the pendulums.
        

        
            Cor. 5. And
            universally, the quantity of matter in the pendulous body is as the
            weight and the square of the time directly, and the length of the
            pendulum inversely.
        

        
            Cor. 6. But in a non-resisting medium, the
            quantity of matter in the pendulous body is as the comparative weight
            and the square of the time directly, and the length of the pendulum
            inversely. For the comparative weight is the motive force of the body
            in any heavy medium, as was shewn above; and therefore does the same
            thing in such a non-resisting medium as the absolute weight does in a
            vacuum.
        

        
            Cor. 7. And hence appears a method both of
            comparing bodies one among another, as to the quantity of matter in
            each; and of comparing the weights of the same body in different
            places, to know the variation of its gravity. And by experiments made
            with the greatest accuracy, I have always found the quantity of matter
            in bodies to be proportional to their weight.
        

    

    
        Proposition xxv. Theorem xx.

            
                
                    Funependulous bodies that are, in any medium, resisted in the
                    ratio of the moments of time, and funependulous bodies that move
                    in a non-resisting medium of the same specific gravity, perform
                    their oscillations in a cycloid in the same time, and describe
                    proportional parts of arcs together.
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            Let AB be an arc of a cycloid, which a body D, by vibrating in a
            non-resisting medium, shall describe in any time. Bisect that arc in
            C, so that C may be the lowest point thereof; and the accelerative
            force with which the body is urged in any place D, or d or
            E, will be as the length of the arc CD, or Cd, or CE. Let
            that force be expressed by that same arc; and since the resistance is
            as the moment of the time, and therefore given, let it be expressed by
            the given part CO of the cycloidal arc, and take the arc Od
            in the same ratio to the arc CD that the arc OB has to the arc CB: and
            the force with which the body in d is urged in a resisting
            medium, being the excess of the force Cd above the resistance
            CO, will be expressed by the arc Od, and will therefore be to
            the force with which the body D is urged in a non-resisting medium in
            the place D, as the arc Od to the arc CD; and therefore also
            in the place B, as the arc OB to the arc CB. Therefore if two bodies
            D, d go from the place Bc and are urged by these forces;
            since the forces at the beginning are as the arc CB and OB, the first
            velocities and arcs first described will be in the same ratio. Let
            those arcs be BD and Bd, and the remaining arcs CD,
            Od, will be in the same ratio. Therefore the forces, being
            proportional to those arcs CD, Od, will remain in the same
            ratio as at the beginning, and therefore the bodies will continue
            describing together arcs in the same ratio. Therefore the forces and
            velocities and the remaining arcs CD, Od, will be always as
            the whole arcs CB, OB, and therefore those remaining arcs will be
            described together. Therefore the two bodies D and d will
            arrive together at the places C and O; that which moves in the
            non-resisting medium, at the place C, and the other, in the resisting
            medium, at the place O. Now since the velocities in C and O are as the
            arcs CB, OB, the arcs which the bodies describe when they go farther
            will be in the same ratio. Let those arcs be CE and Oe. The
            force with which the body D in a non-resisting medium is retarded in E
            is as CE, and the force with which the body d in the
            resisting medium is retarded in e, is as the sum of the
            force Ce and the resistance CO, that is, as Oe; and
            therefore the forces with which the bodies are retarded are as the
            arcs CB, OB, proportional to the arcs CE, Oe; and therefore
            the velocities, retarded in that given ratio, remain in the same given
            ratio. Therefore the velocities and the arcs described with those
            velocities are always to each other in that given ratio of the arcs CB
            and OB; and therefore if the entire arcs AB, aB are taken in
            the same ratio, the bodies D and d will describe those arcs
            together, and in the places A and a will lose all their
            motion together. Therefore the whole oscillations are isochronal, or
            are performed in equal times; and any parts of the arcs, as BD, Bd,
            or BE, Be, that are described together, are proportional to
            the whole arcs BA, Ba.   Q.E.D.
        

        
            Cor. Therefore the swiftest motion in a
            resisting medium does not fall upon the lowest point C, but is found
            in that point O, in which the whole arc described Ba is
            bisected. And the body, proceeding from thence to a, is
            retarded at the same rate with which it was accelerated before in its
            descent from B to O.
        

    

    
        Proposition xxvi. Theorem xxi.

            
                
                    Funependulous bodies, that are resisted in the ratio of the
                    velocity, have their oscillations in a cycloid isochronal.
                
            

        

        
            For if two bodies, equally distant from their centres of suspension,
            describe, in oscillating, unequal arcs, and the velocities in the
            correspondent parts of the arcs be to each other as the whole arcs;
            the resistances, proportional to the velocities, will be also to each
            other as the same arcs. Therefore if these resistances be subducted
            from or added to the motive forces arising from gravity which are as
            the same arcs, the differences or sums will be to each other in the
            same ratio of the arcs; and since the increments and decrements of the
            velocities are as these differences or sums, the velocities will be
            always as the whole arcs; therefore if the velocities are in any one
            case as the whole arcs, they will remain always in the same ratio.
            But at the beginning of the motion, when the bodies begin to descend
            and describe those arcs, the forces, which at that time are
            proportional to the arcs, will generate velocities proportional to the
            arcs. Therefore the velocities will be always as the whole arcs to be
            described, and therefore those arcs will be described in the same
            time.   Q.E.D.
        

    

    
        Proposition xxvii. Theorem xxii.

            
                
                    If funependulous bodies are resisted in the duplicate ratio of
                    their velocities, the differences between the times of the
                    oscillations in a resisting medium, and the times of the
                    oscillations in a non-resisting medium of the same, specific
                    gravity, will be proportional to the arcs described in oscillating nearly.
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            For let equal pendulums in a resisting medium describe the unequal
            arcs A, B; and the resistance of the body in the arc A will be to the
            resistance of the body in the correspondent part of the arc B in the
            duplicate ratio of the velocities, that is, as AA to BB nearly. If the
            resistance in the arc B were to the resistance in the arc A as AB to
            AA, the times in the arcs A and B would be equal (by the last Prop.)
            Therefore the resistance AA in the arc A, or AB in the arc B, causes
            the excess of the time in the arc A above the time in a non-resisting
            medium; and the resistance BB causes the excess of the time in the arc
            B above the time in a non-resisting medium. But those excesses are as
            the efficient forces AB and BB nearly, that is, as the arcs A and B.
              Q.E.D.
        

        
            Cor. 1. Hence from the times of the
            oscillations in unequal arcs in a resisting medium, may be known the
            times of the oscillations in a non-resisting medium of the same
            specific gravity. For the difference of the times will be to the
            excess of the time in the lesser arc above the time in a non-resisting
            medium as the difference of the arcs to the lesser arc.
        

        
            Cor. 2. The shorter oscillations are more
            isochronal, and very short ones are performed nearly in the same times
            as in a non-resisting medium. But the times of those which are
            performed in greater arcs are a little greater, because the resistance
            in the descent of the body, by which the time is prolonged, is
            greater, in proportion to the length described in the descent than the
            resistance in the subsequent ascent, by which the time is contracted.
            But the time of the oscillations, both short and long, seems to be
            prolonged in some measure by the motion of the medium. For retarded
            bodies are resisted somewhat less in proportion to the velocity, and
            accelerated bodies somewhat more than those that proceed uniformly
            forwards; because the medium, by the motion
            it has received from the bodies, going forwards the same way with
            them, is more agitated in the former case, and less in the latter; and
            so conspires more or less with the bodies moved. Therefore it resists
            the pendulums in their descent more, and in their ascent less, than in
            proportion to the velocity; and these two causes concurring prolong
            the time.
        

    

    
        Proposition xxviii. Theorem xxiii.

            
                
                    If a funependulous body, oscillating in a cycloid, be resisted
                    in the ratio of the moments of the time, its resistance will be to
                    the force of gravity as the excess of the arc described in the
                    whole descent above the arc described in the subsequent ascent to
                    twice the length of the pendulum.
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            Let BC represent the arc described in the descent, Ca the
            arc described in the ascent, and Aa the difference of the
            arcs: and things remaining as they were constructed and demonstrated
            in Prop. XXV, the force with which the oscillating body is urged in
            any place D will be to the force of resistance as the arc CD to the
            arc CO, which is half of that difference Aa. Therefore the
            force with which the oscillating body is urged at the beginning or the
            highest point of the cycloid, that is, the force of gravity, will be
            to the resistance as the arc of the cycloid, between that highest
            point and lowest point C, is to the arc CO; that is (doubling those
            arcs), as the whole cycloidal arc, or twice the length of the
            pendulum, to the arc Aa.   Q.E.D.
        

    

    
        Proposition xxix. Problem vi.

            
                
                    Supposing that a body oscillating in a cycloid is resisted in a
                    duplicate ratio of the velocity: to find the resistance in each place.
                
            

        

        
            Let Ba be an arc described in one entire oscillation, C the lowest point
            [image: Mathematical Principles of Natural Philosophy figure: 307b]
            of the cycloid, and CZ half the whole cycloidal arc, equal to the length of the pendulum;
            and let it be required to find the resistance of the body in any
            place D. Cut the indefinite right line OQ in the points O, S, P, Q, so
            that (erecting the perpendiculars OK, ST, PI, QE, and with the centre
            O, and the aysmptotes OK, OQ, describing the hyperbola TIGE cutting
            the perpendiculars ST, PI, QE in T, I, and E, and through the point I
            drawing KF, parallel to the asymptote OQ, meeting the asymptote OK in
            K, and the perpendiculars ST and QE in L and F) the hyperbolic area
            PIEQ may be to the hyperbolic area PITS as the arc BC, described in
            the descent of the body, to the arc Ca described in the
            ascent; and that the area IEF may be to the area ILT as OQ to OS. Then
            with the perpendicular MN cut off the hyperbolic area PINM, and let
            that area be to the hyperbolic area PIEQ as the arc CZ to the arc BC
            described in the descent. And if the perpendicular RG cut off the
            hyperbolic area PIGR, which shall be to the area PIEQ as any arc CD to
            the arc BC described in the whole descent, the resistance in any place
            D will be to the force of gravity as the area 
            OR

            OQ IEF − IGH to the area PINM.
        

        
            For since the forces arising from gravity with which the body is
            urged in the places Z, B, D, a, are as the arcs CZ, CB, CD,
            Ca and those arcs are as the areas PINM, PIEQ, PIGR, PITS;
            let those areas be the exponents both of the arcs and of the forces
            respectively. Let Dd be a very small space described by the
            body in its descent: and let it be expressed by the very small area RGgr
            comprehended between the parallels RG, rg; and produce rg
            to h, so that GHhg and RGgr may be the
            contemporaneous decrements of the areas IGH, PIGR. And the increment
            GHhg − Rr

            OQ IEF, or Rr x HG − 
            Rr

            OQ IEF, of the area 
            OR

            OQ IEF − IGH will be to the decrement
            RGgr, or Rr x RG, of the area PIGR, as HG − 
            IEF

            OQ to RG; and therefore as OR x HG −
            OR

            OQ IEF to OR x GR or OP x PI, that is
            (because of the equal quantities OR x HG, OR x HR − OR x GR, ORHK −
            OPIK, PIHR and PIGR + IGH), as PIGR + IGH − 
            OR

            OQ IEF to OPIK. Therefore if the area
            OR

            OQ IEF − IGH be called Y, and RGgr
            the decrement of the area PIGR be given, the increment of the area Y
            will be as PIGR − Y.
        

        
            Then if V represent the force arising from the gravity, proportional
            to the arc CD to be described, by which the body is acted upon in D,
            and R be put for the resistance, V − R will be the whole force with
            which the body is urged in D. Therefore the increment of the velocity
            is as V − R and the particle of time in which it is generated
            conjunctly. But the velocity itself is as the contemporaneous
            increment of the space described directly and
            the same particle of time inversely. Therefore, since the resistance
            is, by the supposition, as the square of the velocity, the increment
            of the resistance will (by Lem. II) be as the velocity and the
            increment of the velocity conjunctly, that is, as the moment of the
            space and V − R conjunctly; and, therefore, if the moment of the space
            be given, as V − R; that is, if for the force V we put its exponent
            PIGR, and the resistance R be expressed by any other area Z, as PIGR −
            Z.
        

        
            Therefore the area PIGR uniformly decreasing by the subduction of
            given moments, the area Y increases in proportion of PIGR − Y, and the
            area Z in proportion of PIGR − Z. And therefore if the areas Y and Z
            begin together, and at the beginning are equal, these, by the addition
            of equal moments, will continue to be equal and in like manner
            decreasing by equal moments, will vanish together. And, vice
            versa, if they together begin and vanish, they will have equal
            moments and be always equal; and that, because if the resistance Z be
            augmented, the velocity together with the arc Ca, described
            in the ascent of the body, will be diminished; and the point in which
            all the motion together with the resistance ceases coming nearer to
            the point C, the resistance vanishes sooner than the area Y. And the
            contrary will happen when the resistance is diminished.
        

        
            Now the area Z begins and ends where the resistance is nothing, that
            is, at the beginning of the motion where the arc CD is equal to the arc CB,
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            and the right line RG falls upon the right line QE;
            and at the end of the motion where the arc CD is
            equal to the arc Ca, and RG falls upon the right line ST. And
            the area Y or OR

            OQ IEF − IGH begins and ends also where
            the resistance is nothing, and therefore where 
            OR

            OQ IEF and IGH are equal; that is (by
            the construction), where the right line RG falls successively upon the
            right lines QE and ST. Therefore those areas begin and vanish
            together, and are therefore always equal. Therefore the area 
            OR

            OQ IEF − IGH is equal to the area Z, by
            which the resistance is expressed, and therefore is to the area PINM,
            by which the gravity is expressed, as the resistance to the gravity.
              Q.E.D.
        

        
            Cor. 1. Therefore the
            resistance in the lowest place C is to the force of gravity as the
            area OP

            OQ IEF to the area PINM.
        

        
            Cor. 2. But it becomes greatest where the
            area PIHR is to the area IEF as OR to OQ. For in that case its moment
            (that is, PIGR − Y) becomes nothing.
        

        
            Cor. 3. Hence also may be known the velocity
            in each place, as being in the subduplicate ratio of the resistance,
            and at the beginning of the motion equal to the velocity of the body
            oscillating in the same cycloid without any resistance.
        

        
            However, by reason of the difficulty of the calculation by which the
            resistance and the velocity are found by this Proposition, we have
            thought fit to subjoin the Proposition following.
        

    

    
        Proposition xxx. Theorem xxiv.

            
                 If a right line aB be equal to the arc of a cycloid
                which an oscillating body describes, and at each of its points
                D the perpendiculars DK be erected, which shall be to
                the length of the pendulum as the resistance of the body in the
                corresponding points of the arc to the force of gravity; I say,
                that the difference between the arc described in the whole descent
                and the arc described in the whole subsequent ascent drawn into
                half the sum of the same arcs will be equal to the area BKa which
                all those perpendiculars take up.
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            Let the arc of the cycloid, described in one entire oscillation, be
            expressed by the right line aB, equal to it, and the arc
            which would have been described in vacuo by the length AB.
            Bisect AB in C, and the point C will represent B the lowest point of
            the cycloid, and CD will be as the force arising from gravity, with
            which the body in D is urged in the direction of the tangent of the
            cycloid, and will have the same ratio to the length of the pendulum as
            the force in D has to the force of gravity. Let that force, therefore,
            be expressed by that length CD, and the force of gravity by the length
            of the pendulum; and if in DE you take DK in the same ratio to the
            length of the pendulum as the resistance has to the gravity, DK will
            be the exponent of the resistance. From the centre C with the interval
            CA or CB describe a semi-circle BEeA. Let the body describe,
            in the least time, the space Dd; and, erecting the
            perpendiculars DE, de, meeting the circumference in E and e,
            they will be as the velocities which the body descending in vacuo
            from the point B would acquire in the places D and d. This
            appears by Prop LII, Book I. Let therefore,
            these velocities be expressed by those perpendiculars DE, de;
            and let DF be the velocity which it acquires in D by falling from B in
            the resisting medium. And if from the centre C with the interval CF we
            describe the circle FfM meeting the right lines de
            and AB in f and M, then M will be the place to which it
            would thenceforward, without farther resistance, ascend, and df
            the velocity it would acquire in d. Whence, also, if Fg
            represent the moment of the velocity which the body D, in describing
            the least space Dd, loses by the resistance of the medium;
            and CN be taken equal to Cg; then will N be the place to
            which the body, if it met no farther resistance, would thenceforward
            ascend, and MN will be the decrement of the ascent arising from the
            loss of that velocity. Draw Fm perpendicular to df,
            and the decrement Fg of the velocity DF generated by the
            resistance DK will be to the increment fm of the same
            velocity, generated by the force CD, as the generating force DK to the
            generating force CD. But because of the similar triangles Fmf,
            Fhg, FDC, fm is to Fm or Dd as CD
            to DF; and, ex aequo, Fg to Dd as DK to
            DF. Also Fh is to Fg as DF to CF; and, ex aequo
            perturbatè, Fh or MN to Dd as DK to CF or CM;
            and therefore the sum of all the MN x CM will be equal to the sum of
            all the Dd x DK. At the moveable point M suppose always a
            rectangular ordinate erected equal to the indeterminate CM, which by a
            continual motion is drawn into the whole length Aa; and the
            trapezium described by that motion, or its equal, the rectangle Aa
            x ½aB, will be equal to the sum of all the MN x CM, and
            therefore to the sum of all the Dd x DK, that is, to the area
            BKVTa.   Q.E.D.
        

        
            Cor. Hence from the law of resistance, and
            the difference Aa of the arcs Ca, CB, may be
            collected the proportion of the resistance to the gravity nearly.
        

        
            For if the resistance DK be uniform, the figure BKTa will be
            a rectangle under Ba and DK; and thence the rectangle under
            ½Ba and Aa will be equal to the rectangle under Ba
            and DK, and DK will be equal to ½Aa. Wherefore since DK is
            the exponent of the resistance, and the length of the pendulum the
            exponent of the gravity, the resistance will be to the gravity as ½Aa
            to the length of the pendulum; altogether as in Prop. XXVIII is
            demonstrated.
        

        
            If the resistance be as the velocity, the figure BKTa will
            be nearly an ellipsis. For if a body, in a non-resisting medium, by
            one entire oscillation, should describe the length BA, the velocity in
            any place D would be as the ordinate DE of the circle described on the
            diameter AB. Therefore since Ba in the resisting medium, and
            BA in the non-resisting one, are described nearly in the same times;
            and therefore the velocities in each of the points of Ba are
            to the velocities in the correspondent points of the length BA nearly
            as Ba is to BA, the velocity in the point D in the resisting
            medium will be as the ordinate of the circle
            or ellipsis described upon the diameter Ba; and therefore the
            figure BKVTa will be nearly an ellipsis. Since the resistance
            is supposed proportional to the velocity, let OV be the exponent of
            the resistance in the middle point O; and an ellipsis BRVSa
            described with the centre O, and the semi-axes OB, OV, will be nearly
            equal to the figure BKVTa, and to its equal the rectangle Aa
            x BO. Therefore Aa x BO is to OV x BO as the area of this
            ellipsis to OV x BO; that is, Aa is to OV as the area of the
            semi-circle to the square of the radius, or as 11 to 7 nearly; and,
            therefore, 7

            11 Aa is to the length of
            the pendulum as the resistance of the oscillating body in O to its
            gravity.
        

        
            Now if the resistance DK be in the duplicate ratio of the velocity,
            the figure BKVTa will be almost a parabola having V for its
            vertex and OV for its axis, and therefore will be nearly equal to the
            rectangle under Ba and OV. Therefore the rectangle under ½Ba
            and Aa is equal to the rectangle ⅔Ba x OV, and
            therefore OV is equal to ¾Aa; and therefore the resistance in
            O made to the oscillating body is to its gravity as ¾Aa to the length
            of the pendulum.
        

        
            And I take these conclusions to be accurate enough for practical
            uses. For since an ellipsis or parabola BRVSa falls in with
            the figure BKVTa in the middle point V, that figure, if
            greater towards the part BRV or VSa than the other, is less
            towards the contrary part, and is therefore nearly equal to it.
        

    

    
        Proposition xxxi. Theorem xxv.

            
                
                    If the resistance made to an oscillating body in each of the
                    proportional parts of the arcs described be augmented or
                    diminished in a given ratio, the difference between the arc
                    described in the descent and the arc described in the subsequent
                    ascent will be augmented or diminished in the same ratio.
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            For that difference arises from the retardation of the pendulum by
            the resistance of the medium, and therefore is as the whole
            retardation and the retarding resistance proportional thereto. In the
            foregoing Proposition the rectangle under the right line ½aB
            and the difference Aa of the arcs CB, Ca, was equal
            to the area BKTa. And that area, if the length aB
            remains, is augmented or diminished in the ratio of the ordinates DK;
            that is, in the ratio of the resistance and is therefore as the length
            aB and the resistance conjunctly. And therefore the rectangle
            under Aa and ½aB is as aB and the
            resistance conjunctly, and therefore Aa is as the resistance.
              Q.E.D.
        

        
            Cor. 1. Hence if the
            resistance be as the velocity, the difference of the arcs in the same
            medium will be as the whole arc described: and the contrary.
        

        
            Cor. 2. If the resistance be in the duplicate
            ratio of the velocity, that difference will be in the duplicate ratio
            of the whole arc: and the contrary.
        

        
            Cor. 3. And universally, if the resistance be
            in the triplicate or any other ratio of the velocity, the difference
            will be in the same ratio of the whole arc: and the contrary.
        

        
            Cor. 4. If the resistance be partly in the
            simple ratio of the velocity, and partly in the duplicate ratio of the
            same, the difference will be partly in the ratio of the whole arc, and
            partly in the duplicate ratio of it: and the contrary. So that the law
            and ratio of the resistance will be the same for the velocity as the
            law and ratio of that difference for the length of the arc.
        

        
            Cor. 5. And therefore if a pendulum describe
            successively unequal arcs, and we can find the ratio of the increment
            or decrement of this difference for the length of the arc described,
            there will be had also the ratio of the increment or decrement of the
            resistance for a greater or less velocity.
        

    

    
        General Scholium.


        
            From these propositions we may find the resistance of mediums by
            pendulums oscillating therein. I found the resistance of the air by
            the following experiments. I suspended a wooden globe or ball weighing
            57 7

            22 ounces troy, its diameter 6
            7/8 London
            inches, by a fine thread on a firm hook, so that the distance between
            the hook and the centre of oscillation of the globe was 10½ feet. I
            marked on the thread a point 10 feet and 1 inch distant from the
            centre of suspension; and even with that point I placed a ruler
            divided into inches, by the help whereof I observed the lengths of the
            arcs described by the pendulum. Then I numbered the oscillations in
            which the globe would lose 1

            8 part of its motion. If the pendulum
            was drawn aside from the perpendicular to the distance of 2 inches,
            and thence let go, so that in its whole descent it described an arc of
            2 inches, and in the first whole oscillation, compounded of the
            descent and subsequent ascent, an arc of almost 4 inches, the same in
            164 oscillations lost 1

            8 part of its motion, so as in its
            last ascent to describe an arc of 1¾ inches. If in the first descent
            it described an arc of 4 inches, it lost 1

            8 part of its motion in 121
            oscillations, so as in its last ascent to describe an arc of 3½
            inches. If in the first descent it described an arc of 8, 16, 32, or
            64 inches, it lost 1

            8 part of its motion in 69, 35½, 18½,
            9⅔ oscillations, respectively. Therefore the difference between the
            arcs described in the first descent and the last ascent was in the
            1st, 2d, 3d, 4th, 5th, 6th cases, ¼, ½, 1, 2, 4, 8 inches
            respectively. Divide those differences by the number of oscillations
            in each case, and in one mean oscillation, wherein an arc of 3¾, 7½,
            15, 30, 60, 120 inches was described, the
            difference of the arcs described in the descent and subsequent ascent
            will be 1

            656, 1

            242, 1

            69, 4

            71, 8

            37, 24

            29 parts of an inch, respectively.
            But these differences in the greater oscillations are in the duplicate
            ratio of the arcs described nearly, but in lesser oscillations
            something greater than in that ratio; and therefore (by Cor. 2, Prop.
            XXXI of this Book) the resistance of the globe, when it moves very
            swift, is in the duplicate ratio of the velocity, nearly; and when it
            moves slowly, somewhat greater than in that ratio.
        

        
            Now let V represent the greatest velocity in any oscillation, and let
            A, B, and C be given quantities, and let us suppose the difference of
            the arcs to be AV + BV
            3

            2 + CV² . Since the
            greatest velocities are in the cycloid as ½ the arcs described in
            oscillating, and in the circle as ½ the chords of those arcs; and
            therefore in equal arcs are greater in the cycloid than in the circle
            in the ratio of ½ the arcs to their chords; but the times in the
            circle are greater than in the cycloid, in a reciprocal ratio of the
            velocity; it is plain that the differences of the arcs (which are as
            the resistance and the square of the time conjunctly) are nearly the
            same in both curves: for in the cycloid those differences must be on
            the one hand augmented, with the resistance, in about the duplicate
            ratio of the arc to the chord, because of the velocity augmented in
            the simple ratio of the same; and on the other hand diminished, with
            the square of the time, in the same duplicate ratio. Therefore to
            reduce these observations to the cycloid, we must take the same
            differences of the arcs as were observed in the circle, and suppose
            the greatest velocities analogous to the half, or the whole arcs, that
            is, to the numbers ½, 1, 2, 4, 8, 16. Therefore in the 2d, 4th, and
            6th cases, put 1, 4, and 16 for V; and the difference of the arcs in
            the 2d case will become ½

            121 = A + B + C; in the 4th case
            2

            35½ = 4A + 8B + 16C; in the 6th
            8

            92/3 = 16A +
            64B + 256C. These equations reduced give A = 0,0000916, B = 0,0010847,
            and C = 0,0029558. Therefore the difference of the arcs is as 0,0000916V
            + 0,0010847V3

            2 + 0,0029558V²: and
            therefore since (by Cor. Prop. XXX, applied to this case) the
            resistance of the globe in the middle of the arc described in
            oscillating, where the velocity is V, is to its weight as 7/11AV
            + 7/10BV3/2
            + ¾CV² to the length of the pendulum, if for A, B, and C you
            put the numbers found, the resistance of the globe will be to its
            weight as 0,0000583V + 0,0007593V
            3

            2 + 0,0022169V² to
            the length of the pendulum between the centre of suspension and the
            ruler, that is, to 121 inches. Therefore since V in the second case
            represents 1, in the 4th case 4, and in the 6th case 16, the
            resistance will be to the weight of the globe, in the 2d case, as
            0,0030345 to 121; in the 4th, as 0,041748 to 121; in the 6th, as
            0,61705 to 121.
        

        
            The arc, which the point marked in the thread
            described in the 6th case, was of 120 − 
            8

            92/3 ,
            or 1195/29 inches. And therefore since the
            radius was 121 inches, and the length of the pendulum between the
            point of suspension and the centre of the globe was 126 inches, the
            arc which the centre of the globe described was 1243/31
            inches. Because the greatest velocity of the oscillating body, by
            reason of the resistance of the air, does not fall on the lowest point
            of the arc described, but near the middle place of the whole arc, this
            velocity will be nearly the same as if the globe in its whole descent
            in a non-resisting medium should describe 623/62
            inches, the half of that arc, and that in a cycloid, to which we have
            above reduced the motion of the pendulum; and therefore that velocity
            will be equal to that which the globe would acquire by falling
            perpendicularly from a height equal to the versed sine of that arc.
            But that versed sine in the cycloid is to that arc 623/62
            as the same arc to twice the length of the pendulum 252, and therefore
            equal to 15,278 inches. Therefore the velocity of the pendulum is the
            same which a body would acquire by falling, and in its fall describing
            a space of 15,278 inches. Therefore with such a velocity the globe
            meets with a resistance which is to its weight as 0,61705 to 121, or
            (if we take that part only of the resistance which is in the duplicate
            ratio of the velocity) as 0,56752 to 121.
        

        
            I found, by an hydrostatical experiment, that the weight of this
            wooden globe was to the weight of a globe of water of the same
            magnitude as 55 to 97: and therefore since 121 is to 213,4 in the same
            ratio, the resistance made to this globe of water, moving forwards
            with the above-mentioned velocity, will be to its weight as 0,56752 to
            213,4, that is, as 1 to 3761/50. Whence since
            the weight of a globe of water, in the time in which the globe with a
            velocity uniformly continued describes a length of 30,556 inches, will
            generate all that velocity in the falling globe, it is manifest that
            the force of resistance uniformly continued in the same time will take
            away a velocity, which will be less than the other in the ratio of 1
            to 3761/50, that is, the 
            1

            3761/50 part of
            the whole velocity. And therefore in the time that the globe, with the
            same velocity uniformly continued, would describe the length of its
            semi-diameter, or 37/16 inches, it would lose
            the 1/3342 part of its motion.
        

        
            I also counted the oscillations in which the pendulum lost ¼ part of
            its motion. In the following table the upper numbers denote the length
            of the arc described in the first descent, expressed in inches and
            parts of an inch; the middle numbers denote the length of the arc
            described in the last ascent; and in the lowest place are the numbers
            of the oscillations. I give an account of this experiment, as being
            more accurate than that in which only 1/8
            part of the motion was lost. I leave the calculation to such as are
            disposed to make it.
        

        
            
                
                    	First descent 
                    	2
                    	4
                    	8
                    	16
                    	32
                    	64
                

                
                    	Last ascent 
                    	1½
                    	3
                    	6
                    	12
                    	24
                    	48
                

                
                    	Numb. of oscill. 
                    	374
                    	272
                    	162½
                    	83⅓
                    	41⅔
                    	22⅔
                

            
        

        
            I afterward suspended a leaden globe of 2 inches in diameter,
            weighing 26¼ ounces troy by the same thread, so that between the
            centre of the globe and the point of suspension there was an interval
            of 10½ feet, and I counted the oscillations in which a given part of
            the motion was lost. The first of the following tables exhibits the
            number of oscillations in which 1/8 part of the
            whole motion was lost; the second the number of oscillations in which
            there was lost part of the same.
        

        
            
                
                    	First descent 
                    	1
                    	2
                    	4
                    	8
                    	16
                    	32
                    	64
                

                
                    	Last ascent 
                    	7/8
                    	7/4
                    	3½
                    	7
                    	14
                    	28
                    	56
                

                
                    	Numb, of oscill. 
                    	226
                    	228
                    	193
                    	140
                    	90½
                    	53
                    	30
                

                
                    	First descent 
                    	1
                    	2
                    	4
                    	8
                    	16
                    	32
                    	64
                

                
                    	Last ascent 
                    	¾
                    	1½
                    	3
                    	6
                    	12
                    	24
                    	48
                

                
                    	Numb. of oscill. 
                    	510
                    	518
                    	420
                    	318
                    	204
                    	121
                    	70
                

            
        

        
            Selecting in the first table the 3d, 5th, and 7th observations, and
            expressing the greatest velocities in these observations particularly
            by the numbers 1, 4, 16 respectively, and generally by the quantity V
            as above, there will come out in the 3d observation 
            1/2

            193 = A + B + C, in the 5th
            observation 2

            901/2 = 4A +
            8B + 16C, in the 7th observation 
            8

            30 = 16A + 64B + 256C. These
            equations reduced give A = 0,001414, B = 0,000297, C = 0,000879. And
            thence the resistance of the globe moving with the velocity V will be
            to its weight 26¼ ounces in the same ratio as 0,0009V
            + 0,000208V3/2 + 0,000659V²
            to 121 inches, the length of the pendulum. And if we regard that part
            only of the resistance which is in the duplicate ratio of the
            velocity, it will be to the weight of the globe as 0,000659V² to 121
            inches. But this part of the resistance in the first experiment was to
            the weight of the wooden globe of 577/22 ounces
            as 0,002217V² to 121; and thence the resistance of the wooden globe is
            to the resistance of the leaden one (their velocities being equal) as
            577/22 into 0,002217 to 26¼ into 0,000659, that
            is, as 7⅓ to 1. The diameters of the two globes were 67/8
            and 2 inches, and the squares of these are to each other as 47¼ and 4,
            or 1113/16 and 1, nearly. Therefore the
            resistances of these equally swift globes were in less than a
            duplicate ratio of the diameters. But we have not yet considered the
            resistance of the thread, which was certainly very considerable, and
            ought to be subducted from the resistance of the pendulums here found.
            I could not determine this accurately, but I found it 
            greater than a third part of the whole resistance of the lesser pendulum; and
            thence I gathered that the resistances of the globes, when the
            resistance of the thread is subducted, are nearly in the duplicate
            ratio of their diameters.
            For the ratio of 7⅓ − ⅓ to 1 − ⅓,
            or 10½ to 1 is not very different from the duplicate ratio of the diameters
            1113/16 to 1.
        

        
            Since the resistance of the thread is of less moment in greater
            globes, I tried the experiment also with a globe whose diameter was
            18¾ inches. The length of the pendulum between the point of suspension
            and the centre of oscillation was 122½ inches, and between the point
            of suspension and the knot in the thread 109½ inches. The arc
            described by the knot at the first descent of the pendulum was 32
            inches. The arc described by the same knot in the last ascent after
            five oscillations was 28 inches. The sum of the arcs, or the whole arc
            described in one mean oscillation, was 60 inches. The difference of
            the arcs 4 inches. The 1/10 part of this, or
            the difference between the descent and ascent in one mean oscillation,
            is 2/5 of an inch. Then as the radius 109½ to
            the radius 122½, so is the whole arc of 60 inches described by the
            knot in one mean oscillation to the whole arc of 671/8
            inches described by the centre of the globe in one mean oscillation;
            and so is the difference 3/5 to a new
            difference 0,4475. If the length of the arc described were to remain,
            and the length of the pendulum should be augmented in the ratio of 126
            to 122½, the time of the oscillation would be augmented, and the
            velocity of the pendulum would be diminished in the subduplicate of
            that ratio; so that the difference 0,4475 of the arcs described in the
            descent and subsequent ascent would remain. Then if the arc described
            be augmented in the ratio of 1243/31 to 671/8,
            that difference 0.4475 would be augmented in the duplicate of that
            ratio, and so would become 1,5295. These things would be so upon the
            supposition that the resistance of the pendulum were in the duplicate
            ratio of the velocity. Therefore if the pendulum describe the whole
            arc of 1243/31 inches, and its length between
            the point of suspension and the centre of oscillation be 126 inches,
            the difference of the arcs described in the descent and subsequent
            ascent would be 1,5295 inches. And this difference multiplied into the
            weight of the pendulous globe, which was 208 ounces, produces 318,136.
            Again; in the pendulum above-mentioned, made of a wooden globe, when
            its centre of oscillation, being 126 inches from the point of
            suspension, described the whole arc of 1243/31
            inches, the difference of the arcs described in the descent and ascent
            was 126/121 into 8

            92/3. This
            multiplied into the weight of the globe, which was 577/22
            ounces, produces 49,396. But I multiply these differences into the
            weights of the globes, in order to find their resistances. For the
            differences arise from the resistances, and are as the resistances
            directly and the weights inversely. Therefore the resistances are as
            the numbers 318,136 and 49,396. But that part of the resistance
            of the lesser globe, which is in the duplicate
            ratio of the velocity, was to the whole resistance as 0,56752 tor
            0,61675, that is, as 45,453 to 49,396; whereas that part of the
            resistance of the greater globe is almost equal to its whole
            resistance; and so those parts are nearly as 318,136 and 45,453, that
            is, as 7 and 1. But the diameters of the globes are 18¾ and 67/8;
            and their squares 3519/16 and 4717/64
            are as 7,438 and 1, that is, as the resistances of the globes 7 and 1,
            nearly. The difference of these ratios is scarce greater than may
            arise from the resistance of the thread. Therefore those parts of the
            resistances which are, when the globes are equal, as the squares of
            the velocities, are also, when the velocities are equal, as the
            squares of the diameters of the globes.
        

        
            But the greatest of the globes I used in these experiments was not
            perfectly spherical, and therefore in this calculation I have, for
            brevity's sake, neglected some little niceties; being not very
            solicitous for an accurate calculus in an experiment that was not very
            accurate. So that I could wish that these experiments were tried again
            with other globes, of a larger size, more in number, and more
            accurately formed; since the demonstration of a vacuum depends
            thereon. If the globes be taken in a geometrical proportion, as
            suppose whose diameters are 4, 8, 16, 32 inches; one may collect from
            the progression observed in the experiments what would happen if the
            globes were still larger.
        

        
            In order to compare the resistances of different fluids with each
            other, I made the following trials. I procured a wooden vessel 4 feet
            long, 1 foot broad, and 1 foot high. This vessel, being uncovered, I
            filled with spring water, and, having immersed pendulums therein, I
            made them oscillate in the water. And I found that a leaden globe
            weighing 1661/6 ounces, and in diameter 35/8
            inches, moved therein as it is set down in the following table; the
            length of the pendulum from the point of suspension to a certain point
            marked in the thread being 126 inches, and to the centre of
            oscillation 1343/8 inches.
        

        
            
                
                    	
                         The arc described in

                        the first descent, by

                        a point marked in

                        the thread was

                        inches. 
                    
                    	
                        ⎫

                        ⎪

                        ⎪

                        ⎬

                        ⎪

                        ⎪

                        ⎭
                    
                    	64
                    	.
                    	32
                    	.
                    	16
                    	.
                    	8
                    	.
                    	4
                    	.
                    	2
                    	.
                    	1
                    	.
                    	½
                    	.
                    	¼
                

                
                    	
                        
                            The arc described in

                            the last ascent was

                            inches.
                        
                    
                    	
                        ⎫

                        ⎪

                        ⎬

                        ⎪

                        ⎭
                    
                    	48
                    	.
                    	24
                    	.
                    	12
                    	.
                    	6
                    	.
                    	3
                    	.
                    	1½
                    	.
                    	¾
                    	.
                    	3/8
                    	.
                    	3/16
                

                
                    	
                        
                            The difference of the

                            arcs, proportional

                            to the motion lost,

                            was inches.
                        
                    
                    	
                        ⎫

                        ⎪

                        ⎬

                        ⎪

                        ⎭
                    
                    	16
                    	.
                    	8
                    	.
                    	4
                    	.
                    	2
                    	.
                    	1
                    	.
                    	½
                    	.
                    	¼
                    	.
                    	1/8
                    	.
                    	1/16
                

                
                    	
                        
                            The number of the

                            oscillations in water.
                        
                    
                    	
                        ⎫

                        ⎬

                        ⎭
                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	29/60
                    	.
                    	11/5
                    	.
                    	3
                    	.
                    	7
                    	.
                    	11¼
                    	.
                    	12⅔
                    	.
                    	13⅓
                

                
                    	
                        
                            The number of the

                            oscillations in air.
                        
                    
                    	
                        ⎫

                        ⎬

                        ⎭
                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	 

                    
                    	85½
                    	.
                    	287
                    	.
                    	535
                

            
        

        
            In the experiments of the 4th column there
            were equal motions lost in 535 oscillations made in the air, and 11/5
            in water. The oscillations in the air were indeed a little swifter
            than those in the water. But if the oscillations in the water were
            accelerated in such a ratio that the motions of the pendulums might be
            equally swift in both mediums, there would be still the same number 11/5
            of oscillations in the water, and by these the same quantity of motion
            would be lost as before; because the resistance it increased, and the
            square of the time diminished in the same duplicate ratio. The
            pendulums, therefore, being of equal velocities, there were equal
            motions lost in 535 oscillations in the air, and 11/5
            in the water; and therefore the resistance of the pendulum in the
            water is to its resistance in the air as 535 to 11/5.
            This is the proportion of the whole resistances in the case of the 4th column.
        

        
            Now let AV + CV² represent the difference of the arcs described in
            the descent and subsequent ascent by the globe moving in air with the
            greatest velocity V; and since the greatest velocity is in the case of
            the 4th column to the greatest velocity in the case of the 1st column
            as 1 to 8; and that difference of the arcs in the case of the 4th
            column to the difference in the case of the 1st column as 2/535
            to 16/85½, or as 85½ to 4280; put in these
            cases 1 and 8 for the velocities, and 85½ and 4280 for the differences
            of the arcs, and A + C will be = 85½, and 8A + 64C
            = 4280 or A + 8C = 535; and then
            by reducing these equations, there will come out 7C = 449½ and
            C = 643/14 and A
            = 212/7; and therefore the resistance,
            which is as 7/11AV + 3/4CV²,
            will become as 136/11V + 489/56V².
            Therefore in the case of the 4th column, where the velocity was 1, the
            whole resistance is to its part proportional to the square of the
            velocity as 136/11 + 489/56.
            or 6112/17 to
            489/56; and therefore the
            resistance of the pendulum in water is to that part of the resistance
            in air, which is proportional to the square of the velocity, and which
            in swift motions is the only part that deserves consideration, as
            6112/17 to 489/56
            and 535 to 11/5 conjunctly, that is, as 571 to
            1. If the whole thread of the pendulum oscillating in the water had
            been immersed, its resistance would have been still greater; so that
            the resistance of the pendulum oscillating in the water, that is, that
            part which is proportional to the square of the velocity, and which
            only needs to be considered in swift bodies, is to the resistance of
            the same whole pendulum, oscillating in air with the same velocity, as
            about 850 to 1, that is as, the density of water to the density of air, nearly.
        

        
            In this calculation we ought also to have taken in that part of the
            resistance of the pendulum in the water which was as the square of the
            velocity; but I found (which will perhaps seem strange) that the
            resistance in the water was augmented in more than a duplicate ratio
            of the velocity. In searching after the cause, I thought upon this,
            that the vessel was too narrow for the
            magnitude of the pendulous globe, and by its narrowness obstructed the
            motion of the water as it yielded to the oscillating globe. For when I
            immersed a pendulous globe, whose diameter was one inch only, the
            resistance was augmented nearly in a duplicate ratio of the velocity,
            I tried this by making a pendulum of two globes, of which the lesser
            and lower oscillated in the water, and the greater and higher was
            fastened to the thread just above the water, and, by oscillating in
            the air, assisted the motion of the pendulum, and continued it longer.
            The experiments made by this contrivance proved according to the
            following table.
        

        
            
                
                    	Arc descr. in first descent 
                    	16
                    	.
                    	8
                    	.
                    	4
                    	.
                    	2
                    	.
                    	1
                    	.
                    	½
                    	.
                    	¼
                

                
                    	Arc descr. in last ascent 
                    	12
                    	.
                    	6
                    	.
                    	3
                    	.
                    	1½
                    	.
                    	¾
                    	.
                    	3/8
                    	.
                    	3/16
                

                
                    	Diff. of arcs, proport. to
motion lost
                    
                    	4
                    	.
                    	2
                    	.
                    	1
                    	.
                    	½
                    	.
                    	¼
                    	.
                    	1/8
                    	.
                    	1/16
                

                
                    	Number of oscillations 
                    	33/8
                    	.
                    	6½
                    	.
                    	121/12
                    	.
                    	211/5
                    	.
                    	34
                    	.
                    	53
                    	.
                    	621/5
                

            
        

        
            In comparing the resistances of the mediums with each other, I also
            caused iron pendulums to oscillate in quicksilver. The length of the
            iron wire was about 3 feet, and the diameter of the pendulous globe
            about ⅓ of an inch. To the wire, just above the quicksilver, there was
            fixed another leaden globe of a bigness sufficient to continue the
            motion of the pendulum for some time. Then a vessel, that would hold
            about 3 pounds of quicksilver, was filled by turns with quicksilver
            and common water, that, by making the pendulum oscillate successively
            in these two different fluids, I might find the proportion of their
            resistances; and the resistance of the quicksilver proved to be to the
            resistance of water as about 13 or 14 to 1; that is, as the density of
            quicksilver to the density of water. When I made use of a pendulous
            globe something bigger, as of one whose diameter was about ½ or ⅔ of
            an inch, the resistance of the quicksilver proved to be to the
            resistance of the water as about 12 or 10 to 1. But the former
            experiment is more to be relied on, because in the latter the vessel
            was too narrow in proportion to the magnitude of the immersed globe;
            for the vessel ought to have been enlarged together with the globe. I
            intended to have repeated these experiments with larger vessels, and
            in melted metals, and other liquors both cold and hot; but I had not
            leisure to try all: and besides, from what is already described, it
            appears sufficiently that the resistance of bodies moving swiftly is
            nearly proportional to the densities of the fluids in which they move.
            I do not say accurately; for more tenacious fluids, of equal density,
            will undoubtedly resist more than those that are more liquid; as cold
            oil more than warm, warm oil more than rain water, and water more than
            spirit of wine. But in liquors, which are sensibly fluid enough, as in
            air, in salt and fresh water, in spirit of wine, of turpentine, and
            salts, in oil cleared of its faeces by distillation and warmed, in oil
            of vitriol, and in mercury, and melted metals, and any other such
            like, that are fluid enough to retail for some time the motion
            impressed upon them by the agitation of the
            vessel, and which being poured out are easily resolved into drops, I
            doubt not but the rule already laid down may be accurate enough,
            especially if the experiments be made with larger pendulous bodies and
            more swiftly moved.
        

        
            Lastly, since it is the opinion of some that there is a certain
            aethereal medium extremely rare and subtile, which freely pervades the
            pores of all bodies; and from such a medium, so pervading the pores of
            bodies, some resistance must needs arise; in order to try whether the
            resistance, which we experience in bodies in motion, be made upon
            their outward superficies only, or whether their internal parts meet
            with any considerable resistance upon their superficies, I thought of
            the following experiment. I suspended a round deal box by a thread 11
            feet long, on a steel hook, by means of a ring of the same metal, so
            as to make a pendulum of the aforesaid length. The hook had a sharp
            hollow edge on its upper part, so that the upper arc of the ring
            pressing on the edge might move the more freely; and the thread was
            fastened to the lower arc of the ring. The pendulum being thus
            prepared, I drew it aside from the perpendicular to the distance of
            about 6 feet, and that in a plane perpendicular to the edge of the
            hook, lest the ring, while the pendulum oscillated, should slide to
            and fro on the edge of the hook: for the point of suspension, in which
            the ring touches the hook, ought to remain immovable. I therefore
            accurately noted the place to which the pendulum was brought, and
            letting it go, I marked three other places, to which it returned at
            the end of the 1st, 2d, and 3d oscillation. This I often repeated,
            that I might find those places as accurately as possible. Then I
            filled the box with lead and other heavy metals that were near at
            hand. But, first, I weighed the box when empty, and that part of the
            thread that went round it, and half the remaining part, extended
            between the hook and the suspended box; for the thread so extended
            always acts upon the pendulum, when drawn aside from the
            perpendicular, with half its weight. To this weight I added the weight
            of the air contained in the box. And this whole weight was about
            1

            78 of the weight of the box when filled
            with the metals. Then because the box when full of the metals, by
            extending the thread with its weight, increased the length of the
            pendulum, I shortened the thread so as to make the length of the
            pendulum, when oscillating, the same as before. Then drawing aside the
            pendulum to the place first marked, and letting it go, I reckoned
            about 77 oscillations before the box returned to the second mark, and
            as many afterwards before it came to the third mark, and as many after
            that before it came to the fourth mark. From whence I conclude that
            the whole resistance of the box, when full, had not a greater
            proportion to the resistance of the box, when empty, than 78 to 77.
            For if their resistances were equal, the box, when full, by reason of
            its vis insita, which was 78 times greater than the vis
            insita of the same when empty, ought to have continued its
            oscillating motion so much the longer, and
            therefore to have returned to those marks at the end of 78
            oscillations. But it returned to them at the end of 77 oscillations.
        

        
            Let, therefore, A represent the resistance of the box upon its
            external superficies, and B the resistance of the empty box on its
            internal superficies; and if the resistances to the internal parts of
            bodies equally swift be as the matter, or the number of particles that
            are resisted, then 78B will be the resistance made to the internal
            parts of the box, when full; and therefore the whole resistance A + B
            of the empty box will be to the whole resistance A + 78B of the full
            box as 77 to 78, and, by division, A + B to 77B as 77 to 1; and thence
            A + B to B as 77 x 77 to 1, and, by division again, A to B as 5928 to
            1. Therefore the resistance of the empty box in its internal parts
            will be above 5000 times less than the resistance on its external
            superficies. This reasoning depends upon the supposition that the
            greater resistance of the full box arises not from any other latent
            cause, but only from the action of some subtile fluid upon the
            included metal.
        

        
            This experiment is related by memory, the paper being lost in which I
            had described it; so that I have been obliged to omit some fractional
            parts, which are slipt out of my memory; and I have no leisure to try
            it again. The first time I made it, the hook being weak, the full box
            was retarded sooner. The cause I found to be, that the hook was not
            strong enough to bear the weight of the box; so that, as it oscillated
            to and fro, the hook was bent sometimes this and sometimes that way. I
            therefore procured a hook of sufficient strength, so that the point of
            suspension might remain unmoved, and then all things happened as is
            above described.
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The Mathematical Principles of Natural Philosophy
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Book 2.7



    
        Section vii.

        Of the motion of fluids, and the resistance made to projected bodies.


    

    
        Proposition xxxii. Theorem xxvi.

            
                
                    Suppose two similar systems of bodies consisting of an equal
                    number of particles, and let the correspondent particles be
                    similar and proportional, each in one system to each in the other,
                    and have a like situation among themselves, and the same given
                    ratio of density to each other; and let them begin to move among
                    themselves in proportional times, and with like motions (that is,
                    those in one system among one another, and those in the other
                    among one another). And if the particles that are in the same
                    system do not touch one another, except it the moments of
                    reflexion; nor attract, nor repel each other, except with
                    accelerative forces that are as the diameters of the correspondent
                    particles inversely, and the squares of the velocities directly; I
                    say, that the particles of those systems will continue to move
                    among themselves with like motions and in proportional times.
                
            

        

        
            Like bodies in like situations are said to be moved among themselves
            with like motions and in proportional times, when their situations at
            the end of those times are always found alike in respect of each
            other; as suppose we compare the particles in one system with the
            correspondent particles in the other. Hence the times will be
            proportional, in which similar and proportional parts of similar
            figures will be described by correspondent particles. Therefore if we
            suppose two systems of this kind, the correspondent particles, by
            reason of the similitude of the motions at their beginning, will
            continue to be moved with like motions, so long as they move without
            meeting one another; for if they are acted on by no forces,they will
            go on uniformly in right lines, by the 1st Law. But if they do agitate
            one another with some certain forces, and those forces are as the
            diameters of the correspondent particles inversely and the squares of
            the velocities directly, then, because the particles are in like
            situations, and their forces are proportional, the whole forces with
            which correspondent particles are agitated, and which are compounded
            of each of the agitating forces (by Corol. 2 of the Laws), will have
            like directions, and have the same effect as if they respected centres
            placed alike among the particles; and those whole forces will be to
            each other as the several forces which compose them, that is, as the
            diameters of the correspondent particles inversely, and the squares of
            the velocities directly: and therefore will cause
            
            correspondent particles to continue to describe like figures. These things will be
            so (by Cor. 1 and 8, Prop. IV., Book 1), if those centres are at rest
            but if they are moved, yet by reason of the similitude of the
            translations, their situations among the particles of the system will
            remain similar, so that the changes introduced into the figures
            described by the particles will still be similar. So that the motions
            of correspondent and similar particles will continue similar till
            their first meeting with each other; and thence will arise similar
            collisions, and similar reflexions; which will again beget similar
            motions of the particles among themselves (by what was just now
            shown), till they mutually fall upon one another again, and so on ad infinitum.
        

        
            Cor. 1. Hence if any two bodies, which are
            similar and in like situations to the correspondent particles of the
            systems, begin to move amongst them in like manner and in proportional
            times, and their magnitudes and densities be to each other as the
            magnitudes and densities of the corresponding particles, these bodies
            will continue to be moved in like manner and in proportional times:
            for the case of the greater parts of both systems and of the particles
            is the very same.
        

        
            Cor. 2. And if all the similar and similarly
            situated parts of both systems be at rest among themselves; and two of
            them, which are greater than the rest, and mutually correspondent in
            both systems, begin to move in lines alike posited, with any similar
            motion whatsoever, they will excite similar motions in the rest of the
            parts of the systems, and will continue to move among those parts in
            like manner and in proportional times; and will therefore describe
            spaces proportional to their diameters.
        

    

    
        Proposition xxxiii. Theorem xxvii.

            
                
                    The same things faring supposed, I say, that the greater parts
                    of the systems are resisted in a ratio compounded of the duplicate
                    ratio of their velocities, and the duplicate ratio of their
                    diameters, and the simple ratio of the density of the parts of the systems.
                
            

        

        
            For the resistance arises partly from the centripetal or centrifugal
            forces with which the particles of the system mutually act on each
            other, partly from the collisions and reflexions of the particles and
            the greater parts. The resistances of the first kind are to each other
            as the whole motive forces from which they arise, that is, as the
            whole accelerative forces and the quantities of matter in
            corresponding parts; that is (by the supposition), as the squares of
            the velocities directly, and the distances of the corresponding
            particles inversely, and the quantities of matter in the correspondent
            parts directly: and therefore since the distances of the particles in
            one system are to the correspondent distances of the particles of the
            other as the diameter of one particle or part in the former system to
            the diameter of the correspondent particle or
            part in the other, and since the quantities of matter are as the
            densities of the parts and the cubes of the diameters; the resistances
            are to each other as the squares of the velocities and the squares of
            the diameters and the densities of the parts of the systems.
              Q.E.D.   The resistances of the latter sort are
            as the number of correspondent reflexions and the forces of those
            reflexions conjunctly; but the number of the reflexions are to each
            other as the velocities of the corresponding parts directly and the
            spaces between their reflexions inversely. And the forces of the
            reflexions are as the velocities and the magnitudes and the densities
            of the corresponding parts conjunctly; that is, as the velocities and
            the cubes of the diameters and the densities of the parts. And,
            joining all these ratios, the resistances of the corresponding parts
            are to each other as the squares of the velocities and the squares of
            the diameters and the densities of the parts conjunctly.
              Q.E.D.
        

        
            Cor. 1. Therefore if those systems are two
            elastic fluids, like our air, and their parts are at rest among
            themselves; and two similar bodies proportional in magnitude and
            density to the parts of the fluids, and similarly situated among those
            parts, be any how projected in the direction of lines similarly
            posited; and the accelerative forces with which the particles of the
            fluids mutually act upon each other are as the diameters of the bodies
            projected inversely and the squares of their velocities directly;
            those bodies will excite similar motions in the fluids in proportional
            times, and will describe similar spaces and proportional to their
            diameters.
        

        
            Cor. 2. Therefore in the same fluid a
            projected body that moves swiftly meets with a resistance that is, in
            the duplicate ratio of its velocity, nearly. For if the forces with
            which distant particles act mutually upon one another should be
            augmented in the duplicate ratio of the velocity, the projected body
            would be resisted in the same duplicate ratio accurately; and
            therefore in a medium, whose parts when at a distance do not act
            mutually with any force on one another, the resistance is in the
            duplicate ratio of the velocity accurately. Let there be, therefore,
            three mediums A, B, C, consisting of similar and equal parts regularly
            disposed at equal distances. Let the parts of the mediums A and B
            recede from each other with forces that are among themselves as T and
            V; and let the parts of the medium C be entirely destitute of any such
            forces. And if four equal bodies D, E, F, G, move in these mediums,
            the two first D and E in the two first A and B, and the other two F
            and G in the third C; and if the velocity of the body D be to the
            velocity of the body E, and the velocity of the body F to the velocity
            of the body G, in the subduplicate ratio of the force T to the force
            V; the resistance of the body D to the resistance of the body E, and
            the resistance of the body F to the resistance of the body G, will be
            in the duplicate ratio of the velocities; and therefore the resistance
            of the body D will be to the resistance of the body F as the
            resistance of the body E to the resistance of
            the body G. Let the bodies D and F be equally swift, as also the
            bodies E and G; and, augmenting the velocities of the bodies D and F
            in any ratio, and diminishing the forces of the particles of the
            medium B in the duplicate of the same ratio, the medium B will
            approach to the form and condition of the medium C at pleasure; and
            therefore the resistances of the equal and equally swift bodies E and
            G in these mediums will perpetually approach to equality so that their
            difference will at last become less than any given. Therefore since
            the resistances of the bodies D and F are to each other as the
            resistances of the bodies E and G, those will also in like manner
            approach to the ratio of equality. Therefore the bodies D and F, when
            they move with very great swiftness, meet with resistances very nearly
            equal; and therefore since the resistance of the body F is in a
            duplicate ratio of the velocity, the resistance of the body D will be
            nearly in the same ratio.
        

        
            Cor. 3. The resistance of a body moving very
            swift in an elastic fluid is almost the same as if the parts of the
            fluid were destitute of their centrifugal forces, and did not fly from
            each other; if so be that the elasticity of the fluid arise from the
            centrifugal forces of the particles, and the velocity be so great as
            not to allow the particles time enough to act.
        

        
            Cor. 4. Therefore, since the resistances of
            similar and equally swift bodies, in a medium whose distant parts do
            not fly from each other, are as the squares of the diameters, the
            resistances made to bodies moving with very great and equal velocities
            in an elastic fluid will be as the squares of the diameters, nearly.
        

        
            Cor. 5. And since similar, equal, and equally
            swift bodies, moving through mediums of the same density, whose
            particles do not fly from each other mutually, will strike against an
            equal quantity of matter in equal times, whether the particles of
            which the medium consists be more and smaller, or fewer and greater,
            and therefore impress on that matter an equal quantity of motion, and
            in return (by the 3d Law of Motion) suffer an equal re-action from the
            same, that is, are equally resisted; it is manifest, also, that in
            elastic fluids of the same density, when the bodies move with extreme
            swiftness, their resistances are nearly equal, whether the fluids
            consist of gross parts, or of parts ever so subtile. For the
            resistance of projectiles moving with exceedingly great celerities is
            not much diminished by the subtilty of the medium.
        

        
            Cor. 6. All these things are so in fluids
            whose elastic force takes its rise from the centrifugal forces of the
            particles. But if that force arise from some other cause, as from the
            expansion of the particles after the manner of wool, or the boughs of
            trees, or any other cause, by which the particles are hindered from
            moving freely among themselves, the resistance, by reason of the
            lesser fluidity of the medium, will be greater than in the Corollaries
            above.
        


        

    

    
        Proposition xxxiv. Theorem xxviii.

            
                
                    If in a rare medium, consisting of equal particles freely
                    disposed at equal distances front each other, a globe and a
                    cylinder described on equal diameters move with equal velocities
                    in the direction of the axis of the cylinder, the resistance of
                    the globe will be but half so great as that of the cylinder.
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            For since the action of the medium upon the body is the same (by Cor.
            5 of the Laws) whether the body move in a quiescent medium, or whether
            the particles of the medium impinge with the same velocity upon the
            quiescent body, let us consider the body as if it were quiescent, and
            see with what force it would be impelled by the moving medium. Let,
            therefore, ABKI represent a spherical body described from the centre O
            with the semi-diameter CA, and let the particles of the medium impinge
            with a given velocity upon that spherical body in the directions of
            right lines parallel to AC; and let FB be one of those right lines. In
            FB take LB equal to the semi-diameter CB, and draw BD touching the
            sphere in B. Upon KC and BD let fall the perpendiculars BE, LD; and
            the force with which a particle of the medium, impinging on the globe
            obliquely in the direction FB, would strike the globe in B, will be to
            the force with which the same particle, meeting the cylinder ONGQ,
            described about the globe with the axis ACI, would strike it
            perpendicularly in b, as LD to LB, or BE to BC. Again; the
            efficacy of this force to move the globe, according to the direction
            of its incidence FB or AC, is to the efficacy of the same to move the
            globe, according to the direction of its determination, that is, in
            the direction of the right line BC in which it impels the globe
            directly, as BE to BC. And, joining these ratios, the efficacy of a
            particle, falling upon the globe obliquely in the direction of the
            right line FB to move the globe in the direction of its incidence, is
            to the efficacy of the same particle falling in the same line
            perpendicularly on the cylinder, to move it in the same direction, as
            BE² to BC². Therefore if in bE, which is perpendicular to
            the circular base of the cylinder NAO, and equal to the radius AC, we
            take bH equal to BE2

            CB; then bH will be to bE
            as the effect of the particle upon the globe to the effect of the
            particle upon the cylinder. And therefore the solid which is formed by
            all the right lines bH will be to the solid formed by all
            the right lines bE as the effect of all the particles upon
            the globe to the effect of all the particles upon the cylinder. But
            the former of these solids is a paraboloid
            whose vertex is C, its axis CA, and latus rectum CA, and the latter
            solid is a cylinder circumscribing the paraboloid; and it is known
            that a paraboloid is half its circumscribed cylinder. Therefore the
            whole force of the medium upon the globe is half of the entire force
            of the same upon the cylinder. And therefore if the particles of the
            medium are at rest, and the cylinder and globe move with equal
            velocities, the resistance of the globe will be half the resistance of
            the cylinder.   Q.E.D.
        

    

    
        Scholium.


        
            By the same method other figures may be compared together as to their
            resistance; and those may be found which are most apt to continue
            their motions in resisting mediums. As if upon the circular base CEBH
            from the centre O, with the radius OC, and the altitude OD, one would
            construct a frustum CBGF of a cone, which should meet with less
            resistance than any other frustum constructed with the same base and
            altitude, and going forwards towards D in the direction of its axis:
            bisect the altitude OD in Q, and produce OQ to S, so that QS may be
            equal to QC, and S will be the vertex of the cone whose frustum is
            sought.
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            Whence, by the bye, since the angle CSB is always acute, it follows,
            that, if the solid ADBE be generated by the convolution of an
            elliptical or oval figure ADBE about its axis AB, and the generating
            figure be touched by three right lines FG, GH, HI, in the points P, B,
            and I, so that GH shall be perpendicular to the axis in the point of
            contact B, and FG, HI may be inclined to GH in the angles FGB, BHI of
            135 degrees: the solid arising from the convolution of the figure
            ADFGHIE about the same axis AB will be less resisted than the former
            solid; if so be that both move forward in the direction of their axis
            AB, and that the extremity B of each go foremost. Which Proposition I
            conceive may be of use in the building of ships.
        

        
            If the figure DNFG be such a curve, that if, from any point thereof,
            as N, the perpendicular NM be let fall on the axis AB, and from the
            given point G there be drawn the right line GR parallel to a right
            line touching the figure in N, and cutting the axis produced in R, MN
            becomes to GR as GR³ to 4BR x GB²; the solid described by the
            revolution of tins figure about its axis AB,
            moving in the before-mentioned rare medium from A towards B, will be
            less resisted than any other circular solid whatsoever, described of
            the same length and breadth.
        

    

    
        Proposition xxxv. Problem vii.

            
                
                    If a rare medium consist of very small quiescent particles of
                    equal magnitudes, and freely disposed at equal distances from one
                    another: to find the resistance of a globe moving uniformly
                    forward in this medium.
                
            

        

        
            Case 1. Let a cylinder described with the
            same diameter and altitude be conceived to go forward with the same
            velocity in the direction of its axis through the same medium; and let
            us suppose that the particles of the medium, on which the globe or
            cylinder falls, fly back with as great a force of reflexion as
            possible. Then since the resistance of the globe (by the last
            Proposition) is but half the resistance of the cylinder, and since the
            globe is to the cylinder as 2 to 3, and since the cylinder by falling
            perpendicularly on the particles, and reflecting them with the utmost
            force, communicates to them a velocity double to its own; it follows
            that the cylinder, in moving forward uniformly half the length of its
            axis, will communicate a motion to the particles which is to the whole
            motion of the cylinder as the density of the medium to the density of
            the cylinder; and that the globe, in the time it describes one length
            of its diameter in moving uniformly forward, will communicate the same
            motion to the particles; and in the time that it describes two thirds
            of its diameter, will communicate a motion to the particles which is
            to the whole motion of the globe as the density of the medium to the
            density of the globe. And therefore the globe meets with a resistance,
            which is to the force by which its whole motion may be either taken
            away or generated in the time in which it describes two thirds of its
            diameter moving uniformly forward, as the density of the medium to the
            density of the globe.
        

        
            Case 2. Let us suppose that the particles of
            the medium incident on the globe or cylinder are not reflected; and
            then the cylinder falling perpendicularly on the particles will
            communicate its own simple velocity to them, and therefore meets a
            resistance but half so great as in the former case, and the globe also
            meets with a resistance but half so great.
        

        
            Case 3. Let us suppose the particles of the
            medium to fly back from the globe with a force which is neither the
            greatest, nor yet none at all, but with a certain mean force; then the
            resistance of the globe will be in the same mean ratio between the
            resistance in the first case and the resistance in the second.
              Q.E.I.
        

        
            Cor. 1. Hence if the globe and the particles
            are infinitely hard, and destitute of all elastic force, and therefore
            of all force of reflexion; the resistance of the globe will be to the
            force by which its whole motion may be
            destroyed or generated, in the time that the globe describes four
            third parts of its diameter, as the density of the medium to the
            density of the globe.
        

        
            Cor. 2. The resistance of the globe, caeteris
            paribus, is in the duplicate ratio of the velocity.
        

        
            Cor. 3. The resistance of the globe, caeteris
            paribus, is in the duplicate ratio of the diameter.
        

        
            Cor. 4. The resistance of the globe is, caeteris
            paribus, as the density of the medium.
        

        
            Cor. 5. The resistance of the globe is in a
            ratio compounded of the duplicate ratio of the velocity, and the
            duplicate ratio of the diameter, and the ratio of the density of the
            medium.
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            Cor. 6. The motion of the globe and its
            resistance may be thus expounded. Let AB be the time in which the
            globe may, by its resistance uniformly continued, lose its whole
            motion. Erect AD, BC perpendicular to AB. Let BC be that whole motion,
            and through the point C, the asymptotes being AD, AB, describe the
            hyperbola CF. Produce AB to any point E. Erect the perpendicular EF
            meeting the hyperbola in F. Complete the parallelogram CBEG, and draw
            AF meeting BC in H. Then if the globe in any time BE, with its first
            motion BC uniformly continued, describes in a non-resisting medium the
            space CBEG expounded by the area of the parallelogram, the same in a
            resisting medium will describe the space CBEF expounded by the area of
            the hyperbola; and its motion at the end of that time will be
            expounded by EF, the ordinate of the hyperbola, there being lost of
            its motion the part FG. And its resistance at the end of the same time
            will be expounded by the length BH, there being lost of its resistance
            the part CH. All these things appear by Cor. 1 and 3, Prop. V., Book
            II.
        

        
            Cor. 7. Hence if the globe in the time T by
            the resistance R uniformly continued lose its whole motion M, the same
            globe in the time t in a resisting medium, wherein the
            resistance R decreases in a duplicate ratio of the velocity, will lose
            out of its motion M the part tM

            T+t, the part 
            TM

            T+t remaining; and will describe a
            space which is to the space described in the same time t,
            with the uniform motion M, as the logarithm of the number 
            T+t

            T multiplied by the number
            2,302585092994 is to the number t

            T, because the hyperbolic area BCFE is
            to the rectangle BCGE in that proportion.
        


        

    

    
        Scholium.


        
            I have exhibited in this Proposition the resistance and retardation
            of spherical projectiles in mediums that are not continued, and shewn
            that this resistance is to the force by which the whole motion of the
            globe may be destroyed or produced in the time in which the globe can
            describe two thirds of its diameter; with a velocity uniformly
            continued, as the density of the medium to the density of the globe,
            if so be the globe and the particles of the medium be perfectly
            elastic, and are endued with the utmost force of reflexion; and that
            this force, where the globe and particles of the medium are infinitely
            hard and void of any reflecting force, is diminished one half. But in
            continued mediums, as water, hot oil, and quicksilver, the globe as it
            passes through them does not immediately strike against all the
            particles of the fluid that generate the resistance made to it, but
            presses only the particles that lie next to it, which press the
            particles beyond, which press other particles, and so on; and in these
            mediums the resistance is diminished one other half. A globe in these
            extremely fluid mediums meets with a resistance that is to the force
            by which its whole motion may be destroyed or generated in the time
            wherein it can describe, with that motion uniformly continued, eight
            third parts of its diameter, as the density of the medium to the
            density of the globe. This I shall endeavour to shew in what follows.
        

    

    
        Proposition xxxvi. Problem viii.

            
                
                    To define the motion of water running out of a cylindrical
                    vessel through a hole made at the bottom.
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            Let ACDB be a cylindrical vessel, AB the mouth of it, CD the bottom
            parallel to the horizon, EF a circular hole in the middle of the
            bottom, G the centre of the hole, and GH the axis of the cylinder
            perpendicular to the horizon. And suppose a cylinder of ice APQB to be
            of the same breadth with the cavity of the vessel, and to have the
            same axis, and to descend perpetually with an uniform motion, and that
            its parts, as soon as they touch the superficies AB, dissolve into
            water, and flow down by their weight into the vessel, and in their
            fall compose the cataract or column of water ABNFEM, passing through
            the hole EF, and filling up the same exactly. Let the uniform velocity
            of the descending ice and of the contiguous water in the circle AB be
            that which the water would acquire by falling through the space IH;
            and let IH and HG lie in the same right line; and through
            the point I let there be drawn the right line
            KL parallel to the horizon and meeting the ice on both the sides thereof
            in K and L. Then the velocity of the water running out at the hole EF will be
            the same that it would acquire by falling from I through the space IG.
            Therefore, by Galileo's Theorems, IG will be to IH in the duplicate ratio
            of the velocity of the water that runs out at the hole to the velocity
            of the water in the circle AB, that is, in the duplicate ratio of the
            circle AB to the circle EF; those circles being reciprocally as the
            velocities of the water which in the same time and in equal quantities
            passes severally through each of them, and completely fills them both.
            We are now considering the velocity with which the water tends to the
            plane of the horizon. But the motion parallel to the same, by which
            the parts of the falling water approach to each other, is not here
            taken notice of; since it is neither produced by gravity, nor at all
            changes the motion perpendicular to the horizon which the gravity
            produces. We suppose, indeed, that the parts of the water cohere a
            little, that by their cohesion they may in falling approach to each
            other with motions parallel to the horizon in order to form one single
            cataract, and to prevent their being divided into several: but the
            motion parallel to the horizon arising from this cohesion does not
            come under our present consideration.
        

        
            Case 1. Conceive now the whole cavity in the
            vessel, which encompasses the falling water ABNFEM, to be full of ice,
            so that the water may pass through the ice as through a funnel. Then
            if the water pass very near to the ice only, without touching it; or,
            which is the same thing, if by reason of the perfect smoothness of the
            surface of the ice, the water, though touching it, glides over it with
            the utmost freedom, and without the least resistance; the water will
            run through the hole EF with the same velocity as before, and the
            whole weight of the column of water ABNFEM will be all taken up as
            before in forcing out the water, and the bottom of the vessel will
            sustain the weight of the ice encompassing that column.
        

        
            Let now the ice in the vessel dissolve into water; yet will the
            efflux of the water remain, as to its velocity, the same as before. It
            will not be less, because the ice now dissolved will endeavour to
            descend; it will not be greater, because the ice, now become water,
            cannot descend without hindering the descent of other water equal to
            its own descent. The same force ought always to generate the same
            velocity in the effluent water.
        

        
            But the hole at the bottom of the vessel, by reason of the oblique
            motions of the particles of the effluent water, must be a little
            greater than before. For now the particles of the water do not all of
            them pass through the hole perpendicularly, but, flowing down on all
            parts from the sides of the vessel, and converging towards the hole,
            pass through it with oblique motions; and in tending downwards meet in
            a stream whose diameter is a little smaller below the hole than at the
            hole itself; its diameter being to the diameter
            of the hole as 5 to 6, or as 5½ to 6½, very nearly, if I took the
            measures of those diameters right. I procured a very thin flat plate,
            having a hole pierced in the middle, the diameter of the circular hole
            being 5

            8 parts of an inch. And that the stream
            of running waters might not be accelerated in falling, and by that
            acceleration become narrower, I fixed this plate not to the bottom,
            but to the side of the vessel, so as to make the water go out in the
            direction of a line parallel to the horizon. Then, when the vessel was
            full of water, I opened the hole to let it run out; and the diameter
            of the stream, measured with great accuracy at the distance of about
            half an inch from the hole, was 21

            40 of an inch. Therefore the diameter
            of this circular hole was to the diameter of the stream very nearly as
            25 to 21. So that the water in passing through the hole converges on
            all sides, and, after it has run out of the vessel, becomes smaller by
            converging in that manner, and by becoming smaller is accelerated till
            it comes to the distance of half an inch from the hole, and at that
            distance flows in a smaller stream and with greater celerity than in
            the hole itself, and this in the ratio of 25 x 25 to 21 x 21, or 17 to
            12, very nearly; that is, in about the subduplicate ratio of 2 to 1.
            Now it is certain from experiments, that the quantity of water running
            out in a given time through a circular hole made in the bottom of a
            vessel is equal to the quantity, which, flowing with the aforesaid
            velocity, would run out in the same time through another circular
            hole, whose diameter is to the diameter of the former as 21 to 25. And
            therefore that running water in passing through the hole itself has a
            velocity downwards equal to that which a heavy body would acquire in
            falling through half the height of the stagnant water in the vessel,
            nearly. But, then, after it has run out, it is still accelerated by
            converging, till it arrives at a distance from the hole that is nearly
            equal to its diameter, and acquires a velocity greater than the other
            in about the subduplicate ratio of 2 to 1; which velocity a heavy body
            would nearly acquire by falling through the whole height of the
            stagnant water in the vessel.
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            Therefore in what follows let the diameter of the stream be
            represented by that lesser hole which we called EF. And imagine
            another plane VW above the hole EF, and parallel to the plane there
            of, to be placed at a distance equal to the diameter of the same hole,
            and to be pierced through with a greater hole ST, of such a magnitude
            that a stream which will exactly fill the lower hole EF may pass
            through it; the diameter of which hole will therefore be to the
            diameter of the lower hole as 25 to 21, nearly. By this means the
            water will run perpendicularly out at the lower hole; and the quantity
            of the water running out will be, according to the magnitude of
            this last hole, the same, very nearly, which the solution of the
            Problem requires. The space included between the two planes and the
            falling stream may be considered as the bottom of the vessel. But, to
            make the solution more simple and mathematical, it is better to take
            the lower plane alone for the bottom of the vessel, and to suppose
            that the water which flowed through the ice as through a funnel, and
            ran out of the vessel through the hole EF made in the lower plane,
            preserves its motion continually, and that the ice continues at rest.
            Therefore in what follows let ST be the diamter of a circular hole
            described from the centre Z, and let the stream run out of the vessel
            through that hole, when the water in the vessel is all fluid. And let
            EF be the diameter of the hole, which the stream, in falling through,
            exactly fills up, whether the water runs out of the vessel by that
            upper hole ST, or flows through the middle of the ice in the vessel,
            as through a funnel. And let the diameter of the upper hole ST be to
            the diameter of the lower EF as about 25 to 21, and let the
            perpendicular distance between the planes of the holes be equal to the
            diameter of the lesser hole EF. Then the velocity of the water
            downwards, in running out of the vessel through the hole ST, will be
            in that hole the same that a body may acquire by falling from half the
            height IZ; and the velocity of both the falling streams will be in the
            hole EF, the same which a body would acquire by falling from the whole
            height IG.
        

        
            Case 2. If the hole EF be not in the middle
            of the bottom of the vessel, but in some other part thereof, the water
            will still run out with the same velocity as before, if the magnitude
            of the hole be the same. For though an heavy body takes a longer time
            in descending to the same depth, by an oblique line, than by a
            perpendicular line, yet in both cases it acquires in its descent the
            same velocity; as Galileo has demonstrated.
        

        
            Case 3. The velocity of the water is the same
            when it runs out through a hole in the side of the vessel. For if the
            hole be small, so that the interval between the superficies AB and KL
            may vanish as to sense, and the stream of water horizontally issuing
            out may form a parabolic figure: from the latus rectum of this
            parabola may be collected, that the velocity of the effluent water is
            that which a body may acquire by falling the height IG or HG of the
            stagnant water in the vessel. For, by making an experiment, I found
            that if the height of the stagnant water above the hole were 20
            inches, and the height of the hole above a plane parallel to the
            horizon were also 20 inches, a stream of water springing out from
            thence would fall upon the plane, at the distance of 37 inches, very
            nearly, from a perpendicular let fall upon that plane from the hole.
            For without resistance the stream would have fallen upon the plane at
            the distance of 40 inches, the latus rectum of the parabolic stream
            being 80 inches.
        

        
            Case 4. If the effluent water tend upward, it
            will still issue forth with the same velocity. For the small stream of
            water springing upward; ascends with a
            perpendicular motion to GH or GI, the height of the stagnant water in
            the vessel; excepting in so far as its ascent is hindered a little by
            the resistance of the air; and therefore it springs out with the same
            velocity that it would acquire in falling from that height. Every
            particle of the stagnant water is equally pressed on all sides (by
            Prop. XIX., Book II), and, yielding to the pressure, tends always with
            an equal force, whether it descends through the hole in the bottom of
            the vessel, or gushes out in an horizontal direction through a hole in
            the side, or passes into a canal, and springs up from thence through a
            little hole made in the upper part of the canal. And it may not only
            be collected from reasoning, but is manifest also from the well-known
            experiments just mentioned, that the velocity with which the water
            runs out is the very same that is assigned in this Proposition.
        

        
            Case 5. The velocity of the effluent water is
            the same, whether the figure of the hole be circular, or square, or
            triangular, or any other figure equal to the circular; for the
            velocity of the effluent water does not depend upon the figure of the
            hole, but arises from its depth below the plane KL.
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            Case 6. If the lower part of the vessel ABDC
            be immersed into stagnant water, and the height of the stagnant water
            above the bottom of the vessel be GR, the velocity with which the
            water that is in the vessel will run out at the hole EF into the
            stagnant water will be the same which the water would acquire by
            falling from the height IR; for the weight of all the water in the
            vessel that is below the superficies of the stagnant water will be
            sustained in equilibrio by the weight of the stagnant water, and
            therefore does riot at all accelerate the motion of the descending
            water in the vessel. This case will also appear by experiments,
            measuring the times in which the water will run out.
        

        
            Cor. 1. Hence if CA the depth of the water be
            produced to K, so that AK may be to CK in the duplicate ratio of the
            area of a hole made in any part of the bottom to the area of the
            circle AB, the velocity of the effluent water will be equal to the
            velocity which the water would acquire by falling from the height KC.
        

        
            Cor. 2. And the force with which the whole
            motion of the effluent water may be generated is equal to the weight
            of a cylindric column of water, whose base is the hole EF, and its
            altitude 2GI or 2CK. For the effluent water, in the time it becomes
            equal to this column, may acquire, by falling by its own weight from
            the height GI, a velocity equal to that with which it runs out.
        

        
            Cor. 3. The weight of all the water in the
            vessel ABDC is to that part of the weight
            which is employed in forcing out the water as the sum of the circles
            AB and EF to twice the circle EF. For let IO be a mean proportional
            between IH and IG, and the water running out at the hole EF will, in
            the time that a drop falling from I would describe the altitude IG,
            become equal to a cylinder whose base is the circle EF and its
            altitude 2IG, that is, to a cylinder whose base is the circle AB, and
            whose altitude is 2IO. For the circle EF is to the circle AB in the
            subduplicate ratio of the altitude IH to the altitude IG; that is, in
            the simple ratio of the mean proportional IO to the altitude IG.
            Moreover, in the time that a drop falling from I can describe the
            altitude IH, the water that runs out will hare become equal to a
            cylinder whose base is the circle AB, and its altitude 2IH; and in the
            time that a drop falling from I through H to G describes HG, the
            difference of the altitudes, the effluent water, that is, the water
            contained within the solid ABNFEM, will be equal to the difference of
            the cylinders, that is, to a cylinder whose base is AB, and its
            altitude 2HO. And therefore all the water contained in the vessel ABDC
            is to the whole falling water contained in the said solid ABNFEM as HG
            to 2HO, that is, as HO + OG to 2HO, or IH + IO to 2IH. But the weight
            of all the water in the solid ABNFEM is employed in forcing out the
            water: and therefore the weight of all the water in the vessel is to
            that part of the weight that is employed in forcing out the water as
            IH + IO to 2IH, and therefore as the sum of the circles EF and AB to
            twice the circle EF.
        

        
            Cor. 4. And hence the weight of all the water
            in the vessel ABDC is to the other part of the weight which is
            sustained by the bottom of the vessel as the sum of the circles AB and
            EF to the difference of the same circles.
        

        
            Cor. 5. And that part of the weight which the
            bottom of the vessel sustains is to the other part of the weight
            employed in forcing out the water as the difference of the circles AB
            and EF to twice the lesser circle EF, or as the area of the bottom to
            twice the hole.
        

        
            Cor. 6. That part of the weight which presses
            upon the bottom is to the whole weight of the water perpendicularly
            incumbent thereon as the circle AB to the sum of the circles AB and
            EF, or as the circle AB to the excess of twice the circle AB above the
            area of the bottom. For that part of the weight which presses upon the
            bottom is to the weight of the whole water in the vessel as the
            difference of the circles AB and EF to the sum of the same circles (by
            Cor. 4); and the weight of the whole water in the vessel is to the
            weight of the whole water perpendicularly incumbent on the bottom as
            the circle AB to the difference of the circles AB and EF. Therefore, ex
            aequo perturbatè, that part of the weight which presses upon
            the bottom is to the weight of the whole water perpendicularly
            incumbent thereon as the circle AB to the sum
            of the circles AB and EF, or the excess of twice the circle AB above
            the bottom.
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            Cor. 7. If in the middle of the hole EF there
            be placed the little circle PQ described about the centre G, and
            parallel to the horizon, the weight of water which that little circle
            sustains is greater than the weight of a third part of a cylinder of
            water whose base is that little circle and its height GH. For let
            ABNFEM be the cataract or column of falling water whose axis is GH, as
            above, and let all the water, whose fluidity is not requisite for the
            ready and quick descent of the water, be supposed to A be congealed,
            as well round about the cataract, as above the little circle. And let
            PHQ be the column of water congealed above the little circle, whose
            vertex is H, and its altitude GH. And suppose this cataract to fall
            with its whole weight downwards, and not in the least to lie against
            or to press PHQ, but to glide freely by it without any friction,
            unless, perhaps, just at the very vertex of the ice, where the
            cataract at the beginning of its fall may tend to a concave figure.
            And as the congealed water AMEC, BNFD, lying round the cataract, is
            convex in its internal superficies AME, BNF, towards the falling
            cataract, so this column PHQ will be convex towards the cataract also,
            and will therefore be greater than a cone whose base is that little
            circle PQ and its altitude GH; that is, greater than a third part of a
            cylinder described with the same base and altitude. Now that little
            circle sustains the weight of this column, that is, a weight greater
            than the weight of the cone, or a third part of the cylinder.
        

        
            Cor. 8. The weight of water which the circle
            PQ, when very small, sustains, seems to be less than the weight of two
            thirds of a cylinder of water whose base is that little circle, and
            its altitude HG. For, things standing as above supposed, imagine the
            half of a spheroid described whose base is that little circle, and its
            semi-axis or altitude HG. This figure will be equal to two thirds of
            that cylinder, and will comprehend within it the column of congealed
            water PHQ, the weight of which is sustained by that little circle. For
            though the motion of the water tends directly downwards, the external
            superficies of that column must yet meet the base PQ in an angle
            somewhat acute, because the water in its fall is perpetually
            accelerated, and by reason of that acceleration become narrower.
            Therefore, since that angle is less than a right one, this column in
            the lower parts thereof will lie within the hemi-spheroid. In the
            upper parts also it will be acute or pointed; because to make it
            otherwise, the horizontal motion of the water must be at the vertex
            infinitely more swift than its motion towards the horizon. And the
            less this circle PQ is, the more acute will the
            vertex of this column be; and the circle being diminished in
            infinitum the angle PHQ will be diminished in infinitum,
            and therefore the column will lie within the hemi-spheroid. Therefore
            that column is less than that hemi-spheroid, or than two-third parts
            of the cylinder whose base is that little circle, and its altitude GH.
            Now the little circle sustains a force of water equal to the weight of
            this column, the weight of the ambient water being employed in causing
            its efflux out at the hole.
        

        
            Cor. 9. The weight of water which the little
            circle PQ sustains, when it is very small, is very nearly equal to the
            weight of a cylinder of water whose base is that little circle, and
            its altitude ½GH; for this weight is an arithmetical mean between the
            weights of the cone and the hemi-spheroid above mentioned. But if that
            little circle be not very small, but on the contrary increased till it
            be equal to the hole EF, it will sustain the weight of all the water
            lying perpendicularly above it, that is, the weight of a cylinder of
            water whose base is that little circle, and its altitude GH.
        

        
            Cor. 10. And (as far as I can judge) the
            weight which this little circle sustains is always to the weight of a
            cylinder of water whose base is that little circle, and its altitude
            ½GH, as EF² to EF² − ½PQ², or as the circle EF to the excess of this
            circle above half the little circle PQ, very nearly.
        

    

    
        Lemma iv.

            
                
                    If a cylinder move uniformly forward in the direction of its
                    length, the resistance made thereto is not at all changed by
                    augmenting or diminishing that length; and is therefore the same
                    with the resistance of a circle, described with the same diameter,
                    and moving forward with the same velocity in the direction, of a
                    right line perpendicular to its plane.
                
            

        

        
            For the sides are not at all opposed to the motion; and a cylinder
            becomes a circle when its length is diminished in infinitum.
        

    

    
        Proposition xxxvii. Theorem xxix.

            
                
                    If a cylinder move uninformly forward in a compressed,
                    infinite, and non-elastic fluid, in the direction of its length,
                    the resistance arising from the magnitude of its transverse
                    section is to the force by which its whole motion may be destroyed
                    or generated, in the time that it moves four times its length, as
                    the density of the medium to the density of the cylinder, nearly.
                
            

        

        
            For let the vessel ABDC touch the surface of stagnant water with its
            bottom CD, and let the water run out of this vessel into the stagnant
            water through the cylindric canal EFTS perpendicular co the horizon;
            and let the little circle PQ be placed parallel to the horizon any where in the
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            middle of the canal; and produce CA to K, so that AK may be to CK in the
            duplicate of the ratio, which the excess of the orifice of the canal
            EF above the little circle PQ bears to the circle AB. Then it is
            manifest (by Case 5, Case 6, and Cor. 1, Prop. XXXVI) that the
            velocity of the water passing through the annular space between the
            little circle and the sides of the vessel will be the very same which
            the water would acquire by falling, and in its fall describing the
            altitude KC or IG.
        

        
            And (by Cor. 10, Prop. XXXVI) if the breadth of the vessel be
            infinite, so that the lineola HI may vanish, and the altitudes IG, HG
            become equal; the force of the water that flows down and presses upon
            the circle will be to the weight of a cylinder whose base is that
            little circle, and the altitude ½IG, as EF² to EF² − ½PQ², very
            nearly. For the force of the water flowing downward uniformly through
            the whole canal will be the same upon the little circle PQ in
            whatsoever part of the canal it be placed.
        

        
            Let now the orifices of the canal EF, ST be closed, and let the
            little circle ascend in the fluid compressed on every side, and by its
            ascent let it oblige the water that lies above it to descend through
            the annular space between the little circle and the sides of the
            canal. Then will the velocity of the ascending little circle be to the
            velocity of the descending water as the difference of the circles EF
            and PQ, is to the circle PQ; and the velocity of the ascending little
            circle will be to the sum of the velocities, that is, to the relative
            velocity of the descending water with which it passes by the little
            circle in its ascent, as the difference of the circles EF and PQ to
            the circle EF, or as EF² − PQ² to EF². Let that relative velocity be
            equal to the velocity with which it was shewn above that the water
            would pass through the annular space, if the circle were to remain
            unmoved, that is, to the velocity which the water would acquire by
            falling, and in its fall describing the altitude IG; and the force of
            the water upon the ascending circle will be the same as before (by
            Cor. 5, of the Laws of Motion); that is, the resistance of the
            ascending little circle will be to the weight of a cylinder of water
            whose base is that little circle, and its altitude ½IG, as EF² to EF²
            − ½PQ², nearly. But the velocity of the little circle will be to the
            velocity which the water acquires by falling, and in its fall
            describing the altitude IG, as EF² − PQ² to EF² .
        

        
            Let the breadth of the canal be increased in infinitum; and
            the ratios between EF² − PQ² and EF², and between EF² and EF² − ½PQ²,
            will become at last ratios of equality. And therefore the velocity of
            the little circle will now be the same which the water would acquire
            in falling, and in its fall describing the altitude IG: and the
            resistance will become equal to the weight of
            a cylinder whose base is that little circle, and its altitude half the
            altitude IG, from which the cylinder must fall to acquire the velocity
            of the ascending circle; and with this velocity the cylinder in the
            time of its fall will describe four times its length. But the
            resistance of the cylinder moving forward with this velocity in the
            direction of its length is the same with the resistance of the little
            circle (by Lem. IV), and is therefore nearly equal to the force by
            which its motion may be generated while it describes four times its
            length.
        

        
            If the length of the cylinder be augmented or diminished, its motion,
            and the time in which it describes four times its length, will be
            augmented or diminished in the same ratio, and therefore the force by
            which the motion so increased or diminished, may be destroyed or
            generated, will continue the same; because the time is increased or
            diminished in the same proportion; and therefore that force remains
            still equal to the resistance of the cylinder, because (by Lem. IV)
            that resistance will also remain the same.
        

        
            If the density of the cylinder be augmented or diminished, its
            motion, and the force by which its motion may be generated or
            destroyed in the same time, will be augmented or diminished in the
            same ratio. Therefore the resistance of any cylinder whatsoever will
            be to the force by which its whole motion may be generated or
            destroyed, in the time during which it moves four times its length, as
            the density of the medium to the density of the cylinder, nearly.
              Q.E.D.
        

        
            A fluid must be compressed to become continued; it must be continued
            and non-elastic, that all the pressure arising from its compression
            may be propagated in an instant; and so, acting equally upon all parts
            of the body moved, may produce no change of the resistance. The
            pressure arising from the motion of the body is spent in generating a
            motion in the parts of the fluid, and this creates the resistance. But
            the pressure arising from the compression of the fluid, be it ever so
            forcible, if it be propagated in an instant, generates no motion in
            the parts of a continued fluid, produces no change at all of motion
            therein; and therefore neither augments nor lessens the resistance.
            This is certain, that the action of the fluid arising from the
            compression cannot be stronger on the hinder parts of the body moved
            than on its fore parts, and therefore cannot lessen the resistance
            described in this proposition. And if its propagation be infinitely
            swifter than the motion of the body pressed, it will not be stronger
            on the fore parts than on the hinder parts. But that action will be
            infinitely swifter, and propagated in an instant, if the fluid be
            continued and non-elastic.
        

        
            Cor. 1. The resistances, made to cylinders
            going uniformly forward in the direction of their lengths through
            continued infinite mediums are in a ratio
            compounded of the duplicate ratio of the velocities and the duplicate
            ratio of the diameters, and the ratio of the density of the mediums.
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            Cor. 2. If the breadth of the canal be not
            infinitely increased but the cylinder go forward in the direction of
            its length through an included quiescent medium, its axis all the
            while coinciding with the axis of the canal, its resistance will be to
            the force by which its whole motion, in the time in which it describes
            four times its length, may be generated or destroyed, in a ratio
            compounded of the ratio of EF² to EF² − ½PQ² once, and the ratio of
            EF² to EF² − PQ² twice, and the ratio of the density of the medium to
            the density of the cylinder.
        

        
            Cor. 3. The same thing supposed, and that a
            length L is to the quadruple of the length of the cylinder in a ratio
            compounded of the ratio EF² − ½PQ² to EF² once, and the ratio of EF² −
            PQ² to EF² twice; the resistance of the cylinder will be to the force
            by which its whole motion, in the time during which it describes the
            length L, may be destroyed or generated, as the density of the medium
            to the density of the cylinder.
        

    

    
        Scholium.


        
            In this proposition we have investigated that resistance alone which
            arises from the magnitude of the transverse section of the cylinder,
            neglecting that part of the same which may arise from the obliquity of
            the motions. For as, in Case 1, of Prop. XXXVI., the obliquity of the
            motions with which the parts of the water in the vessel converged on
            every side to the hole EF hindered the efflux of the water through the
            hole, so, in this Proposition, the obliquity of the motions, with
            which the parts of the water, pressed by the antecedent extremity of
            the cylinder, yield to the pressure, and diverge on all sides, retards
            their passage through the places that lie round that antecedent
            extremity, toward the hinder parts of the cylinder, and causes the
            fluid to be moved to a greater distance; which increases the
            resistance, and that in the same ratio almost in which it diminished
            the efflux of the water out of the vessel, that is, in the duplicate
            ratio of 25 to 21, nearly. And as, in Case 1, of that Proposition, we
            made the parts of the water pass through the hole EF perpendicularly
            and in the greatest plenty, by supposing all the water in the vessel
            lying round the cataract to be frozen, and that part of the water
            whose motion was oblique, and useless to remain without motion, so in
            this Proposition, that the obliquity of the motions may be taken away,
            and the parts of the water may give the freest passage to the
            cylinder, by yielding to it with the most direct and quick motion
            possible, so that only so much resistance may remain as
            arises from the magnitude of the transverse section, and which is
            incapable of diminution, unless by diminishing the diameter of the
            cylinder; we must conceive those parts of the fluid whose motions are
            oblique and useless, and produce resistance, to be at rest among
            themselves at both extremities of the cylinder, and there to cohere,
            and be joined to the cylinder.
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            Let ABCD be a rectangle, and let AE and BE be two parabolic arcs,
            described with the axis AB, and with a latus rectum that is to the space HG,
            which must be described by the cylinder in falling,
            in order to acquire the velocity with which it moves,
            as HG to ½AB. Let CF and DF be two other parabolic arcs
            described with the axis CD, and a latus rectum quadruple of the
            former; and by the convolution of the figure about the axis EF let
            there be generated a solid, whose middle part ABDC is the cylinder we
            are here speaking of, and whose extreme parts ABE and CDF contain the
            parts of the fluid at rest among themselves, and concreted into two
            hard bodies, adhering to the cylinder at each end like a head and
            tail. Then if this solid EACFDB move in the direction of the length of
            its axis FE toward the parts beyond E, the resistance will be the same
            which we have here determined in this Proposition, nearly; that is, it
            will have the same ratio to the force with which the whole motion of
            the cylinder may be destroyed or generated, in the time that it is
            describing the length 4AC with that motion uniformly continued, as the
            density of the fluid has to the density of the cylinder, nearly. And
            (by Cor. 7, Prop. XXXVI) the resistance must be to this force in the
            ratio of 2 to 3, at the least.
        

    

    
        Lemma V.

            
                
                    If a cylinder, a sphere, and a spheroid, of equal breadths be
                    placed successively in the middle of a cylindric canal, so that
                    their axes may coincide with the axis of the canal, these bodies
                    will equally hinder the passage of the water through the canal.
                
            

        

        
            For the spaces lying between the sides of the canal, and the
            cylinder, sphere, and spheroid, through which the water passes, are
            equal; and the water will pass equally through equal spaces.
        

        
            This is true, upon the supposition that all the water above the
            cylinder, sphere, or spheroid, whose fluidity is not necessary to make
            the passage of the water the quickest possible, is congealed, as was
            explained above in Cor. 7, Prop. XXXVI.
        


        

    

    
        Lemma vi.

            
                
                    The same supposition remaining, the fore-mentioned bodies are
                    equally acted on by the water flowing through the canal.
                
            

        

        
            This appears by Lem. V and the third Law. For the water and the
            bodies act upon each other mutually and equally.
        

    

    
        Lemma vii.

            
                
                    If the water be at rest in the canal, and these bodies move
                    with equal velocity and the contrary way through the canal, their
                    resistances will be equal among themselves.
                
            

        

        
            This appears from the last Lemma, for the relative motions remain the
            same among themselves.
        

    

    
        Scholium.


        
            The case is the same of all convex and round bodies, whose axes
            coincide with the axis of the canal. Some difference may arise from a
            greater or less friction; but in these Lemmata we suppose
            the bodies to be perfectly smooth, and the medium to be void of all
            tenacity and friction; and that those parts of the fluid which by
            their oblique and superfluous motions may disturb, hinder, and retard
            the flux of the water through the canal, are at rest among themselves;
            being fixed like water by frost, and adhering to the fore and hinder
            parts of the bodies in the manner explained in the Scholium of the
            last Proposition; for in what follows we consider the very least
            resistance that round bodies described with the greatest given
            transverse sections can possibly meet with.
        

        
            Bodies swimming upon fluids, when they move straight forward, cause
            the fluid to ascend at their fore parts and subside at their hinder
            parts, especially if they are of an obtuse figure; and thence they
            meet with a little more resistance than if they were acute at the head
            and tail. And bodies moving in elastic fluids, if they are obtuse
            behind and before, condense the fluid a little more at their fore
            parts, and relax the same at their hinder parts; and therefore meet
            also with a little more resistance than if they were acute at the head
            and tail. But in these Lemmas and Propositions we are not treating of
            elastic but non-elastic fluids; not of bodies floating on the surface
            of the fluid, but deeply immersed therein. And when the resistance of
            bodies in non-elastic fluids is once known, we may then augment this
            resistance a little in elastic fluids, as our air; and in the surfaces
            of stagnating fluids, as lakes and seas.
        

    

    
        Proposition xxxviii. Theorem xxx.

            
                If a globe move uniformly forward in a compressed, infinite,
                and non-elastic fluid, its resistance is to the force by which its
                whole motion may be destroyed or generated, in the time that it
                describes eight third parts of its diameter, as the density of the
                fluid to the density of the globe, very nearly.
                 For
                the globe is to its circumscribed cylinder as two to three; and
                therefore the force which can destroy all the motion of the
                cylinder, while the same cylinder is describing the length of four
                of its diameters, will destroy all the motion of the globe, while
                the globe is describing two thirds of this length, that is, eight
                third parts of its own diameter. Now the resistance of the cylinder
                is to this force very nearly as the density of the fluid to the
                density of the cylinder or globe (by Prop. XXXVII), and the
                resistance of the globe is equal to the resistance of the cylinder
                (by Lem. V, VI, and VII).   Q.E.D.
            

        

        
            Cor. 1. The resistances of globes in infinite
            compressed mediums are in a ratio compounded of the duplicate ratio of
            the velocity, and the duplicate ratio of the diameter, and the ratio
            of the density of the mediums.
        

        
            Cor. 2. The greatest velocity, with which a
            globe can descend by its comparative weight through a resisting fluid,
            is the same which it may acquire by falling with the same weight, and
            without any resistance, and in its fall describing a space that is, to
            four third parts of its diameter as the density of the globe to the
            density of the fluid. For the globe in the time of its fall, moving
            with the velocity acquired in falling, will describe a space that will
            be to eight third parts of its diameter as the density of the globe to
            the density of the fluid; and the force of its weight which generates
            this motion will be to the force that can generate the same motion, in
            the time that the globe describes eight third parts of its diameter,
            with the same velocity as the density of the fluid to the density of
            the globe; and therefore (by this Proposition) the force of weight
            will be equal to the force of resistance, and therefore cannot
            accelerate the globe.
        

        
            Cor. 3. If there be given both the density of
            the globe and its velocity at the beginning of the motion, and the
            density of the compressed quiescent fluid in which the globe moves,
            there is given at any time both the velocity of the globe and its
            resistance, and the space described by it (by Cor. 7, Prop. XXXV).
        

        
            Cor. 4. A globe moving in a compressed
            quiescent fluid of the same density with itself will lose half its
            motion before it can describe the length of two of its diameters (by
            the same Cor. 7).
        

    

    
        Proposition xxxix. Theorem xxxi.

            
                If a globe move uniformly forward through a fluid inclosed and
                compressed in a cylindric canal, its resistance is to the force by
                which its whole motion may be generated or destroyed, in the time
                in which it describes eight third parts of its diameter, in a
                ratio compounded of the ratio of the orifice of the canal to the
                excess of that orifice above half the greatest circle of the
                globe; and the duplicate ratio of the orifice of the canal, to the
                excess of that orifice above the greatest circle of the globe; and
                the ratio of the density of the fluid to the density of the globe,
                nearly.
                
                This appears by Cor. 2,
                Prop. XXXVII, and the demonstration proceeds in the same manner as
                in the foregoing Proposition.
            

        

    

    
        Scholium.


        
            In the last two Propositions we suppose (as was done before in Lem.
            V) that all the water which precedes the globe, and whose fluidity
            increases the resistance of the same, is congealed. Now if that water
            becomes fluid, it will somewhat increase the resistance. But in these
            Propositions that increase is so small, that it may be neglected,
            because the convex superficies of the globe produces the very same
            effect almost as the congelation of the water.
        

    

    
        Proposition xl. Problem ix.

            
                
                    To find by phenomena the resistance of a globe moving through a
                    perfectly fluid compressed medium.
                
            

        

        
            Let A be the weight of the globe in vacuo, B its weight in
            the resisting medium, D the diameter of the globe. F a space which is
            to 4/3D as the
            density of the globe to the density of the medium, that is, as A to A
            − B, G the time in which the globe falling with the weight B without
            resistance describes the space F, and H the velocity which the body
            acquires by that fall. Then H will be the greatest velocity with which
            the globe can possibly descend with the weight B in the resisting
            medium, by Cor. 2, Prop XXXVIII; and the resistance which the globe
            meets with, when descending with that velocity, will be equal to its
            weight B; and the resistance it meets with in any other velocity will
            be to the weight B in the duplicate ratio of that velocity to the
            greatest velocity H, by Cor. 1, Prop. XXXVIII.
        

        
            This is the resistance that arises from the inactivity of the matter
            of the fluid. That resistance which arises from the elasticity,
            tenacity, and friction of its parts, may be thus investigated.
        

        
            Let the globe be let fall so that it may descend in the fluid by the
            weight B; and let P be the time of falling, and let that time be
            expressed in seconds, if the time G be given in seconds. Find the
            absolute number N agreeing to the logarithm 0,4342944819
            2P

            G, and let L be the logarithm of the number 
            N + 1

            N; and the velocity acquired in falling will be 
            N − 1

            N + 1H, and the height described will be 
            2PF

            G − 1,3862943611F + 4,605170186LF. If the fluid be
            of a sufficient depth, we may neglect the term 4,605170186LF; and
            2PF

            G − 1,3862943611F will be the altitude described,
            nearly. These things appear by Prop. IX, Book II, and its Corollaries,
            and are true upon this supposition, that the globe meets with no other
            resistance but that which arises from the inactivity of matter. Now if
            it really meet with any resistance of another kind, the descent will
            be slower, and from the quantity of that retardation will be known the
            quantity of this new resistance.
        

        
            That the velocity and descent of a body falling in a fluid might more
            easily be known, I have composed the following table; the first column
            of which denotes the times of descent; the second shews the velocities
            acquired in falling, the greatest velocity being 100000000: the third
            exhibits the spaces described by falling in those times, 2F being the
            space which the body describes in the time G with the greatest
            velocity; and the fourth gives the spaces described with the greatest
            velocity in the same times. The numbers in the fourth column are
            2P

            G, and by subducting the number 1,3862944 − 4,6051702L, are
            found the numbers in the third column; and these numbers must be
            multiplied by the space F to obtain the spaces described in falling. A
            fifth column is added to all these, containing the spaces described in
            the same times by a body falling in vacuo with the force of
            B its comparative weight.
        

        
            
                
                    	
                        The Times

                        P
                    
                    	
                        Velocities of the

                        body falling

                        in the fluid
                    
                    	
                        The spaces

                        described

                        in falling

                        in the fluid
                    
                    	
                        The spaces

                        described with

                        the greatest

                        motion
                    
                    	
                        The spaces

                        described

                        by falling

                        In vacuo
                    
                

            
            
                
                    	
                        0,001G

                        0,01G

                        0,1G

                        0,2G

                        0,3G

                        0,4G

                        0,5G

                        0,6G

                        0,7G

                        0,8G

                        0,9G

                        1G

                        2G

                        3G

                        4G

                        5G

                        6G

                        7G

                        8G

                        9G

                        10G
                    
                    	
                        9999929/30

                        999967

                        9966799

                        19737532

                        29131261

                        37994896

                        46211716

                        53704957

                        60436778

                        66403677

                        71629787

                        76159416

                        96402758

                        99505475

                        99932930

                        99990920

                        99998771

                        99999834

                        99999980

                        99999997

                        999999993/5
                    
                    	
                        0,000001F

                        0,0001F

                        0,0099834F

                        0,0397361F

                        0,0886815F

                        0,1559070F

                        0,2402290F

                        0,3402706F

                        0,4545405F

                        0,5815071F

                        0,7196609F

                        0,8675617F

                        2,6500055F

                        4,6186570F

                        6,6143765F

                        8,6137964F

                        10,6137179F

                        12,6137073F

                        14,6137059F

                        16,6137057F

                        18,6137056F
                    
                    	
                        0,002F

                        0,02F

                        0,2F

                        0,4F

                        0,6F

                        0,8F

                        1,0F

                        1,2F

                        1,4F

                        1,6F

                        1,8F

                        2F

                        4F

                        6F

                        8F

                        10F

                        12F

                        14F

                        16F

                        18F

                        20F
                    
                    	
                        0,000001F

                        0,0001F

                        0,01F

                        0,04F

                        0,09F

                        0,16F

                        0,25F

                        0,36F

                        0,49F

                        0,64F

                        0,81F

                        1F

                        4F

                        9F

                        16F

                        25F

                        36F

                        49F

                        64F

                        81F

                        100F
                    
                

            
        


         

    

    
        Scholium.

        

        
            In order to investigate the resistances of fluids from experiments, I
            procured a square wooden vessel, whose length and breadth on the
            inside was 9 inches English measure, and its depth 9 feet ½;
            this I filled with rainwater: and having provided globes made up of
            wax, and lead included therein, I noted the times of the descents of
            these globes, the height through which they descended being 112
            inches. A solid cubic foot of English measure contains 76
            pounds troy weight of rainwater; and a solid inch contains 
            19

            36 ounces troy weight, or 253⅓ grains;
            and a globe of water of one inch in diameter contains 132,645 grains
            in air, or 132,8 grains in vacuo; and any other globe will
            be as the excess of its weight in vacuo above its weight in
            water.
        

        
            Exper. 1. A globe whose weight was 156¼
            grains in air, and 77 grains in water, described the whole height of
            112 inches in 4 seconds. And, upon repeating the experiment, the globe
            spent again the very same time of 4 seconds in falling.
        

        
            The weight of this globe in vacuo is 156 
            13

            38 grains; and the excess of this
            weight above the weight of the globe in water is 79 
            13

            38 grains. Hence the diameter of the
            globe appears to be 0,84224 parts of an inch. Then it will be, as that
            excess to the weight of the globe in vacuo, so is the
            density of the water to the density of the globe; and so is 8/3
            parts of the diameter of the globe (viz. 2,24597 inches) to the space
            2F, which will be therefore 4,4256 inches. Now a globe falling in
            vacuo with its whole weight of 156 13

            38 grains in one second of time will
            describe 193⅓ inches; and falling in water in the same time with the
            weight of 77 grains without resistance, will describe 95,219 inches;
            and in the time G, which is to one second of time in the subduplicate
            ratio of the space F, or of 2,2128 inches to 95,219 inches, will
            describe 2,2128 inches, and will acquire the greatest velocity H with
            which it is capable of descending in water. Therefore the time G is
            0″.15244. And in this time G, with that greatest velocity H, the globe
            will describe the space 2F, which is 4,4256 inches; and therefore in 4
            seconds will describe a space of 116,1245 inches. Subduct the space
            1,3862944F, or 3,0676 inches, and there will remain a space of
            113,0569 inches, which the globe falling through water in a very wide
            vessel will describe in 4 seconds. But this space, by reason of the
            narrowness of the wooden vessel before mentioned, ought to be
            diminished in a ratio compounded of the subduplicate ratio of the
            orifice of the vessel to the excess of this orifice above half a great
            circle of the globe, and of the simple ratio of the same orifice to
            its excess above a great circle of the globe, that is, in a ratio of 1
            to 0,9914. This done, we have a space of 112,08 inches, which a globe
            falling through the water in this wooden vessel in 4 seconds of time
            ought nearly to describe by this theory; but it described 112 inches
            by the experiment.
        

        
            Exper. 2. Three equal
            globes, whose weights were severally 76⅓ grains in air, and 5 1/16
            grains in water, were let fall successively; and every one fell
            through the water in 15 seconds of time, describing in its fall a
            height of 112 inches.
        

        
            By computation, the weight of each globe in vacuo is 76
            5

            12 grains; the excess of this weight
            above the weight in water is 71 grains 17

            48; the diameter of the globe 0,81296
            of an inch; 8/3 parts
            of this diameter 2,16789 inches; the space 2F is 2,3217 inches; the
            space which a globe of 5 1/16
            grains in weight would describe in one second without resistance,
            12,808 inches, and the time G0″,301056. Therefore the globe, with the
            greatest velocity it is capable of receiving from a weight of 5
            1/16 grains in its descent
            through water, will describe in the time 0″,301056 the space of 2,3217
            inches; and in 15 seconds the space 115,678 inches. Subduct the space
            1,3862944F, or 1,609 indies, and there remains the space 114.069
            inches, which therefore the falling globe ought to describe in the
            same time, if the vessel were very wide. But because our vessel was
            narrow, the space ought to be diminished by about 0,895 of an inch.
            And so the space will remain 113,174 inches, which a globe falling in
            this vessel ought nearly to de scribe in 15 seconds, by the theory.
            But by the experiment it described 112 inches. The difference is not
            sensible.
        

        
            Exper. 3. Three equal globes, whose weights
            were severally 121 grains in air, and 1 grain in water, were
            successively let fall; and they fell through the water in the times
            46″, 47″, and 50″, describing a height of 112 inches.
        

        
            By the theory, these globes ought to have fallen in about 40″. Now
            whether their falling more slowly were occasioned from hence, that in
            slow motions the resistance arising from the force of inactivity does
            really bear a less proportion to the resistance arising from other
            causes; or whether it is to be attributed to little bubbles that might
            chance to stick to the globes, or to the rarefaction of the wax by the
            warmth of the weather, or of the hand that let them fall; or, lastly,
            whether it proceeded from some insensible errors in weighing the
            globes in the water, I am not certain. Therefore the weight of the
            globe in water should be of several grains, that the experiment may be
            certain, and to be depended on.
        

        
            Exper. 4. I began the foregoing experiments
            to investigate the resistances of fluids, before I was acquainted with
            the theory laid down in the Propositions immediately preceding.
            Afterward, in order to examine the theory after it was discovered, I
            procured a wooden vessel, whose breadth on the inside was 8⅔ inches,
            and its depth 15 feet and ⅓. Then I made four globes of wax, with lead
            included, each of which weighed 139¼ grains in air, and 7 
            1

            8 grains in water. These I let fall,
            measuring the times of their falling in the water with a pendulum
            oscillating to half seconds. The globes were cold, and had remained so
            some time, both when they were weighed and
            when they were let fall; because warmth rarefies the wax, and by
            rarefying it diminishes the weight of the globe in the water; and wax,
            when rarefied, is not instantly reduced by cold to its former density.
            Before they were let fall, they were totally immersed under water,
            lest, by the weight of any part of them that might chance to be above
            the water, their descent should be accelerated in its beginning. Then,
            when after their immersion they were perfectly at rest, they were let
            go with the greatest care, that they might not receive any impulse
            from the hand that let them down. And they fell successively in the
            times of 47½, 48½, 50, and 51 oscillations, describing a height of 15
            feet and 2 inches. But the weather was now a little colder than when
            the globes were weighed, and therefore I repeated the experiment
            another day; and then the globes fell in the times of 49; 49½, 50. and
            53; and at a third trial in the times of 49½, 50, 51, and 53
            oscillations. And by making the experiment several times over, I found
            that the globes fell mostly in the times of 49½ and 50 oscillations.
            When they fell slower, I suspect them to have been retarded by
            striking against the sides of the vessel.
        

        
            Now, computing from the theory, the weight of the globe in vacuo
            is 139 2

            5 grains; the excess of this weight
            above the weight of the globe in water 132 11

            40 grains; the diameter of the globe
            0,99868 of an inch; 8/3
            parts of the diameter 2,66315 inches; the space 2F 2,8066 inches; the
            space which a globe weighing 7 1

            8 grains falling without resistance
            describes in a second of time 9,88164 inches; and the time GO″,376843.
            Therefore the globe with the greatest velocity with which it is
            capable of descending through the water by the force of a weight of 7
            1

            8 grains, will in the time 0″,376843
            describe a space of 2,8066 inches, and in one second of time a space
            of 7,44766 inches, and in the time 25″, or in 50 oscillations, the
            space 186,1915 inches. Subduct the space 1,386294F, or 1,9454 inches,
            and there will remain the space 184,2461 inches which the globe will
            describe in that time in a very wide vessel. Because our vessel was
            narrow, let this space be diminished in a ratio compounded of the
            subduplicate ratio of the orifice of the vessel to the excess of this
            orifice above half a great circle of the globe, and of the simple
            ratio of the same orifice to its excess above a great circle of the
            globe; and we shall have the space of 181,86 inches, which the globe
            ought by the theory to describe in this vessel in the time of 50
            oscillations, nearly. But it described the space of 182 inches, by
            experiment, in 49½ or 50 oscillations.
        

        
            Exper. 5. Four globes weighing 1543/8
            grains in air, and 21½ grains in water, being let fall several times,
            fell in the times of 28½, 29, 29½, and 30, and sometimes of 31, 32,
            and 33 oscillations, describing a height of 15 feet and 2 inches.
        

        
            They ought by the theory to have fallen in the time of 29
            oscillations, nearly.
        

        
            Exper. 6. Five
            globes, weighing 212 ⅜ grains in air, and 79½ in water,
            being several times let fall, fell in the times of 15, 15½, 16, 17,
            and 18 oscillations, describing a height of 15 feet and 2 inches.
        

        
            By the theory they ought to have fallen in the time of 15
            oscillations, nearly.
        

        
            Exper. 7. Four globes, weighing 2933/8
            grains in air, and 35 7/8
            grains in water, being let fall several times, fell in the times of
            29½, 30, 30½, 31, 32, and 33 oscillations, describing a height of 15
            feet and 1 inch and ½.
        

        
            By the theory they ought to have fallen in the time of 28
            oscillations, nearly.
        

        
            In searching for the cause that occasioned these globes of the same
            weight and magnitude to fall, some swifter and some slower, I hit upon
            this; that the globes, when they were first let go and began to fall,
            oscillated about their centres; that side which chanced to be the
            heavier descending first, and producing an oscillating motion. Now by
            oscillating thus, the globe communicates a greater motion to the water
            than if it descended without any oscillations; and by this
            communication loses part of its own motion with which it should
            descend; and therefore as this oscillation is greater or less, it will
            be more or less retarded. Besides, the globe always recedes from that
            side of itself which is descending in the oscillation, and by so
            receding comes nearer to the sides of the vessel, so as even to strike
            against them sometimes. And the heavier the globes are, the stronger
            this oscillation is; and the greater they are, the more is the water
            agitated by it. Therefore to diminish this oscillation of the globes,
            I made new ones of lead and wax, sticking the lead in one side of the
            globe very near its surface; and I let fall the globe in such a
            manner, that, as near as possible, the heavier side might be lowest at
            the beginning of the descent. By this means the oscillations became
            much less than before, and the times in which the globes fell were not
            so unequal: as in the following experiments.
        

        
            Exper. 8. Four globes weighing 139 grains in
            air, and 6½ in water, were let fall several times, and fell mostly in
            the time of 51 oscillations, never in more than 52, or in fewer than
            50, describing a height of 182 inches.
        

        
            By the theory they ought to fall in about the time of 52 oscillations

        
            Exper. 9. Four globes weighing 273¼ grains in
            air, and 140¾ in water, being several times let fall, fell in never
            fewer than 12, and never more than 13 oscillations, describing a
            height of 182 inches.
        

        
            These globes by the theory ought to have fallen in the time of 11⅓
            oscillations, nearly.
        

        
            Exper. 10. Four globes, weighing 384 grains
            in air, and 119½ in water, being let fall several times, fell in the
            times of 17¾ 18, 18½, and 19 oscillations, describing a height of 181½
            inches. And when they fell in the time of 19
            oscillations, I sometimes heard them hit against the sides of the
            vessel before they reached the bottom.
        

        
            By the theory they ought to have fallen in the time of 155/9
            oscillations, nearly.
        

        
            Exper. 11. Three equal globes, weighing 48
            grains in the air, and 3 29

            32 in water, being several times let
            fall, fell in the times of 43½, 44, 44½, 45, and 46 oscillations, and
            mostly in 44 and 45, describing a height of 182½ inches, nearly.
        

        
            By the theory they ought to have fallen in the time of 46
            oscillations and5/9, nearly.
        

        
            Exper. 12. Three equal globes, weighing 141
            grains in air, and 43/8 in water, being let fall
            several times, fell in the times of 61, 62, 63, 64, and 65
            oscillations, describing a space of 182 inches.
        

        
            And by the theory they ought to have fallen in 64½ oscillations
            nearly.
        

        
            From these experiments it is manifest, that when the globes fell
            slowly, as in the second, fourth, fifth, eighth, eleventh, and twelfth
            experiments, the times of falling are rightly exhibited by the theory;
            but when the globes fell more swiftly, as in the sixth, ninth, and
            tenth experiments, the resistance was somewhat greater than in the
            duplicate ratio of the velocity. For the globes in falling oscillate a
            little; and this oscillation, in those globes that are light and fall
            slowly, soon ceases by the weakness of the motion; but in greater and
            heavier globes, the motion being strong, it continues longer, and is
            not to be checked by the ambient water till after several
            oscillations. Besides, the more swiftly the globes move, the less are
            they pressed by the fluid at their hinder parts; and if the velocity
            be perpetually increased, they will at last leave an empty space
            behind them, unless the compression of the fluid be increased at the
            same time. For the compression of the fluid ought to be increased (by
            Prop. XXXII and XXXIII) in the duplicate ratio of the velocity, in
            order to preserve the resistance in the same duplicate ratio. But
            because this is not done, the globes that move swiftly are not so much
            pressed at their hinder parts as the others; and by the defect of this
            pressure it comes to pass that their resistance is a little greater
            than in a duplicate ratio of their velocity.
        

        
            So that the theory agrees with the phaenomena of bodies falling in
            water. It remains that we examine the phaenomena of bodies falling in air.
        

        
            Exper. 13. From the top of St. Paul's
            Church in London, in June 1710, there were let
            fall together two glass globes, one full of quicksilver, the other of
            air; and in their fall they described a height of 220 English
            feet. A wooden table was suspended upon iron hinges on one side, and
            the other side of the same was supported by a wooden pin. The two
            globes lying upon this table were let fall together by pulling out the
            pin by means of an iron wire reaching from thence quite down to the
            ground; so that, the pin being removed, the
            table, which had then no support but the iron hinges, fell downward,
            and turning round upon the hinges, gave leave to the globes to drop
            off from it. At the same instant, with the same pull of the iron wire
            that took out the pin, a pendulum oscillating to seconds was let go,
            and began to oscillate. The diameters and weights of the globes, and
            their times of falling, are exhibited in the following table.
        

        
            
                
                    	The globes filled with mercury

                    	The globes full of air

                

                
                    	Weights
                    	Diameters
                    	Times in
falling
                    	Weights
                    	Diameters
                    	Times in
falling
                

            
            
                
                    	
                        908 grains

                        983 grains

                        866 grains

                        747 grains

                        808 grains

                        784 grains
                    
                    	
                        0,8 of an inch

                        0,8 of an inch

                        0,8 of an inch

                        0,75 of an inch

                        0,75 of an inch

                        0,75 of an inch
                    
                    	
                        4″

                        4-

                        4

                        4+

                        4

                        4+
                    
                    	
                        510 grains

                        642 grains

                        599 grains

                        515 grains

                        483 grains

                        641 grains
                    
                    	
                        5,1 inches

                        5,2 inches

                        5,1 inches

                        5,0 inches

                        5,0 inches

                        5,2 inches
                    
                    	
                        8″½

                        8

                        8

                        8¼

                        8½

                        8
                    
                

            
        

        
            But the times observed must be corrected; for the globes of mercury
            (by Galileo's theory), in 4 seconds of time, will describe
            257 English feet, and 220 feet in only 3″ 42‴. So that the
            wooden table, when the pin was taken out, did not turn upon its hinges
            so quickly as it ought to have done; and the slowness of that
            revolution hindered the descent of the globes at the beginning. For
            the globes lay about the middle of the table, and indeed were rather
            nearer to the axis upon which it turned than to the pin. And hence the
            times of falling were prolonged about 18‴; and therefore ought to be
            corrected by subducting that excess, especially in the larger globes,
            which, by reason of the largeness of their diameters, lay longer upon
            the revolving table than the others. This being done, the times in
            which the six larger globes fell will come forth 8″ 12‴, 7″ 42‴, 7″
            42‴, 7″ 57‴, 8″ 12‴ and 7″ 42‴.
        

        
            Therefore the fifth in order among the globes that were full of air
            being 5 inches in diameter, and 483 grains in weight, fell in 8″ 12‴,
            describing a space of 220 feet. The weight of a bulk of water equal to
            this globe is 16600 grains; and the weight of an equal bulk of air is
            16600

            860 grains, or 193/10
            grains; and therefore the weight of the globe in vacua is
            5023/10 grains; and this weight is to the weight
            of a bulk of air equal to the globe as 5023/10
            to 193/10; and so is 2F to 8/3
            of the diameter of the globe, that is, to 13⅓ inches. Whence 2F
            becomes 28 feet 11 inches. A globe, falling in vacua with
            its whole weight of 5023/10 grains, will in one
            second of time describe 193⅓ inches as above; and with the weight of
            483 grains will describe 185,905 inches; and with that weight 483
            grains in vacua will describe the space F, or 14 feet 5½
            inches, in the time of 57‴ 58″″, and acquire the greatest velocity it
            is capable of descending with in the air. With this velocity the globe
            in 8″ 12‴ of time will describe 245 feet and 5⅓ inches. Subduct
            1,3863F, or 20 feet and ½ an inch, and there remain 225 feet 5 inches.
            This space, therefore, the falling globe ought by the theory
            to describe in 8″ 12‴. But by the experiment it described a space of
            220 feet. The difference is insensible.
        

        
            By like calculations applied to the other globes full of air, I
            composed the following table.
        

        
            
                
                    	The weights
of the
globe
                    	The
diameters
                    	The times falling
from a height
of 220 feet
                    	The spaces which
they would describe
by the theory
                    	The
excesses
                

            
            
                
                    	
                        510 grains

                        642 grains

                        599 grains

                        515 grains

                        483 grains

                        641 grains
                    
                    	
                        5,1 inches

                        5,2 inches

                        5,1 inches

                        5 inches

                        5 inches

                        5,2 inches
                    
                    	
                        8″ 12‴

                        7″ 42‴

                        7″ 42‴

                        7″ 57‴

                        8″ 12‴

                        7″ 42‴
                    
                    	
                        226 feet 11 inch.

                        230 feet 9 inch.

                        227 feet 10 inch.

                        224 feet 5 inch.

                        225 feet 5 inch

                        230 feet 7 inch.
                    
                    	
                        6 feet 11 inch

                        10 feet 9 inch

                        7 feet 0 inch

                        4 feet 5 inch

                        5 feet 5 inch

                        10 feet 7 inch
                    
                

            
        

        
            Exper. 14. Anno 1719, in the month
            of July, Dr. Desaguliers made some experiments of
            this kind again, by forming hogs' bladders into spherical orbs; which
            was done by means of a concave wooden sphere, which the bladders,
            being wetted well first, were put into. After that being blown full of
            air, they were obliged to fill up the spherical cavity that contained
            them; and then, when dry, were taken out. These were let fall from the
            lantern on the top of the cupola of the same church, namely, from a
            height of 272 feet; and at the same moment of time there was let fall
            a leaden globe, whose weight was about 2 pounds troy weight.
            And in the mean time some persons standing in the upper part of the
            church where the globes were let fall observed the whole times of
            falling; and others standing on the ground observed the differences of
            the times between the fall of the leaden weight and the fall of the
            bladder. The times were measured by pendulums oscillating to half
            seconds. And one of those that stood upon the ground had a machine
            vibrating four times in one second; and another had another machine
            accurately made with a pendulum vibrating four times in a second also.
            One of those also who stood at the top of the church had a like
            machine; and these instruments were so contrived, that their motions
            could be stopped or renewed at pleasure. Now the leaden globe fell in
            about four seconds and ¼ of time; and from the addition of this time
            to the difference of time above spoken of, was collected the whole
            time in which the bladder was falling. The times which the five
            bladders spent in falling, after the leaden globe had reached the
            ground, were, the first time, 14¾″, 12¾″, 145/8″,
            17¾″, and 167/8″; and the second time, 14½″,
            14¼″, 14″, 19″, and 16¾″. Add to these 4¼″, the time in which the
            leaden globe was falling, and the whole times in which the five
            bladders fell were, the first time, 19″, 17″, 187/8″,
            22″, and 211/8″; and the second time, 18¾″,
            18½″, 18¼″, 23¼″, and 21″. The times observed at the top of the church
            were, the first time, 193/8″, 17¼″, 18¾″, 221/8″,
            and 215/8″; and the second time, 19″, 185/8″,
            183/8″, 24″, and 21¼″. But the bladders did not
            always fall directly down, but sometimes fluttered a little in the
            air, and waved to and fro, as they were
            descending. And by these motions the times of their falling were
            prolonged, and increased by half a second sometimes, and sometimes by
            a whole second. The second and fourth bladder fell most directly the
            first time, and the first and third the second time. The fifth bladder
            was wrinkled, and by its wrinkles was a little retarded. I found their
            diameters by their circumferences measured with a very fine thread
            wound about them twice. In the following table I have compared the
            experiments with the theory; making the density of air to be to the
            density of rain-water as 1 to 860, and computing the spaces which by
            the theory the globes ought to describe in falling.
        

        
            
                
                    	The weight
of the
bladders
                    	The
diameters
                    	The times
of falling
from a height
of 272 feet
                    	The spaces which by
the theory ought to
have been described
in those times
                    	The difference
between the theory
and the experiments
                

            
            
                
                    	
                        128 grains

                        156 grains

                        137½ grains

                        97½ grains

                        991/8 grains
                    
                    	
                        5,28 inches

                        5,19 inches

                        5,3 inches

                        5,26 inches

                        5 inches
                    
                    	
                        19″

                        17″

                        18″

                        22″

                        211/8″
                    
                    	
                        271 feet 11 in.

                        272 feet 0½ in.

                        272 feet 7 in.

                        277 feet 4 in.

                        282 feet 0 in.
                    
                    	
                        - 0 ft 1 in.

                        + 0 ft 0½ in.

                        + 0 ft 7 in.

                        + 5 ft 4 in.

                        + 10 ft 0 in.
                    
                

            
        

        
            Our theory, therefore, exhibits rightly, within a very little, all
            the resistance that globes moving either in air or in water meet with;
            which appears to be proportional to the densities of the fluids in
            globes of equal velocities and magnitudes.
        

        
            In the Scholium subjoined to the sixth Section, we shewed, by
            experiments of pendulums, that the resistances of equal and equally
            swift globes moving in air, water, and quicksilver, are as the
            densities of the fluids. We here prove the same more accurately by
            experiments of bodies falling in air and water. For pendulums at each
            oscillation excite a motion in the fluid always contrary to the motion
            of the pendulum in its return; and the resistance arising from this
            motion, as also the resistance of the thread by which the pendulum is
            suspended, makes the whole resistance of a pendulum greater than the
            resistance deduced from the experiments of falling bodies. For by the
            experiments of pendulums described in that Scholium, a globe of the
            same density as water in describing the length of its semidiameter in
            air would lose the 1

            3342 part of its motion. But by the
            theory delivered in this seventh Section, and confirmed by experiments
            of falling bodies, the same globe in describing the same length would
            lose only a part of its motion equal to 1

            4586, supposing the density of water to
            be to the density of air as 860 to 1. Therefore the resistances were
            found greater by the experiments of pendulums (for the reasons just
            mentioned) than by the experiments of falling globes; and that in the
            ratio of about 4 to 3. Bat yet since the resistances of pendulums
            oscillating in air, water, and quicksilver, are alike increased by
            like causes, the proportion of the resistances in these mediums will
            be rightly enough exhibited by the experiments
            of pendulums, as well as by the experiments of falling bodies. And
            from all this it may be concluded, that the resistances of bodies,
            moving in any fluids whatsoever, though of the most extreme fluidity,
            are, caeteris paribus, as the densities of the fluids.
        

        
            These things being thus established, we may now determine what part
            of its motion any globe projected in any fluid whatsoever would nearly
            lose in a given time. Let D be the diameter of the globe, and V its
            velocity at the beginning of its motion, and T the time in which a
            globe with the velocity V can describe in vacuo a space that
            is, to the space 8/3D
            as the density of the globe to the density of the fluid; and the globe
            projected in that fluid will, in any other time t lose the
            part tV

            T+t, the part 
            TV

            T+t remaining; and will describe a
            space, which will be to that described in the same time in vacuo
            with the uniform velocity V, as the logarithm of the number 
            T+t

            T multiplied by the number 2,302585093
            is to the number t

            T, by Cor. 7, Prop. XXXV. In slow
            motions the resistance may be a little less, because the figure of a
            globe is more adapted to motion than the figure of a cylinder
            described with the same diameter. In swift motions the resistance may
            be a little greater, because the elasticity and compression of the
            fluid do not increase in the duplicate ratio of the velocity. But
            these little niceties I take no notice of.
        

        
            And though air, water, quicksilver, and the like fluids, by the
            division of their parts in infinitum, should be subtilized,
            and become mediums infinitely fluid, nevertheless, the resistance they
            would make to projected globes would be the same. For the resistance
            considered in the preceding Propositions arises from the inactivity of
            the matter; and the inactivity of matter is essential to bodies, and
            always proportional to the quantity of matter. By the division of the
            parts of the fluid the resistance arising from the tenacity and
            friction of the parts may be indeed diminished; but the quantity of
            matter will not be at all diminished by this division; and if the
            quantity of matter be the same, its force of inactivity will be the
            same; and therefore the resistance here spoken of will be the same, as
            being always proportional to that force. To diminish this resistance,
            the quantity of matter in the spaces through which the bodies move
            must be diminished; and therefore the celestial spaces, through which
            the globes of the planets and comets are perpetually passing towards
            all parts, with the utmost freedom, and without the least sensible
            diminution of their motion, must be utterly void of any corporeal
            fluid, excepting, perhaps, some extremely rare vapours and the rays of
            light.
        

        
            Projectiles excite a motion in fluids as they
            pass through them, and this motion arises from the excess of the
            pressure of the fluid at the fore parts of the projectile above the
            pressure of the same at the hinder parts; and cannot be less in
            mediums infinitely fluid than it is in air, water, and quicksilver, in
            proportion to the density of matter in each. Now this excess of
            pressure does, in proportion to its quantity, not only excite a motion
            in the fluid, but also acts upon the projectile so as to retard its
            motion; and therefore the resistance in every fluid is as the motion
            excited by the projectile in the fluid; and cannot be less in the most
            subtile aether in proportion to the density of that aether, than it is
            in air, water, and quicksilver, in proportion to the densities of
            those fluids.
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        Section viii.

        Of motion propagated through fluids.


    

    
        Proposition xli. Theorem xxxii.

            
                
                    A pressure is not propagated through a fluid in rectilinear
                    directions unless where the particles of the fluid lie in a right line.
                
            

        

        [image: Mathematical Principles of Natural Philosophy figure: 356]

        
            If the particles a, b, c, d, e, lie in a right line, the
            pressure may be indeed directly propagated from a to e;
            but then the particle e will urge the obliquely posited
            particles f and g obliquely, and those particles f
            and g will not sustain this pressure, unless they be
            supported by the particles h and k lying beyond
            them; but the particles that support them are also pressed by them;
            and those particles cannot sustain that pressure, without being
            supported by, and pressing upon, those particles that lie still
            farther, as l and m, and so on in infinitum.
            Therefore the pressure, as soon as it is propagated to particles that
            lie out of right lines, begins to deflect towards one hand and the
            other, and will be propagated obliquely in infinitum; and
            after it has begun to be propagated obliquely, if it reaches more
            distant particles lying out of the right line, it will deflect again
            on each hand and this it will do as often as it lights on particles
            that do not lie exactly in a right line.   Q.E.D.
        

        
            Cor. If any part of a pressure, propagated
            through a fluid from a given point, be intercepted by any obstacle,
            the remaining part, which is not intercepted, will deflect into the
            spaces behind the obstacle. This may be demonstrated also after the
            following manner. Let a pressure be propagated from the point A
            towards any part, and, if it be possible, in rectilinear
            [image: Mathematical Principles of Natural Philosophy figure: 357]
            directions; and the obstacle NBCK being perforated in BC, let all the
            pressure be intercepted but the coniform part APQ passing through the
            circular hole BC. Let the cone APQ be divided into frustums by the
            transverse plants, de, fg, hi. Then while the cone ABC,
            propagating the pressure, urges the conic frustum degf
            beyond it on the superficies de, and this frustum urges the
            next frustum fgih on the superficies fg, and that
            frustum urges a third frustum, and so in infinitum; it is
            manifest (by the third Law) that the first frustum defg is,
            by the re-action of the second frustum fghi, as much urged
            and pressed on the superficies fg, as it urges and presses
            that second frustum. Therefore the frustum degf is
            compressed on both sides, that is, between the cone Ade and
            the frustum fhig; and therefore (by Case 6, Prop. XIX)
            cannot preserve its figure, unless it be compressed with the same
            force on all sides. Therefore with the same force with which it is
            pressed on the superficies de, fg, it will endeavour to
            break forth at the sides df, eg; and there (being not in the
            least tenacious or hard, but perfectly fluid) it will run out,
            expanding itself, unless there be an ambient fluid opposing that
            endeavour. Therefore, by the effort it makes to run out, it will press
            the ambient fluid, at its sides df, eg, with the same force
            that it does the frustum fghi; and therefore, the pressure
            will be propagated as much from the sides df, eg, into the
            spaces NO, KL this way and that way, as it is propagated from the
            superficies fg towards PQ.   Q.E.D.
        

    

    
        Proposition xlii. Theorem xxxiii.

            
                
                    All motion propagated through a fluid diverges from a
                    rectilinear progress into the unmoved spaces.
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            Case 1. Let a motion be propagated from the
            point A through the hole BC, and, if it be possible, let it proceed in
            the conic space BCQP according to right lines diverging from the point
            A. And let us first suppose this motion to be that of waves in the
            surface of standing water; and let de, fg, hi, kl, &c.,
            be the tops of the several waves, divided from each other by as many
            intermediate valleys or hollows. Then, because the water in the
            ridges of the waves is higher than in the unmoved
            parts of the fluid KL, NO, it will run down from off the tops of those
            ridges, e, g, i, l, &c., d, f, h, k, &c.,
            this way and that way towards KL and NO; and because the water is more
            depressed in the hollows of the waves than in the unmoved parts of the
            fluid KL, NO, it will run down into those hollows out of those unmoved
            parts. By the first deflux the ridges of the waves will dilate
            themselves this way and that way, and be propagated towards KL and NO.
            And because the motion of the waves from A towards PQ is carried on by
            a continual deflux from the ridges of the waves into the hollows next
            to them, and therefore cannot be swifter than in proportion to the
            celerity of the descent; and the descent of the water on each side
            towards KL and NO must be performed with the same velocity; it follows
            that the dilatation of the waves on each side towards KL and NO will
            be propagated with the same velocity as the waves themselves go
            forward with directly from A to PQ. And therefore the whole space this
            way and that way towards KL and NO will be filled by the dilated waves
            rfgr, shis, tklt, vmnv, &c.   Q.E.D.
              That these things are so, any one may find by making the
            experiment in still water.
        

        
            Case 2. Let us suppose that de, fg, hi,
            kl, mn, represent pulses successively propagated from the point
            A through an elastic medium. Conceive the pulses to be propagated by
            successive condensations and rarefactions of the medium, so that the
            densest part of every pulse may occupy a spherical superficies
            described about the centre A, and that equal intervals intervene
            between the successive pulses. Let the lines de, fg, hi, kl,
            &c., represent the densest parts of the pulses, propagated through
            the hole BC; and because the medium is denser there than in the spaces
            on either side towards KL and NO, it will dilate itself as well
            towards those spaces KL, NO, on each hand, as towards the rare
            intervals between the pulses; and thence the medium, becoming always
            more rare next the intervals, and more dense next the pulses, will
            partake of their motion. And because the progressive motion of the
            pulses arises from the perpetual relaxation of the denser parts
            towards the antecedent rare intervals; and since the pulses will relax
            themselves on each hand towards the quiescent parts of the medium KL,
            NO, with very near the same celerity; therefore the pulses will dilate
            themselves on all sides into the unmoved parts KL, NO, with almost the
            same celerity with which they are propagated directly from the centre
            A; and therefore will fill up the whole space KLON.   Q.E.D.
              And we find the same by experience also in sounds which
            are heard through a mountain interposed; and, if they come into a
            chamber through the window, dilate themselves into all the parts of
            the room, and are heard in every corner; and not as reflected from the
            opposite walls, but directly propagated from the window, as far as our
            sense can judge.
        

        
            Case 3 Let us suppose, lastly, that a motion
            of any kind is propagated from A through the
            hole BC. Then since the cause of this propagation is that the parts of
            the medium that are near the centre A disturb and agitate those which
            lie farther from it; and since the parts which are urged are fluid,
            and therefore recede every way towards those spaces where they are
            less pressed, they will by consequence recede towards all the parts of
            the quiescent medium; as well to the parts on each hand, as KL and NO,
            as to those right before, as PQ; and by this means all the motion, as
            soon as it has passed through the hole BC, will begin to dilate
            itself, and from thence, as from its principle and centre, will be
            propagated directly every way.   Q.E.D.
        

    

    
        Proposition xliii. Theorem xxxiv.

            
                
                    Every tremulous body in an elastic medium propagates the motion
                    of the pulses on every side right forward; but in a non-elastic
                    medium excites a circular motion.
                
            

        

        
            Case. 1. The parts of the tremulous body,
            alternately going and returning, do in going urge and drive before
            them those parts of the medium that lie nearest, and by that impulse
            compress and condense them; and in returning suffer those compressed
            parts to recede again, and expand themselves. Therefore the parts of
            the medium that lie nearest to the tremulous body move to and fro by
            turns, in like manner as the parts of the tremulous body itself do;
            and for the same cause that the parts of this body agitate these parts
            of the medium, these parts, being agitated by like tremors, will in
            their turn agitate others next to themselves; and these others,
            agitated in like manner, will agitate those that lie beyond them, and
            so on in infinitum. And in the same manner as the first
            parts of the medium were condensed in going, and relaxed in returning,
            so will the other parts be condensed every time they go, and expand
            themselves every time they re turn. And therefore they will not be all
            going and all returning at the same instant (for in that case they
            would always preserve determined distances from each other, and there
            could be no alternate condensation and rarefaction); but since, in the
            places where they are condensed, they approach to, and, in the places
            where they are rarefied, recede from each other, therefore some of
            them will be going while others are returning; and so on in
            infinitum. The parts so going, and in their going condensed,
            are pulses, by reason of the progressive motion with which they strike
            obstacles in their way; and therefore the successive pulses produced
            by a tremulous body will be propagated in rectilinear directions; and
            that at nearly equal distances from each other, because of the equal
            intervals of time in which the body, by its several tremors produces
            the several pulses. And though the parts of the tremulous body go and
            return in some certain and determinate direction, yet the pulses
            propagated from thence through the medium will dilate themselves
            towards the sides, by the foregoing Proposition; and will
            be propagated on all sides from that tremulous body, as from a common
            centre, in superficies nearly spherical and concentrical. An example
            of this we have in waves excited by shaking a finger in water, which
            proceed not only forward and backward agreeably to the motion of the
            finger, but spread themselves in the manner of concentrical circles
            all round the finger, and are propagated on every side. For the
            gravity of the water supplies the place of elastic force.
        

        
            Case 2. If the medium be not elastic, then, because its parts cannot
            be condensed by the pressure arising from the vibrating parts of the
            tremulous body, the motion will be propagated in an instant towards
            the parts where the medium yields most easily, that is, to the parts
            which the tremulous body would otherwise leave vacuous behind it. The
            case is the same with that of a body projected in any medium whatever.
            A medium yielding to projectiles does not recede in infinitum,
            but with a circular motion comes round to the spaces which the body
            leaves behind it. Therefore as often as a tremulous body tends to any
            part, the medium yielding to it comes round in a circle to the parts
            which the body leaves; and as often as the body returns to the first
            place, the medium will be driven from the place it came round to, and
            return to its original place. And though the tremulous body be not
            firm and hard, but every way flexible, yet if it continue of a given
            magnitude, since it cannot impel the medium by its tremors any where
            without yielding to it somewhere else, the medium receding from the
            parts of the body where it is pressed will always come round in a
            circle to the parts that yield to it.   Q.E.D.
        

        
            Cor. It is a mistake, therefore, to think, as
            some have done, that the agitation of the parts of flame conduces to
            the propagation of a pressure in rectilinear directions through an
            ambient medium. A pressure of that kind must be derived not from the
            agitation only of the parts of flame, but from the dilatation of the
            whole.
        

    

    
        Proposition xliv. Theorem xxxv.

            
                If water ascend and descend alternately in the erected legs
                KL, MN, of a canal or pipe; and a pendulum be constructed whose
                length between the point of suspension and the centre of
                oscillation is equal to half the length of the water in the canal;
                I say, that the water will ascend and descend in the same times in
                which the pendulum oscillates.
            

        

        
            I measure the length of the water along the axes of the canal and its
            legs, and make it equal to the sum of those axes; and take no notice
            of the resistance of the water arising from its attrition by the sides
            of the canal. Let, therefore, AB, CD, represent the mean height of the
            water in both legs; and when the water in the leg KL ascends to the
            height EF, the water will descend in the leg MN to the height GH. Let
            P be a pendulous body, VP the thread, V the
            point of suspension, RPQS the cycloid which
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            the pendulum describes, P its lowest point, PQ an arc equal to the
            height AE. The force with which the motion of the water is accelerated
            and retarded alternately is the excess of the weight of the water in
            one leg above the weight in the other; and, therefore, when the water
            in the leg KL ascends to EF, and in the other leg descends to GH, that
            force is double the weight of the water EABF, and therefore is to the
            weight of the whole water as AE or PQ to VP or PR. The force also with
            which the body P is accelerated or retarded in any place, as Q, of a
            cycloid, is (by Cor. Prop. LI) to its whole weight as its distance PQ
            from the lowest place P to the length PR of the cycloid. Therefore the
            motive forces of the water and pendulum, describing the equal spaces
            AE, PQ, are as the weights to be moved; and therefore if the water and
            pendulum are quiescent at first, those forces will move them in equal
            times, and will cause them to go and return together with a reciprocal
            motion.   Q.E.D.
        

        
            Cor. 1. Therefore the reciprocations of the
            water in ascending and descending are all performed in equal times,
            whether the motion be more or less intense or remiss.
        

        
            Cor. 2. If the length of the whole water in
            the canal be of 6 1

            9 feet of French measure, the
            water will descend in one second of time, and will ascend in another
            second, and so on by turns in infinitum; for a pendulum of 3
            1

            18 such feet in length will oscillate
            in one second of time.
        

        
            Cor. 3. But if the length of the water be
            increased or diminished, the time of the reciprocation will be
            increased or diminished in the subduplicate ratio of the length.
        

    

    
        
            Proposition xlv. Theorem xxxvi.

            The velocity of waves is in the subduplicate ratio of the  breadths.

        

        This follows from the construction of the following Proposition.

    

    
        Proposition xlvi. Problem X.
To find the velocity of waves. 


        
            Let a pendulum be constructed, whose length between the point of
            suspension and the centre of oscillation is equal to the breadth of
            the waves and in the time that the pendulum
            will perform one single oscillation the waves will advance forward
            nearly a space equal to their breadth.
        

        
            That which I call the breadth of the waves is the transverse measure
            lying between the deepest part of the hollows,
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            or the tops of the ridges. Let ABCDEF represent the surface of stagnant
            water ascending and descending in successive waves; and let A, C, E,
            &c., be the tops of the waves; and let B, D, F, &c., be the
            intermediate hollows. Because the motion of the waves is carried on by
            the successive ascent and descent of the water, so that the parts
            thereof, as A, C, E, &c., which are highest at one time become
            lowest immediately after; and because the motive force, by which the
            highest parts descend and the lowest ascend, is the weight of the
            elevated water, that alternate ascent and descent will be analogous to
            the reciprocal motion of the water in the canal, and observe the same
            laws as to the times of its ascent and descent; and therefore (by
            Prop. XLIV) if the distances between the highest places of the waves
            A, C, E, and the lowest B, D, F, be equal to twice the length of any
            pendulum, the highest parts A, C, E, will become the lowest in the
            time of one oscillation, and in the time of another oscillation will
            ascend again. Therefore between the passage of each wave, the time of
            two oscillations will intervene; that is, the wave will describe its
            breadth in the time that pendulum will oscillate twice; but a pendulum
            of four times that length, and which therefore is equal to the breadth
            of the waves, will just oscillate once in that time.
              Q.E.I.
        

        
            Cor. 1. Therefore waves, whose breadth is
            equal to 3 1

            18 French feet, will advance
            through a space equal to their breadth in one second of time; and
            therefore in one minute will go over a space of 183⅓ feet; and in an
            hour a space of 11000 feet, nearly.
        

        
            Cor. 2. And the velocity of greater or less
            waves will be augmented or diminished in the subduplicate ratio of
            their breadth.
        

        
            These things are true upon the supposition that the parts of water
            ascend or descend in a right line; but, in truth, that ascent and
            descent is rather performed in a circle; and therefore I propose the
            time defined by this Proposition as only near the truth.
        

    

    
        Proposition xlvii. Theorem xxxvii.

            
                
                    If pulses are propagated through a fluid, the several particles
                    of the fluid, going and returning with the shortest reciprocal
                    motion, are always accelerated or retarded according to the law of
                    the oscillating pendulum.
                
            

        

        
            Let AB, BC, CD, &c., represent equal distances of successive
            pulses, ABC the line of direction of the motion of the successive
            pulses propagated from A to B; E, F, G three
            physical points of the quiescent medium situate in the right line AC
            at equal distances from each other; Ee, Ff, Gg,
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            equal spaces of extreme shortness,
            through which those points go and return with a reciprocal motion in each
            vibration; ε, Φ, γ, any intermediate places of the same
            points; EF, FG physical lineolae, or linear parts of the medium lying
            between those points, and successively transferred into the places εΦ,
            Φγ, and ef, fg. Let there be drawn the right line PS
            equal to the right line Ee. Bisect the same in O, and from
            the centre O, with the interval OP, describe the circle SIPi.
            Let the whole time of one vibration; with its proportional parts, be
            expounded by the whole circumference of this circle and its parts, in
            such sort, that, when any time PH or PHSh is completed, if
            there be let fall to
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            PS the perpendicular HL or hl,
            and there be taken Eε equal to PL or Pl, the
            physical point E may be found in ε. A point, as E, moving
            according to this law with a reciprocal motion, in its going from E
            through ε to e, and returning again through ε
            to E, will perform its several vibrations with the same degrees of
            acceleration and retardation with those of an oscillating pendulum. We
            are now to prove that the several physical points of the medium will
            be agitated with such a kind of motion. Let us suppose, then, that a
            medium hath such a motion excited in it from any cause whatsoever, and
            consider what will follow from thence.
        

        
            In the circumference PHSh let there be taken the equal arcs,
            HI, IK, or hi, ik, having the same ratio to the whole
            circumference as the equal right lines EF, FG have to BC, the whole
            interval of the pulses. Let fall the perpendiculars IM, KN, or im,
            kn; then because the points E, F, G are successively agitated
            with like motions, and perform their entire vibrations composed of
            their going and return, while the pulse is transferred from B to C; if
            PH or PHSh be the time elapsed since the beginning of the
            motion of the point E, then will PI or PHSi be the time
            elapsed since the beginning of the motion of the point F, and PK or
            PHSk the time elapsed since the beginning of the motion of
            the point G; and therefore Eε, FΦ, Gγ, will
            be respectively equal to PL, PM, PN, while the points are going, and
            to Pl, Pm, Pn, when the points are
            returning. Therefore εγ or EG + Gγ − Eε
            will, when the points are going, be equal to EG − LN and
            in their return equal to EG + ln. But εγ is the
            breadth or expansion of the part EG of the medium in the place εγ;
            and therefore the expansion of that part in its going is to its mean
            expansion as EG − LN to EG; and in its return, as EG + ln or
            EG + LN to EG. Therefore since LN is to KH as IM to the radius OP, and
            KH to EG as the circumference PHShP to BC; that is, if we put
            V for the radius of a circle whose circumference is equal to BC the
            interval of the pulses, as OP to V; and, ex aequo, LN to EG
            as IM to V; the expansion of the part EG, or of the physical point F
            in the place εγ, to the mean expansion of the same part in
            its first place EG, will be as V − IM to V in going, and as V + im
            to V in its return. Hence the elastic force of the point P in the
            place εγ to its mean elastic force in the place EG is as
            1

            V − IM to 1

            V in its going, and 
            1

            V + im to 1

            V in its return. And by the same
            reasoning the elastic forces of the physical points E and G in going
            are as 1

            V − HL and 
            1

            V − KN to 1

            V; and the difference of the forces
            to the mean elastic force of the medium as HL
            − KN

            VV − V x HL − V x KN + HL x KN to
            1

            V; that is, as 
            HL − KN

            VV to 1

            V, or as HL − KN to V; if we suppose
            (by reason of the very short extent of the vibrations) HL and KN to be
            indefinitely less than the quantity V. Therefore since the quantity V
            is given, the difference of the forces is as HL − KN; that is (because
            HL − KN is proportional to HK, and OM to OI or OP; and because HK and
            OP are given) as OM; that is, if Ff be bisected in Ω, as ΩΦ.
            And for the same reason the difference of the elastic forces of the
            physical points ε and γ, in the return of the
            physical lineola εγ, is as ΩΦ. But that difference
            (that is, the excess of the elastic force of the point ε
            above the elastic force of the point γ) is the very force by which the
            intervening physical lineola εγ of the medium is accelerated
            in going, and retarded in returning; and therefore the accelerative
            force of the physical lineola εγ is as its distance from Ω,
            the middle place of the vibration. Therefore (by Prop. XXXVIII, Book
            I) the time is rightly expounded by the arc PI; and the linear part of
            the medium εγ is moved according to the law abovementioned,
            that is, according to the law of a pendulum oscillating; and the case
            is the same of all the linear parts of which the whole medium is
            compounded.   Q.E.D.
        

        
            Cor. Hence it appears that the number of the
            pulses propagated is the same with the number of the vibrations of the
            tremulous body, and is not multiplied in their progress. For the
            physical lineola εγ as soon as it returns to its first place
            is at rest; neither will it move again, unless it receives
            a new motion either from the impulse of the tremulous body, or of the
            pulses propagated from that body. As soon, therefore, as the pulses
            cease to be propagated from the tremulous body, it will return to a
            state of rest, and move no more.
        

    

    
        Proposition xlviii. Theorem xxxviii.

            
                
                    The velocities of pulses propagated in an elastic fluid are in
                    a ratiο compounded of the subduplicate ratio of the elastic force
                    directly, and the subduplicate ratio of the density inversely;
                    supposing the elastic force of the fluid to be proportional to its condensation.
                
            

        

        
            Case 1. If the mediums be homogeneous, and
            the distances of the pulses in those mediums be equal amongst
            themselves, but the motion in one medium is more intense than in the
            other, the contractions and dilatations of the correspondent parts
            will be as those motions; not that this proportion is perfectly
            accurate. However, if the contractions and dilatations are not
            exceedingly intense, the error will not be sensible; and therefore
            this proportion may be considered as physically exact. Now the motive
            elastic forces are as the contractions and dilatations; and the
            velocities generated in the same time in equal parts are as the
            forces. Therefore equal and corresponding parts of corresponding
            pulses will go and return together, through spaces proportional to
            their contractions and dilatations, with velocities that are as those
            spaces; and therefore the pulses, which in the time of one going and
            returning advance forward a space equal to their breadth, and are
            always succeeding into the places of the pulses that immediately go
            before them, will, by reason of the equality of the distances, go
            forward in both mediums with equal velocity.
        

        
            Case 2. If the distances of the pulses or
            their lengths are greater in one medium than in another, let us
            suppose that the correspondent parts describe spaces, in going and
            returning, each time proportional to the breadths of the pulses; then
            will their contractions and dilatations be equal: and therefore if the
            mediums are homogeneous, the motive elastic forces, which agitate them
            with a reciprocal motion, will be equal also. Now the matter to be
            moved by these forces is as the breadth of the pulses; and the space
            through which they move every time they go and return is in the same
            ratio. And, moreover, the time of one going and returning is in a
            ratio compounded of the subduplicate ratio of the matter, and the
            subduplicate ratio of the space; and therefore is as the space. But
            the pulses advance a space equal to their breadths in the times of
            going once and returning once; that is, they go over spaces
            proportional to the times, and therefore are equally swift.
        

        
            Case 3. And therefore in mediums of equal
            density and elastic force, all the pulses are equally swift. Now if
            the density or the elastic force of the medium were augmented, then,
            because the motive force is increased in the
            ratio of the elastic force, and the matter to be moved is increased in
            the ratio of the density, the time which is necessary for producing
            the same motion as before will be increased in the subduplicate ratio
            of the density, and will be diminished in the subduplicate ratio of
            the elastic force. And therefore the velocity of the pulses will be in
            a ratio compounded of the subduplicate ratio of the density of the
            medium inversely, and the subduplicate ratio of the elastic force
            directly.   Q.E.D.
        

        
            This Proposition will be made more clear from the construction of the
            following Problem.
        

    

    
        Proposition xlix. Problem xi.

            
                
                    The density and elastic force of a medium being given, to find
                    the velocity of the pulses.
                
            

        

        
            Suppose the medium to be pressed by an incumbent weight after the
            manner of our air; and let A be the height of a homogeneous medium,
            whose weight is equal to the incumbent weight, and whose density is
            the same with the density of the compressed medium in which the pulses
            are propagated. Suppose a pendulum to be constructed whose length
            between the point of suspension and the centre of oscillation is A:
            and in the time in which that pendulum will perform one entire
            oscillation composed of its going and returning, the pulse will be
            propagated right onwards through a space equal to the circumference of
            a circle described with the radius A.
        

        
            For, letting those things stand which were constructed in Prop.
            XLVII, if any physical line, as EF, describing the space PS in each
            vibration, be acted on in the extremities P and S of every going and
            return that it makes by an elastic force that is equal to its weight,
            it will perform its several vibrations in the time in which the same
            might oscillate in a cycloid whose whole perimeter is equal to the
            length PS; and that because equal forces will impel equal corpuscles
            through equal spaces in the same or equal times. Therefore since the
            times of the oscillations are in the subduplicate ratio of the lengths
            of the pendulums, and the length of the pendulum is equal to half the
            arc of the whole cycloid, the time of one vibration would be to the
            time of the oscillation of a pendulum whose length is A in the
            subduplicate ratio of the length ½PS or PO to the length A. But the
            elastic force with which the physical lineola EG is urged, when it is
            found in its extreme places P, S, was (in the demonstration of Prop.
            XLVII) to its whole elastic force as HL − KN to V, that is (since the
            point K now falls upon P), as HK to V: and all that force, or which is
            the same thing, the incumbent weight by which the lineola EG is
            compressed, is to the weight of the lineola as the altitude A of the
            incumbent weight to EG the length of the lineola; and therefore, ex
            aequo, the force
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            with which the lineola EG is urged in the places P and S is to the
            weight of that lineola as HK x A to V x EG; or as PO x A to VV;
            because HK was to EG as PO to V. Therefore since the times in which
            equal bodies are impelled through equal spaces are reciprocally in the
            subduplicate ratio of the forces, the time of one vibration, produced
            by the action of that elastic force, will be to the time of a
            vibration, produced by the impulse of the weight in a subduplicate
            ratio of VV to PO x A, and therefore to the time of the oscillation of
            a pendulum whose length is A in the subduplicate ratio of VV to PO x
            A, and the subduplicate ratio of PO to A conjunctly; that is, in the
            entire ratio of V to A.
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            But in the time of one vibration composed of the going and returning of the pendulum,
            the pulse will be propagated right onward through a space equal to its breadth BC.
            Therefore the time in which a pulse runs over the space BC is to the
            time of one oscillation composed of the going and returning of the
            pendulum as V to A, that is, as BC to the circumference of a circle
            whose radius is A. But the time in which the pulse will run over the
            space BC is to the time in which it will run over a length equal to
            that circumference in the same ratio; and therefore in the time of
            such an oscillation the pulse will run over a length equal to that
            circumference.   Q.E.D.
        

        
            Cor. 1. The velocity of the pulses is equal
            to that which heavy bodies acquire by falling with an equally
            accelerated motion, and in their fall describing half the altitude A.
            For the pulse will, in the time of this fall, supposing it to move
            with the velocity acquired by that fall, run over a space that will be
            equal to the whole altitude A; and therefore in the time of one
            oscillation composed of one going and return, will go over a space
            equal to the circumference of a circle described with the radius A;
            for the time of the fall is to the time of oscillation as the radius
            of a circle to its circumference.
        

        
            Cor. 2. Therefore since that altitude A is as
            the elastic force of the fluid directly, and the density of the same
            inversely, the velocity of the pulses will be in a ratio compounded of
            the subduplicate ratio of the density inversely, and the subduplicate
            ratio of the elastic force directly.
        


        

    

    
        
            Proposition l. Problem xii.

            To find the distances of the pulses. 

        

        
            Let the number of the vibrations of the body, by whose tremor the
            pulses are produced, be found to any given time. By that number divide
            the space which a pulse can go over in the same time, and the part
            found will be the breadth of one pulse.   Q.E.I.
        

    

    
        Scholium.


        
            The last Propositions respect the motions of light and sounds; for
            since light is propagated in right lines, it is certain that it cannot
            consist in action alone (by Prop. XLI and XLII). As to sounds, since
            they arise from tremulous bodies, they can be nothing else but pulses
            of the air propagated through it (by Prop. XLIII); and this is
            confirmed by the tremors which sounds, if they be loud and deep,
            excite in the bodies near them, as we experience in the sound of
            drums; for quick and short tremors are less easily excited. But it is
            well known that any sounds, falling upon strings in unison with the
            sonorous bodies, excite tremors in those strings. This is also
            confirmed from the velocity of sounds; for since the specific
            gravities of rain-water and quicksilver are to one another as about 1
            to 13⅔, and when the mercury in the barometer is at the height of 30
            inches of our measure, the specific gravities of the air and of
            rain-water are to one another as about 1 to 870, therefore the
            specific gravity of air and quicksilver are to each other as 1 to
            11890. Therefore when the height of the quicksilver is at 30 inches, a
            height of uniform air, whose weight would be sufficient to compress
            our air to the density we find it to be of, must be equal to 356700
            inches, or 29725 feet of our measure; and this is that very height of
            the medium, which I have called A in the construction of the foregoing
            Proposition. A circle whose radius is 29725 feet is 186768 feet in
            circumference. And since a pendulum 39 1

            5 inches in length completes one
            oscillation, composed of its going and return, in two seconds of time,
            as is commonly known, it follows that a pendulum 29725 feet, or 356700
            inches in length will perform a like oscillation in 190¾ seconds.
            Therefore in that time a sound will go right onwards 186768 feet, and
            therefore in one second 979 feet.
        

        
            But in this computation we have made no allowance for the crassitude
            of the solid particles of the air, by which the sound is propagated
            instantaneously. Because the weight of air is to the weight of water
            as 1 to 870, and because salts are almost twice as dense as water; if
            the particles of air are supposed to be of near the same density as
            those of water or salt, and the rarity of the air arises from the
            intervals of the particles; the diameter of one particle of air will
            be to the interval between the centres of the
            particles as 1 to about 9 or 10, and to the interval between the
            particles themselves as 1 to 8 or 9. Therefore to 979 feet, which,
            according to the above calculation, a sound will advance forward in
            one second of time, we may add 979

            9, or about 109 feet, to compensate for
            the crassitude of the particles of the air: and then a sound will go
            forward about 1088 feet in one second of time.
        

        
            Moreover, the vapours floating in the air being of another spring,
            and a different tone, will hardly, if at all, partake of the motion of
            the true air in which the sounds are propagated. Now if these vapours
            remain unmoved, that motion will be propagated the swifter through the
            true air alone, and that in the subduplicate ratio of the defect of
            the matter. So if the atmosphere consist of ten parts of true air and
            one part of vapours, the motion of sounds will be swifter in the
            subduplicate ratio of 11 to 10, or very nearly in the entire ratio of
            21 to 20, than if it were propagated through eleven parts of true air:
            and therefore the motion of sounds above discovered must be increased
            in that ratio. By this means the sound will pass through 1142 feet in
            one second of time.
        

        
            These things will be found true in spring and autumn, when the air is
            rarefied by the gentle warmth of those seasons, and by that means its
            elastic force becomes somewhat more intense. But in winter, when the
            air is condensed by the cold, and its elastic force is somewhat
            remitted, the motion of sounds will be slower in a subduplicate ratio
            of the density; and, on the other hand, swifter in the summer.
        

        
            Now by experiments it actually appears that sounds do really advance
            in one second of time about 1142 feet of English measure, or
            1070 feet of French measure.
        

        
            The velocity of sounds being known, the intervals of the pulses are
            known also. For M. Sauveur, by some experiments that he
            made, found that an open pipe about five Paris feet in
            length gives a sound of the same tone with a viol-string that vibrates
            a hundred times in one second. Therefore there are near 100 pulses in
            a space of 1070 Paris feet, which a sound runs over in a
            second of time; and therefore one pulse fills up a space of about 10
            7

            10 Paris feet, that is, about
            twice the length of the pipe. From whence it is probable that the
            breadths of the pulses, in all sounds made in open pipes, are equal to
            twice the length of the pipes.
        

        
            Moreover, from the Corollary of Prop. XLVII appears the reason why
            the sounds immediately cease with the motion of the sonorous body, and
            why they are heard no longer when we are at a great distance from the
            sonorous bodies than when we are very near them. And besides, from the
            foregoing principles, it plainly appears how it comes to pass that
            sounds are so mightily increased in speaking-trumpets; for all
            reciprocal motion uses to be increased by the generating cause at each
            return. And in tubes hindering the dilatation of the sounds, the
            motion decays more slowly, and recurs more
            forcibly; and therefore is the more increased by the new motion
            impressed at each return. And these are the principal phaenomena of
            sounds.
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        Section ix.

        Of the circular motion of fluids. 

    

    
        Hypothesis.

            
                
                    The resistance arising from the want of lubricity in the parts
                    of a fluid, is, caeteris paribus, proportional to the
                    velocity with which the parts of the fluid are separated from each other.
                
            

        

    

    
        Proposition li. Theorem xxxix.

            
                
                    If a solid cylinder infinitely long, in an uniform and infinite
                    fluid, revolve with an uniform motion about an axis given in
                    position, and the fluid be forced round by only this impulse of
                    the cylinder, and every part of the fluid persevere uniformly in
                    its motion; I say, that the periodic times of the parts of the
                    fluid are as their distances from the axis of the cylinder.
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            Let AFL be a cylinder turning uniformly about the axis S, and let the
            concentric circles BGM, CHN, DIO, EKP, &c., divide the fluid into
            innumerable concentric cylindric solid orbs of the same thickness.
            Then, because the fluid is homogeneous, the impressions which the
            contiguous orbs make upon each other mutually will be (by the
            Hypothesis) as their translations from each other, and as the
            contiguous superficies upon which the impressions are made. If the
            impression made upon any orb be greater or less on its concave than on
            its convex side, the stronger impression will prevail, and will either
            accelerate or retard the motion of the orb, according as it agrees
            with, or is contrary to, the motion of the same. Therefore, that every
            orb may persevere uniformly in its motion, the impressions made on
            both sides must be equal and their directions contrary. Therefore
            since the impressions are as the contiguous superficies, and as their
            translations from one another, the translations will be inversely as
            the superficies, that is, inversely as the distances of the
            superficies from the axis. But the differences of the
            angular motions about the axis are as those translations applied to
            the distances, or as the translations directly and the distances
            inversely; that is, joining these ratios together, as the squares of
            the distances inversely. Therefore if there be erected the lines Aa,
            Bb, Cc, Dd, Ee, &c.,
            perpendicular to the several parts of he infinite right line SABCDEQ,
            and reciprocally proportional to the squares of SA, SB, SC, SD, SE,
            &c., and through the extremities of those perpendiculars there be
            supposed to pass an hyperbolic curve, the sums of the differences,
            that is, the whole angular motions, will be as the correspondent sums
            of the lines Aa, Bb, Cc, Dd, Ee,
            that is (if to constitute a medium uniformly fluid the number of the
            orbs be increased and their breadth diminished in infinitum),
            as the hyperbolic areas AaQ, BbQ, CcQ, DdQ,
            EeQ, &c., analogous to the sums; and the times,
            reciprocally proportional to the angular motions, will be also
            reciprocally proportional to those areas. Therefore the periodic time
            of any particle as D, is reciprocally as the area DdQ, that
            is (as appears from the known methods of quadratures of curves),
            directly as the distance SD.   Q.E.D.
        

        
            Cor. 1. Hence the angular motions of the
            particles of the fluid are reciprocally as their distances from the
            axis of the cylinder, and the absolute velocities are equal.
        

        
            Cor. 2. If a fluid be contained in a
            cylindric vessel of an infinite length, and contain another cylinder
            within, and both the cylinders revolve about one common axis, and the
            times of their revolutions be as their semi-diameters, and every part
            of the fluid perseveres in its motion, the periodic times of the
            several parts will be as the distances from the axis of the cylinders.
        

        
            Cor. 3. If there be added or taken away any
            common quantity of angular motion from the cylinder and fluid moving
            in this manner; yet because this new motion will not alter the mutual
            attrition of the parts of the fluid, the motion of the parts among
            themselves will not be changed; for the translations of the parts from
            one another depend upon the attrition. Any part will persevere in that
            motion, which, by the attrition made on both sides with contrary
            directions, is no more accelerated than it is retarded.
        

        
            Cor. 4. Therefore if there be taken away from
            this whole system of the cylinders and the fluid all the angular
            motion of the outward cylinder, we shall have the motion of the fluid
            in a quiescent cylinder.
        

        
            Cor. 5. Therefore if the fluid and outward
            cylinder are at rest, and the inward cylinder revolve uniformly, there
            will be communicated a circular motion to the fluid, which will be
            propagated by degrees through the whole fluid; and will go on
            continually increasing, till such time as the several parts of the
            fluid acquire the motion determined in Cor. 4.
        

        
            Cor. 6. And because the fluid endeavours to
            propagate its motion still farther, its
            impulse will carry the outmost cylinder also about with it, unless the
            cylinder be violently detained; and accelerate its motion till the
            periodic times of both cylinders become equal among themselves. But if
            the outward cylinder be violently detained, it will make an effort to
            retard the motion of the fluid; and unless the inward cylinder
            preserve that motion by means of some external force impressed
            thereon, it will make it cease by degrees.
        

        
            All these things will be found true by making the experiment in deep
            standing water.
        

    

    
        Proposition lii. Theorem xl.

            
                
                    If a solid sphere, in an uniform and infinite fluid, revolves
                    about an axis given in position, with an uniform motion, and the
                    fluid be forced round by only this impulse of the sphere; and
                    every part of the fluid perseveres uniformly in its motion; I say,
                    that the periodic times of the parts of the fluid are as the
                    squares of their distances from the centre of the sphere.
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            Case 1. Let AFL be a sphere turning uniformly
            about the axis S, and let the concentric circles BGM, CHN, DIO, EKP,
            &c., divide the fluid into innumerable concentric orbs of the same
            thickness. Suppose those orbs to be solid; and, because the fluid is
            homogeneous, the impressions which the contiguous orbs make one upon
            another will be (by the supposition) as their translations from one
            another, and the contiguous superficies upon which the impressions are
            made. If the impression upon any orb be greater or less upon its
            concave than upon its convex side, the more forcible impression will
            prevail, and will either accelerate or retard the velocity of the orb,
            according as it is directed with a conspiring or contrary motion to
            that of the orb. Therefore that every orb may persevere uniformly in
            its motion, it is necessary that the impressions made upon both sides
            of the orb should be equal, and have contrary directions. Therefore
            since the impressions are as the contiguous superficies, and as their
            translations from one another, the translations will be inversely as
            the superficies, that is, inversely as the squares of the distances of
            the superficies from the centre. But the differences of the angular
            motions about the axis are as those translations applied to the
            distances, or as the translations directly and the distances
            inversely; that is, by compounding those ratios, as the cubes of the
            distances inversely. Therefore if upon the several parts of the
            infinite right line SABCDEQ there be erected
            the perpendiculars Aa, Bb, Cc, Dd,
            Ee, &c., reciprocally proportional to the cubes of SA,
            SB, SC, SD, SE, &c., the sums of the differences, that is, the
            whole angular motions will be as the corresponding sums of the lines Aa,
            Bb, Cc, Dd, Ee, &c., that is
            (if to constitute an uniformly fluid medium the number of the orbs be
            increased and their thickness diminished in infinitum), as
            the hyperbolic areas AaQ, BbQ, CcQ, DdQ,
            EeQ, &c., analogous to the sums; and the periodic times
            being reciprocally proportional to the angular motions, will be also
            reciprocally proportional to those areas. Therefore the periodic time
            of any orb DIO is reciprocally as the area DdQ, that is (by
            the known methods of quadratures), directly as the square of the
            distance SD. Which was first to be demonstrated.
        

        
            Case 2. From the centre of the sphere let
            there be drawn a great number of indefinite right lines, making given
            angles with the axis, exceeding one another by equal differences; and,
            by these lines revolving about the axis, conceive the orbs to be cut
            into innumerable annuli; then will every annulus have four annuli
            contiguous to it, that is, one on its inside, one on its outside, and
            two on each hand. Now each of these annuli cannot be impelled equally
            and with contrary directions by the attrition of the interior and
            exterior annuli, unless the motion be communicated according to the
            law which we demonstrated in Case 1. This appears from that
            demonstration. And therefore any series of annuli, taken in any right
            line extending itself in infinitum from the globe, will move
            according to the law of Case 1, except we should imagine it hindered
            by the attrition of the annuli on each side of it. But now in a
            motion, according to this law, no such is, and therefore cannot be,
            any obstacle to the motions persevering according to that law. If
            annuli at equal distances from the centre revolve either more swiftly
            or more slowly near the poles than near the ecliptic, they will be
            accelerated if slow, and retarded if swift, by their mutual attrition;
            and so the periodic times will continually approach to equality,
            according to the law of Case 1. Therefore this attrition will not at
            all hinder the motion from going on according to the law of Case 1,
            and therefore that law will take place; that is, the periodic times of
            the several annuli will be as the squares of their distances from the
            centre of the globe. Which was to be demonstrated in the second place.
        

        
            Case 3. Let now every annulus be divided by
            transverse sections into innumerable particles constituting a
            substance absolutely and uniformly fluid; and because these sections
            do not at all respect the law of circular motion, but only serve to
            produce a fluid substance, the law of circular motion will continue
            the same as before. All the very small annuli will either not at all
            change their asperity and force of mutual attrition upon account of
            these sections, or else they will change the same equally. Therefore
            the proportion of the causes remaining the same, the proportion of the
            effects will remain the same also; that is,
            the proportion of the motions and the periodic times.
              Q.E.D.   But now as the circular motion, and the
            centrifugal force thence arising, is greater at the ecliptic than at
            the poles, there must be some cause operating to retain the several
            particles in their circles; otherwise the matter that is at the
            ecliptic will always recede from the centre, and come round about to
            the poles by the outside of the vortex, and from thence return by the
            axis to the ecliptic with a perpetual circulation.
        

        
            Cor. 1. Hence the angular motions of the
            parts of the fluid about the axis of the globe are reciprocally as the
            squares of the distances from the centre of the globe, and the
            absolute velocities are reciprocally as the same squares applied to
            the distances from the axis.
        

        
            Cor. 2. If a globe revolve with a uniform
            motion about an axis of a given position in a similar and infinite
            quiescent fluid with an uniform motion, it will communicate a whirling
            motion to the fluid like that of a vortex, and that motion will by
            degrees be propagated onward in infinitum; and this motion
            will be increased, continually in every part of the fluid, till the
            periodical times of the several parts become as the squares of the
            distances from the centre of the globe.
        

        
            Cor. 3. Because the inward parts of the
            vortex are by reason of their greater velocity continually pressing
            upon and driving forward the external parts, and by that action are
            perpetually communicating motion to them, and at the same time those
            exterior parts communicate the same quantity of motion to those that
            lie still beyond them, and by this action preserve the quantity of
            their motion continually unchanged, it is plain that the motion is
            perpetually transferred from the centre to the circumference of the
            vortex, till it is quite swallowed up and lost in the boundless extent
            of that circumference. The matter between any two spherical
            superficies concentrical to the vortex will never be accelerated;
            because that matter will be always transferring the motion it receives
            from the matter nearer the centre to that matter which lies nearer the
            circumference.
        

        
            Cor. 4. Therefore, in order to continue a
            vortex in the same state of motion, some active principle is required
            from which the globe may receive continually the same quantity of
            motion which it is always communicating to the matter of the vortex.
            Without such a principle it will undoubtedly come to pass that the
            globe and the inward parts of the vortex, being always propagating
            their motion to the outward parts, and not receiving any new motion,
            will gradually move slower and slower, and at last be carried round no
            longer.
        

        
            Cor. 5. If another globe should be swimming
            in the same vortex at a certain distance from its centre, and in the
            mean time by some force revolve constantly about an axis of a given
            inclination, the motion of this globe will drive the fluid round after
            the manner of a vortex; and at first this new
            and small vortex will revolve with its globe about the centre of the
            other; and in the mean time its motion will creep on farther and
            farther, and by degrees be propagated in infinitum, after
            the manner of the first vortex. And for the same reason that the globe
            of the new vortex was carried about before by the motion of the other
            vortex, the globe of this other will be carried about by the motion of
            this new vortex, so that the two globes will revolve about some
            intermediate point, and by reason of that circular motion mutually fly
            from each other, unless some force restrains them. Afterward, if the
            constantly impressed forces, by which the globes persevere in their
            motions, should cease, and every thing be left to act according to the
            laws of mechanics, the motion of the globes will languish by degrees
            (for the reason assigned in Cor. 3 and 4), and the vortices at last
            will quite stand still.
        

        
            Cor. 6. If several globes in given places
            should constantly revolve with determined velocities about axes given
            in position, there would arise from them as many vortices going on in
            infinitum. For upon the same account that any one globe
            propagates its motion in infinitum, each globe apart will
            propagate its own motion in infinitum also; so that every
            part of the infinite fluid will be agitated with a motion resulting
            from the actions of all the globes. Therefore the vortices will not be
            confined by any certain limits, but by degrees run mutually into each
            other; and by the mutual actions of the vortices on each other, the
            globes will be perpetually moved from their places, as was shewn in
            the last Corollary; neither can they possibly keep any certain
            position among themselves, unless some force restrains them. But if
            those forces, which are constantly impressed upon the globes to
            continue these motions, should cease, the matter (for the reason
            assigned in Cor. 3 and 4) will gradually stop, and cease to move in
            vortices.
        

        
            Cor. 7. If a similar fluid be inclosed in a
            spherical vessel, and, by the uniform rotation of a globe in its
            centre, is driven round in a vortex; and the globe and vessel revolve
            the same way about the same axis, and their periodical times be as the
            squares of the semi-diameters; the parts of the fluid will not go on
            in their motions without acceleration or retardation, till their
            periodical times are as the squares of their distances from the centre
            of the vortex. No constitution of a vortex can be permanent but this.
        

        
            Cor. 8. If the vessel, the inclosed fluid,
            and the globe, retain this motion, and revolve besides with a common
            angular motion about any given axis, because the mutual attrition of
            the parts of the fluid is not changed by this motion, the motions of
            the parts among each other will not be changed; for the translations
            of the parts among themselves depend upon this attrition. Any part
            will persevere in that motion in which its attrition on
            one side retards it just as much as its attrition on the other side
            accelerates it.
        

        
            Cor. 9. Therefore if the vessel be quiescent,
            and the motion of the globe be given, the motion of the fluid will be
            given. For conceive a plane to pass through the axis of the globe, and
            to revolve with a contrary motion; and suppose the sum of the time of
            this revolution and of the revolution of the globe to be to the time
            of the revolution of the globe as the square of the semi-diameter of
            the vessel to the square of the semi-diameter of the globe; and the
            periodic times of the parts of the fluid in respect of this plane will
            be as the squares of their distances from the centre of the globe.
        

        
            Cor. 10. Therefore if the vessel move about
            the same axis with the globe, or with a given velocity about a
            different one, the motion of the fluid will be given. For if from the
            whole system we take away the angular motion of the vessel, all the
            motions will remain the same among themselves as before, by Cor. 8,
            and those motions will be given by Cor. 9.
        

        
            Cor. 11. If the vessel and the fluid are
            quiescent, and the globe revolves with an uniform motion, that motion
            will be propagated by degrees through the whole fluid to the vessel,
            and the vessel will be carried round by it, unless violently detained;
            and the fluid and the vessel will be continually accelerated till
            their periodic times become equal to the periodic times of the globe.
            If the vessel be either withheld by some force, or revolve with any
            constant and uniform motion, the medium will come by little and little
            to the state of motion defined in Cor. 8, 9, 10, nor will it ever
            persevere in any other state. But if then the forces, by which the
            globe and vessel revolve with certain motions, should cease, and the
            whole system be left to act according to the mechanical laws, the
            vessel and globe, by means of the intervening fluid, will act upon
            each other, and will continue to propagate their motions through the
            fluid to each other, till their periodic times become equal among
            themselves, and the whole system revolves together like one solid
            body.
        

    

    
        Scholium.


        
            In all these reasonings I suppose the fluid to consist of matter of
            uniform density and fluidity; I mean, that the fluid is such, that a
            globe placed any where therein may propagate with the same motion of
            its own, at distances from itself continually equal, similar and equal
            motions in the fluid in the same interval of time. The matter by its
            circular motion endeavours to recede from the axis of the vortex, and
            therefore presses all the matter that lies beyond. This pressure makes
            the attrition greater, and the separation of the parts more difficult;
            and by consequence diminishes the fluidity of the matter. Again; if
            the parts of the fluid are in any one place denser or larger than in
            the others, the fluidity will be less in that place, because there are
            fewer superficies where the parts can be separated from
            each other. In these cases I suppose the defect of the fluidity to be
            supplied by the smoothness or softness of the parts, or some other
            condition; otherwise the matter where it is less fluid will cohere
            more, and be more sluggish, and therefore will receive the motion more
            slowly, and propagate it farther than agrees with the ratio above
            assigned. If the vessel be not spherical, the particles will move in
            lines not circular, but answering to the figure of the vessel; and the
            periodic times will be nearly as the squares of the mean distances
            from the centre. In the parts between the centre and the circumference
            the motions will be slower where the spaces are wide, and swifter
            where narrow; but yet the particles will not tend to the circumference
            at all the more for their greater swiftness; for they then describe
            arcs of less curvity, and the conatus of receding from the centre is
            as much diminished by the diminution of this curvature as it is
            augmented by the increase of the velocity. As they go out of narrow
            into wide spaces, they recede a little farther from the centre, but in
            doing so are retarded; and when they come out of wide into narrow
            spaces, they are again accelerated; and so each particle is retarded
            and accelerated by turns for ever. These things will come to pass in a
            rigid vessel; for the state of vortices in an infinite fluid is known
            by Cor. 6 of this Proposition.
        

        
            I have endeavoured in this Proposition to investigate the properties
            of vortices, that I might find whether the celestial phenomena can be
            explained by them; for the phenomenon is this, that the periodic times
            of the planets revolving about Jupiter are in the sesquiplicate ratio
            of their distances from Jupiter's centre; and the same rule obtains
            also among the planets that revolve about the sun. And these rules
            obtain also with the greatest accuracy, as far as has been yet
            discovered by astronomical observation. Therefore if those planets are
            carried round in vortices revolving about Jupiter and the sun, the
            vortices must revolve according to that law. But here we found the
            periodic times of the parts of the vortex to be in the duplicate ratio
            of the distances from the centre of motion; and this ratio cannot be
            diminished and reduced to the sesquiplicate, unless either the matter
            of the vortex be more fluid the farther it is from the centre, or the
            resistance arising from the want of lubricity in the parts of the
            fluid should, as the velocity with which the parts of the fluid are
            separated goes on increasing, be augmented with it in a greater ratio
            than that in which the velocity increases. But neither of these
            suppositions seem reasonable. The more gross and less fluid parts will
            tend to the circumference, unless they are heavy towards the centre.
            And though, for the sake of demonstration, I proposed, at the
            beginning of this Section, an Hypothesis that the resistance is
            proportional to the velocity, nevertheless, it is in truth probable
            that the resistance is in a less ratio than that of the velocity;
            which granted, the periodic times of the parts of the vortex will be
            in a greater than the duplicate ratio of the distances from its
            centre. If, as some think, the vortices move more swiftly near the
            centre, then slower to a certain limit, then
            again swifter near the circumference, certainty neither the
            sesquiplicate, nor any other certain and determinate ratio, can obtain
            in them. Let philosophers then see how that phenomenon of the
            sesquiplicate ratio can be accounted for by vortices.
        

    

    
        Proposition liii. Theorem xli.

            
                
                    Bodies carried about in a vortex, and returning in the same
                    orb, are of the same density with the vortex, and are moved
                    according to the same law with the parts of the vortex, as to
                    velocity and direction of motion.
                
            

        

        
            For if any small part of the vortex, whose particles or physical
            points preserve a given situation among each other, be supposed to be
            congealed, this particle will move according to the same law as
            before, since no change is made either in its density, vis insita,
            or figure. And again; if a congealed or solid part of the vortex be of
            the same density with the rest of the vortex, and be resolved into a
            fluid, this will move according to the same law as before, except in
            so far as its particles, now become fluid, may be moved among
            themselves. Neglect, therefore, the motion of the particles among
            themselves as not at all concerning the progressive motion of the
            whole, and the motion of the whole will be the same as before. But
            this motion will be the same with the motion of other parts of the
            vortex at equal distances from the centre; because the solid, now
            resolved into a fluid, is become perfectly like to the other parts of
            the vortex. Therefore a solid, if it be of the same density with the
            matter of the vortex, will move with the same motion as the parts
            thereof, being relatively at rest in the matter that surrounds it. If
            it be more dense, it will endeavour more than before to recede from
            the centre; and therefore overcoming that force of the vortex, by
            which, being, as it were, kept in equilibrio, it was retained in its
            orbit, it will recede from the centre, and in its revolution describe
            a spiral, returning no longer into the same orbit. And, by the same
            argument, if it be more rare, it will approach to the centre.
            Therefore it can never continually go round in the same orbit, unless
            it be of the same density with the fluid. But we have shewn in that
            case that it would revolve according to the same law with those parts
            of the fluid that are at the same or equal distances from the centre
            of the vortex.
        

        
            Cor. 1. Therefore a solid revolving in a
            vortex, and continually going round in the same orbit, is relatively
            quiescent in the fluid that carries it.
        

        
            Cor. 2. And if the vortex be of an uniform
            density, the same body may revolve at any distance from the centre of
            the vortex.
        

    

    
        Scholium.


        
            Hence it is manifest that the planets are not carried round in
            corporeal vortices; for, according to the Copernican
            hypothesis, the planets going
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            round the sun revolve in ellipses, having the sun in their common
            focus; and by radii drawn to the sun describe areas proportional to
            the times. But now the parts of a vortex can never revolve with such a
            motion. Let AD, BE, CF, represent three orbits described about the sun
            S, of which let the utmost circle CF be concentric to the sun; and let
            the aphelia of the two innermost be A, B; and their perihelia D, E.
            Therefore a body revolving in the orb CF, describing, by a radius
            drawn to the sun, areas proportional to the times, will move with an
            uniform motion. And, according to the laws of astronomy, the body
            revolving in the orb BE will move slower in its aphelion B, and
            swifter in its perihelion E; whereas, according to the laws of
            mechanics, the matter of the vortex ought to move more swiftly in the
            narrow space between A and C than in the wide space between D and F;
            that is, more swiftly in the aphelion than in the perihelion. Now
            these two conclusions contradict each other. So at the beginning of
            the sign of Virgo, where the aphelion of Mars is at present, the
            distance between the orbits of Mars and Venus is to the distance
            between the same orbits, at the beginning of the sign of Pisces, as
            about 3 to 2; and therefore the matter of the vortex between those
            orbits ought to be swifter at the beginning of Pisces than at the
            beginning of Virgo in the ratio of 3 to 2; for the narrower the space
            is through which the same quantity of matter passes in the same time
            of one revolution, the greater will be the velocity with which it
            passes through it. Therefore if the earth being relatively at rest in
            this celestial matter should be carried round by it, and revolve
            together with it about the sun, the velocity of the earth at the
            beginning of Pisces would be to its velocity at the beginning of Virgo
            in a sesquialteral ratio. Therefore the sun's apparent diurnal motion
            at the beginning of Virgo ought to be above 70 minutes, and at the
            beginning of Pisces less than 48 minutes; whereas, on the contrary,
            that apparent motion of the sun is really greater at the beginning of
            Pisces than at the beginning of Virgo, as experience testifies; and
            therefore the earth is swifter at the beginning of Virgo than at the
            beginning of Pisces; so that the hypothesis of vortices is utterly
            irreconcileable with astronomical phaenomena, and rather serves to
            perplex than explain the heavenly motions. How these motions are
            performed in free spaces without vortices, may be understood by the
            first Book; and I shall now more fully treat of it in the following
            Book.
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        Book iii.

    

    
        In the preceding Books I have laid down the
        principles of philosophy, principles not philosophical, but
        mathematical: such, to wit, as we may build our reasonings upon in
        philosophical inquiries. These principles are the laws and conditions of
        certain motions, and powers or forces, which chiefly have respect to
        philosophy: but, lest they should have appeared of themselves dry and
        barren, I have illustrated them here and there with some philosophical
        scholiums, giving an account of such things as are of more general
        nature, and which philosophy seems chiefly to be founded on; such as the
        density and the resistance of bodies, spaces void of all bodies, and the
        motion of light and sounds. It remains that, from the same principles, I
        now demonstrate the frame of the System of the World. Upon this subject
        I had, indeed, composed the third Book in a popular method, that it
        might be read by many; but afterward, considering that such as had not
        sufficiently entered into the principles could not easily discern the
        strength of the consequences, nor lay aside the prejudices to which they
        had been many years accustomed, therefore, to prevent the disputes which
        might be raised upon such accounts, I chose to reduce the substance of
        this Book into the form of Propositions (in the mathematical way), which
        should be read by those only who had first made themselves masters of
        the principles established in the preceding Books: not that I would
        advise any one to the previous study of every Proposition of those
        Books; for they abound with such as might cost too much time, even to
        readers of good mathematical learning. It is enough if one carefully
        reads the Definitions, the Laws of Motion, and the first three Sections
        of the first Book. He may then pass on to this Book, and consult such of
        the remaining Propositions of the first two Books, as the references in
        this, and his occasions, shall require.
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    Rules of Reasoning in Philosophy.


    
        Rule I.

            
                
                    We are to admit no more causes of natural things than such as
                    are both time and sufficient to explain their appearances.
                
            

        

        
            To this purpose the philosophers say that Nature does nothing in
            vain, and more is in vain when less will serve; for Nature is pleased
            with simplicity, and affects not the pomp of superfluous causes.
        

    

    
        Rule ii.

            
                
                    Therefore to the same natural effects we must, as far as
                    possible, assign the same causes.
                
            

        

        
            As to respiration in a man and in a beast; the descent of stones in Europe
            and in America; the light of our culinary fire and of the
            sun; the reflection of light in the earth, and in the planets.
        

    

    
        Rule iii.

            
                
                    The qualities of bodies, which admit neither intension nor
                    remission of degrees, and which are found to belong to all bodies
                    within the reach of our experiments, are to be esteemed the
                    universal qualities of all bodies whatsoever.
                
            

        

        
            For since the qualities of bodies are only known to us by
            experiments, we are to hold for universal all such as universally
            agree with experiments; and such as are not liable to diminution can
            never be quite taken away. We are certainly not to relinquish the
            evidence of experiments for the sake of dreams and vain fictions of
            our own devising; nor are we to recede from the analogy of Nature,
            which uses to be simple, and always consonant to itself. We no other
            way know the extension of bodies than by our senses, nor do these
            reach it in all bodies; but because we perceive extension in all that
            are sensible, therefore we ascribe it universally to all others also.
            That abundance of bodies are hard, we learn by experience; and because
            the hardness of the whole arises from the hardness of the parts, we
            therefore justly infer the hardness of the undivided particles not
            only of the bodies we feel but of all others. That all bodies are
            impenetrable, we gather not from reason, but from sensation. The
            bodies which we handle we find impenetrable, and thence conclude
            impenetrability to be an universal property of all bodies whatsoever.
            That all bodies are moveable, and endowed with certain powers (which
            we call the vires inertiae) of persevering in their motion,
            or in their rest, we only infer from the like properties observed in
            the bodies which we have seen. The extension,
            hardness, impenetrability, mobility, and vis inertiae of the
            whole, result from the extension, hardness, impenetrability, mobility,
            and vires inertiae of the parts; and thence we conclude the
            least particles of all bodies to be also all extended, and hard and
            impenetrable, and moveable, and endowed with their proper vires
            inertia. And this is the foundation of all philosophy.
            Moreover, that the divided but contiguous particles of bodies may be
            separated from one another, is matter of observation; and, in the
            particles that remain undivided, our minds are able to distinguish yet
            lesser parts, as is mathematically demonstrated. But whether the parts
            so distinguished, and not yet divided, may, by the powers of Nature,
            be actually divided and separated from one an other, we cannot
            certainly determine. Yet, had we the proof of but one experiment that
            any undivided particle, in breaking a hard and solid body, suffered a
            division, we might by virtue of this rule conclude that the undivided
            as well as the divided particles may be divided and actually separated
            to infinity.
        

        
            Lastly, if it universally appears, by experiments and astronomical
            observations, that all bodies about the earth gravitate towards the
            earth, and that in proportion to the quantity of matter which they
            severally contain; that the moon likewise, according to the quantity
            of its matter, gravitates towards the earth; that, on the other hand,
            our sea gravitates towards the moon; and all the planets mutually one
            towards another; and the comets in like manner towards the sun; we
            must, in consequence of this rule, universally allow that all bodies
            whatsoever are endowed with a principle of mutual gravitation. For the
            argument from the appearances concludes with more force for the
            universal gravitation of all bodies than for their impenetrability; of
            which, among those in the celestial regions, we have no experiments,
            nor any manner of observation. Not that I affirm gravity to be
            essential to bodies: by their vis insita I mean nothing but
            their vis inertiae. This is immutable. Their gravity is
            diminished as they recede from the earth.
        

    

    
        Rule iv.

            
                
                    In experimental philosophy we are to look upon propositions
                    collected by general induction from phaenomena as accurately or
                    very nearly true, notwithstanding any contrary hypotheses that may
                    be imagined, till such time as other phaenomena occur, by which
                    they may either be made more accurate, or liable to exceptions.
                
            

        

        This rule we must follow, that the argument of induction may not be evaded by hypotheses.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 3.2



    Phaenomena, or Appearances.


    
        Phaenomenon I.

            
                
                    That the circumjovial planets, by radii drawn to Jupiter's
                    centre, describe areas proportional to the times of description;
                    and that their periodic times, the fixed stars being at rest, are
                    in the sesquiplicate proportion of their distances from, its centre.
                
            

        

        
            This we know from astronomical observations. For the orbits of these
            planets differ but insensibly from circles concentric to Jupiter; and
            their motions in those circles are found to be uniform. And all
            astronomers agree that their periodic times are in the sesquiplicate
            proportion of the semi-diameters of their orbits; and so it manifestly
            appears from the following table.
        

        The periodic times of the satellites of Jupiter.

        
            1d.18h.27′.34″. 3d.13h.13′42″.
            7d.3h.42′36″. 16d.16h.32′9″.
        

        The distances of the satellites from Jupiter's centre. 

        
            
                
                    	From the observations of 
                    	1
                    	2
                    	3
                    	4
                    	  
                

                
                    	
                        Borelli

                        Townly by the Microm.

                        Cassini by the Telescope

                        Cassini by the eclip. of the satel.
                    
                    	
                        5⅔

                        5,52

                        5

                        5⅔
                    
                    	
                        8⅔

                        8,78

                        8

                        9
                    
                    	
                        14

                        13,47

                        13

                        1423/60
                    
                    	
                        24⅔

                        24,72

                        23

                        253/10
                    
                    	semi-diameter of Jupiter. 
                

                
                    	From the periodic times

                    	5,667
                    	9,017
                    	14,384
                    	25,299
                    	 
 
                

            
        

        
            Mr. Pound has determined, by the help of excellent
            micrometers, the diameters of Jupiter and the elongation of its
            satellites after the following manner. The greatest heliocentric
            elongation of the fourth satellite from Jupiter's centre was taken
            with a micrometer in a 15 feet telescope, and at the mean distance of
            Jupiter from the earth was found about 8′ 16″. The elongation of the
            third satellite was taken with a micrometer in a telescope of 123
            feet, and at the same distance of Jupiter from the earth was found 4′
            42″. The greatest elongations of the other satellites, at the same
            distance of Jupiter from the earth, are found from the periodic times
            to be 2′ 56″ 47‴, and 1′ 51″ 6‴.
        

        
            The diameter of Jupiter taken with the micrometer in a 123 feet
            telescope several times, and reduced to Jupiter's mean distance from
            the earth, proved always less than 40″, never less than 38″, generally
            39″. This diameter in shorter telescopes is 40″, or 41″; for Jupiter's
            light is a little dilated by the unequal refrangibility of the rays,
            and this dilatation bears less ratio to the diameter of Jupiter in the
            longer and more perfect telescopes than in those which are shorter and
            less perfect. The times in which two
            satellites, the first and the third, passed over Jupiter's body, were
            observed, from the beginning of the ingress to the beginning of the
            egress, and from the complete ingress to the complete egress, with the
            long telescope. And from the transit of the first satellite, the
            diameter of Jupiter at its mean distance from the earth came forth 37
            1

            8 “. and from the transit of the third
            37 3

            8 “. There was observed also the time
            in which the shadow of the first satellite passed over Jupiter's body,
            and thence the diameter of Jupiter at its mean distance from the earth
            came out about 37″. Let us suppose its diameter to be 37¼″ very
            nearly, and then the greatest elongations of the first, second, third,
            and fourth satellite will be respectively equal to 5,965, 9,494,
            15,141, and 26,63 semi-diameters of Jupiter.
        

    

    
        Phaenomenon ii.

            
                
                    That the circumsaturnal planets, by radii drawn to Saturn's
                    centre, describe areas proportional to the times of description;
                    and that their periodic times, the fixed stars being at rest, are
                    in the sesquiplicate proportion of their distances from its  centre.
                
            

        

        
            For, as Cassini from his own observations has determined,
            their distances from Saturn's centre and their periodic times are as
            follow.
        

        The periodic times of the satellites of Saturn. 

        
            1d.21h.18′27″. 2d.17h.41′22″.
            4d.12h.25′12″. 15d.22h.41′14″. 79d.7h.48′00″.
        

        The distances of the satellites from Saturn's centre, in semi-diameters of its ring.

        
            
                
                    	From observations 
                    	1 19
 20. 
                    	2½.
                    	3½.
                    	8.
                    	24.
                

                
                    	From the periodic times 
                    	1,93.
                    	2,47.
                    	3,45.
                    	8.
                    	23,35.
                

            
        

        
            The greatest elongation of the fourth satellite from Saturn's centre
            is commonly determined from the observations to be eight of those
            semi-diameters very nearly. But the greatest elongation of this
            satellite from Saturn's centre, when taken with an excellent
            micrometer in Mr. Huygens' telescope of 123 feet, appeared
            to be eight semi-diameters and 7

            10 of a semi-diameter. And from this
            observation and the periodic times the distances of the satellites
            from Saturn's centre in semi-diameters of the ring are 2.1. 2,69.
            3,75. 8,7. and 25,35. The diameter of Saturn observed in the same
            telescope was found to be to the diameter of the ring as 3 to 7; and
            the diameter of the ring, May 28-29, 1719, was found to be
            43″; and thence the diameter of the ring when Saturn is at its mean
            distance from the earth is 42″, and the diameter of Saturn 18″. These
            things appear so in very long and excellent telescopes, because in
            such telescopes the apparent magnitudes of the heavenly bodies bear a
            greater proportion to the dilatation of light in the extremities of
            those bodies than in shorter telescopes. If
            we, then, reject all the spurious light, the diameter of Saturn will
            not amount to more than 16″.
        

    

    
        Phaenomenon iii.

            
                
                    That the five primary planets, Mercury, Venus, Mars, Jupiter,
                    and Saturn, with their several orbits, encompass the sun.
                
            

        

        
            That Mercury and Venus revolve about the sun, is evident from their
            moon-like appearances. When they shine out with a full face, they are,
            in respect of us, beyond or above the sun; when they appear half full,
            they are about the same height on one side or other of the sun; when
            horned, they are below or between us and the sun; and they are
            sometimes, when directly under, seen like spots traversing
            the sun's disk. That Mars surrounds the sun, is as plain from its full
            face when near its conjunction with the sun, and from the gibbous
            figure which it shews in its quadratures. And the same thing is
            demonstrable of Jupiter and Saturn, from their appearing full in all
            situations; for the shadows of their satellites that appear sometimes
            upon their disks make it plain that the light they shine with is not
            their own, but borrowed from the sun.
        

    

    
        Phaenomenon iv.

            
                
                    That the fixed stars being at rest, the periodic times of the
                    five primary planets, and (whether of the sun, about the earth,
                    or) of the earth about the sun, are in the sesquiplicate
                    proportion of their mean distances from the sun.
                
            

        

        
            This proportion, first observed by Kepler, is now received
            by all astronomers; for the periodic times are the same, and the
            dimensions of the orbits are the same, whether the sun revolves about
            the earth, or the earth about the sun. And as to the measures of the
            periodic times, all astronomers are agreed about them. But for the
            dimensions of the orbits, Kepler and Bullialdus,
            above all others, have determined them from observations with the
            greatest accuracy; and the mean distances corresponding to the
            periodic times differ but insensibly from those which they have
            assigned, and for the most part fall in between them; as we may see
            from the following table.
        

        
            The periodic times with respect to the fixed stars, of the
            planets and earth revolving about the sun, in days and
            decimal parts of a day.
        

        
            
                
                    	♄
                    	♃
                    	♂
                    	♁
                    	♀
                    	☿
                

                
                    	10759,275.
                    	4332,514.
                    	686,9785.
                    	365,2565.
                    	224,6176.
                    	87,9692.
                

            
        

        The mean distances of the planets and of the earth from the sun. 

        
            
                
                    	 
 
                    	♄
                    	♃
                    	♂
                

                
                    	According to Kepler
                    	951000.
                    	519650.
                    	152350.
                

                
                    	According to Bullialdus
                    	954198.
                    	522520.
                    	152350.
                

                
                    	According to the periodic times
                    	954006.
                    	520096.
                    	152369
                

            
        

          

        
            
                
                    	 
 
                    	♁
                    	♀
                    	☿
                

                
                    	According to Kepler
                    	100000.
                    	72400.
                    	38806.
                

                
                    	According to Bullialdus
                    	100000.
                    	72398.
                    	38585.
                

                
                    	According to the periodic times
                    	100000.
                    	72333.
                    	38710
                

            
        

        
            As to Mercury and Venus, there can be no doubt about their distances
            from the sun; for they are determined by the elongations of those
            planets from the sun; and for the distances of the superior planets,
            all dispute is cut off by the eclipses of the satellites of Jupiter.
            For by those eclipses the position of the shadow which Jupiter
            projects is determined; whence we have the heliocentric longitude of
            Jupiter. And from its heliocentric and geocentric longitudes compared
            together, we determine its distance.
        

    

    
        Phaenomenon V.

            
                
                    Then the primary planets, by radii drawn to the earth, describe
                    areas no wise proportional to the times; but that the areas which
                    they describe by radii drawn to the sun are proportional to the
                    times of description.
                
            

        

        
            For to the earth they appear sometimes direct, sometimes stationary,
            nay, and sometimes retrograde. But from the sun they are always seen
            direct, and to proceed with a motion nearly uniform, that is to say, a
            little swifter in the perihelion and a little slower in the aphelion
            distances, so as to maintain an equality in the description of the
            areas. This a noted proposition among astronomers, and particularly
            demonstrable in Jupiter, from the eclipses of his satellites; by the
            help of which eclipses, as we have said, the heliocentric longitudes
            of that planet, and its distances from the sun, are determined.
        

    

    
        Phaenomenon vi.

            
                
                    That the moon, by a radius drawn to the earth's centre,
                    describes an area proportional to the time of description.
                
            

        

        
            This we gather from the apparent motion of the moon, compared with
            its apparent diameter. It is true that the motion of the moon is a
            little disturbed by the action of the sun: but in laying down these
            Phenomena I neglect those small and inconsiderable errors.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton



Book 3.3



    
        
        Propositions

    




    
        Proposition i. Theorem I.

        
            That the forces by which the circumjovial planets are continually
            drawn off from rectilinear motions, and retained in their proper
            orbits, tend to Jupiter's centre; and are reciprocally as the
            squares of the distances of the places of those planets from that centre.
        

    

    
        The former part of this Proposition appears from Phaen. I, and Prop. II
        or III, Book I; the latter from Phaen. I, and Cor. 6, Prop. IV, of the same Book.
    

    
        The same thing we are to understand of the planets which encompass
        Saturn, by Phaen. II.
    




    
        Proposition ii. Theorem ii.

        
            
                That the forces by which the primary planets are continually
                drawn off from rectilinear motions, and retained in their proper
                orbits, tend to the sun; and are reciprocally as the squares of the
                distances of the places of those planets from the suits centre.
            
        

    

    
        The former part of the Proposition is manifest from Phaen. V, and Prop.
        II, Book I; the latter from Phaen. IV, and Cor. 6, Prop. IV,
        of the same Book. But this part of the Proposition is, with great
        accuracy, demonstrable from the quiescence of the aphelion points; for a
        very small aberration from the reciprocal duplicate proportion
        would (by Cor. 1, Prop. XLV, Book I) produce a motion of the apsides
        sensible enough in every single revolution, and in many of them
        enormously great.
    




    
        Proposition iii. Theorem iii.

        
            
                That the force by which the moon is retained in its orbit tends
                to the earth; and is reciprocally as the square of the distance of
                its place from the earth's centre.
            
        

    

    
        The former part of the Proposition is evident from Phaen. VI, and Prop.
        II or III, Book I; the latter from the very slow motion of the moon's
        apogee; which in every single revolution amounting but to 3° 3′ in
        consequentia, may be neglected. For (by Cor. 1. Prop. XLV, Book
        I) it appears, that, if the distance of the moon from the earth's centre
        is to the semi-diameter of the earth as D to 1, the force, from which
        such a motion will result, is reciprocally as D²
        4/243,
        i. e., reciprocally as the power of D,
        whose exponent is 24/243;
        that is to say, in the proportion of the distance something greater than
        reciprocally duplicate, but which comes 59¾ times nearer to the
        duplicate than to the triplicate proportion. But in regard that this
        motion is owing to the action of the sun (as we shall afterwards
        shew), it is here to be neglected. The action of the
        sun, attracting the moon from the earth, is nearly as the moon's
        distance from the earth; and therefore (by what we have shewed in Cor.
        2, Prop. XLV, Book I) is to the centripetal force of the moon as 2 to
        357,45, or nearly so; that is,
        as 1 to 17829/40.
        And if we neglect so inconsiderable a force of the sun, the remaining
        force, by which the moon is retained in its orb, will be reciprocally as
        D². This will yet more fully appear from comparing this force with the
        force of gravity, as is done in the next Proposition.
    

    
        Cor. If we augment the mean centripetal force
        by which the moon is retained in its orb, first in the proportion of 177
        29/40 to
        17829/40,
        and then in the duplicate proportion of the semi-diameter of the earth
        to the mean distance of the centres of the moon and earth, we shall have
        the centripetal force of the moon at the surface of the earth; supposing
        this force, in descending to the earth's surface, continually to
        increase in the reciprocal duplicate proportion of the height.
    




    
        Proposition iv. Theorem iv.

        
            
                That the moon gravitates towards the earth, and by the force of
                gravity is continually drawn off from a rectilinear motion, and
                retained in its orbit.
            
        

    

    
        The mean distance of the moon from the earth in the syzygies in
        semi-diameters of the earth, is, according to Ptolemy and most
        astronomers, 59; according to Vendelin and Huygens,
        60; to Copernicus, 60⅓; to Street,
        602/5;
        and to Tycho, 56½. But Tycho, and all that follow
        his tables of refraction, making the refractions of the sun and moon
        (altogether against the nature of light) to exceed the refractions of
        the fixed stars, and that by four or five minutes near the horizon,
        did thereby increase the moon's horizontal parallax by a like
        number of minutes, that is, by a twelfth or fifteenth part of the whole
        parallax. Correct this error, and the distance will become about 60½
        semi-diameters of the earth, near to what others have assigned. Let us
        assume the mean distance of 60 diameters in the syzygies; and suppose
        one revolution of the moon, in respect of the fixed stars, to be
        completed in 27d.7h.43′, as astronomers have
        determined; and the circumference of the earth to amount to 123249600 Paris
        feet, as the French have found by mensuration. And now if we imagine the
        moon, deprived of all motion, to be let go, so as to descend towards the
        earth with the impulse of all that force by which (by Cor. Prop. III) it
        is retained in its orb, it will in the space of one minute of time,
        describe in its fall 151/12
        Paris feet. This we gather by a calculus, founded either upon
        Prop. XXXVI, Book I, or (which comes to the same thing) upon Cor. 9,
        Prop. IV, of the same Book. For the versed sine of that arc, which the
        moon, in the space of one minute of time,
        would by its mean motion
        describe at the distance of 60 semi-diameters of the earth, is nearly 15
        1/12 Paris feet,
        or more accurately 15 feet, 1 inch,
        and 1 line 4/9.
        Where fore, since that force, in approaching to the earth, increases in
        the reciprocal duplicate proportion of the distance, and, upon that
        account, at the surface of the earth, is 60 x 60 times greater than at
        the moon, a body in our regions, falling with that force, ought in the
        space of one minute of time,
        to describe 60 x 60 x 151/12
        Paris feet; and, in the space of one second of time, to
        describe 151/12 of those
        feet; or more accurately 15 feet, 1 inch,
        and 1 line 4/9.
        And with this very force we actually find that bodies here upon earth do
        really descend; for a pendulum oscillating seconds in the latitude of
        Paris will be 3 Paris feet, and 8 lines ½ in length, as Mr. Huygens
        has observed. And the space which a heavy body describes by falling in
        one second of time is to half the length of this pendulum in the
        duplicate ratio of the circumference of a circle to its diameter (as Mr.
        Huygens has also shewn), and is therefore 15 Paris
        feet, 1 inch, 1 line 7/9.
        And therefore the force by which the moon is retained in its orbit
        becomes, at the very surface of the earth, equal to the force of gravity
        which we observe in heavy bodies there. And therefore (by Rule I and II)
        the force by which the moon is retained in its orbit is that very same
        force which we commonly call gravity; for, were gravity another force
        different from that, then bodies descending to the earth with the joint
        impulse of both forces would fall with a double velocity, and in the
        space of one second of time would describe 301/6
        Paris feet; altogether against experience.
    

    
        This calculus is founded on the hypothesis of the earth's standing
        still; for if both earth and moon move about the sun, and at the same
        time about their common centre of gravity, the distance of the centres
        of the moon and earth from one another will be 60½ semi-diameters of the
        earth; as may be found by a computation from Prop. LX, Book I.
    




    
        Scholium.

    

    
        The demonstration of this Proposition may be more diffusely explained
        after the following manner. Suppose several moons to revolve about the
        earth, as in the system of Jupiter or Saturn: the periodic times of
        these moons (by the argument of induction) would observe the same law
        which Kepler found to obtain among the planets; and therefore
        their centripetal forces would be reciprocally as the squares of the
        distances from the centre of the earth, by Prop. I, of this Book. Now if
        the lowest of these were very small, and were so near the earth as
        almost to touch the tops of the highest mountains, the centripetal force
        thereof, retaining it in its orb, would be very nearly equal to the
        weights of any terrestrial bodies that should be found upon
        the tops of those mountains, as may be known by the foregoing
        computation. Therefore if the same little moon should be deserted by its
        centrifugal force that carries it through its orb;
        and so be disabled
        from going onward therein, it would descend to the earth; and that with
        the same velocity as heavy bodies do actually fall with upon the tops of
        those very mountains; because of the equality of the forces that oblige
        them both to descend. And if the force by which that lowest moon would
        descend were different from gravity, and if that moon were to gravitate
        towards the earth, as we find terrestrial bodies do upon the tops of
        mountains, it would then descend with twice the velocity, as being impel
        led by both these forces conspiring together. Therefore since both these
        forces, that is, the gravity of heavy bodies, and the centripetal forces
        of the moons, respect the centre of the earth, and are similar and equal
        between themselves, they will (by Rule I and II) have one and the same
        cause. And therefore the force which retains the moon in its orbit is
        that very force which we commonly call gravity; because otherwise this
        little moon at the top of a mountain must either be without gravity, or
        fall twice as swiftly as heavy bodies are wont to do.
    




    
        Proposition v. Theorem V.

        
            
                That the circumjovial planets gravitate towards Jupiter; the
                circumsaturnal towards Saturn; the circumsolar towards the sun; and
                by the forces of their gravity are drawn off from rectilinear
                motions, and retained in curvilinear orbits.
            
        

    

    
        For the revolutions of the circumjovial planets about Jupiter, of the
        circumsaturnal about Saturn, and of Mercury and Venus, and the other
        circumsolar planets, about the sun, are appearances of the same sort
        with the revolution of the moon about the earth; and therefore, by Rule
        II, must be owing to the same sort of causes; especially since it has
        been demonstrated, that the forces upon which those revolutions depend
        tend to the centres of Jupiter, of Saturn, and of the sun; and that
        those forces, in receding from Jupiter, from Saturn, and from the sun,
        decrease in the same proportion, and according to the same law, as the
        force of gravity does in receding from the earth.
    

    
        Cor. 1. There is, therefore, a power of gravity
        tending to all the planets; for, doubtless, Venus, Mercury, and the
        rest, are bodies of the same sort with Jupiter and Saturn. And since all
        attraction (by Law III) is mutual, Jupiter will therefore gravitate
        towards all his own satellites, Saturn towards his, the earth towards
        the moon, and the sun towards all the primary planets.
    

    
        Cor. 2. The force of gravity which tends to any
        one planet is reciprocally as the square of the distance of places from
        that planet's centre.
    

    
        Cor. 3. All the planets do mutually gravitate
        towards one another, by Cor. 1 and 2. And hence it is that Jupiter and
        Saturn, when near their conjunction; by their
        mutual attractions sensibly disturb each other's motions. So the sun
        disturbs the motions of the moon; and both sun and moon disturb our sea,
        as we shall hereafter explain.
    




    
        Scholium.

    

    
        The force which retains the celestial bodies in their orbits has been
        hitherto called centripetal force; but it being now made plain that it
        can be no other than a gravitating force, we shall hereafter call it
        gravity. For the cause of that centripetal force which retains the moon
        in its orbit will extend itself to all the planets, by Rule I, II, and
        IV.
    




    
        Proposition vi. Theorem vi.

        
            
                That all bodies gravitate towards every planet; and that the
                weights of bodies towards any the same planet, at equal distances
                from the centre of the planet, are proportional to the quantities of
                matter which they severally contain.
            
        

    

    
        It has been, now of a long time, observed by others, that all sorts of
        heavy bodies (allowance being made for the inequality of retardation
        which they suffer from a small power of resistance in the air) descend
        to the earth from equal heights in equal times; and that
        equality of times we may distinguish to a great accuracy, by the help of
        pendulums. I tried the thing in gold, silver, lead, glass, sand, common
        salt, wood, water, and wheat. I provided two wooden boxes, round and
        equal: I filled the one with wood, and suspended an equal weight of gold
        (as exactly as I could) in the centre of oscillation of the other. The
        boxes hanging by equal threads of 11 feet made a couple of pendulums
        perfectly equal in weight and figure, and equally receiving the
        resistance of the air. And, placing the one by the other, I observed
        them to play together forward and backward, for a long time, with equal
        vibrations. And therefore the quantity of matter in the gold (by Cor. 1
        and 6, Prop. XXIV, Book II) was to the quantity of matter in the wood as
        the action of the motive force (or vis motrix) upon all the
        gold to the action of the same upon all the wood: that is, as the weight
        of the one to the weight of the other: and the like happened in the
        other bodies. By these experiments, in bodies of the same weight, I
        could manifestly have discovered a difference of matter less than the
        thousandth part of the whole, had any such been. But, without all doubt,
        the nature of gravity towards the planets is the same as towards the
        earth. For, should we imagine our terrestrial bodies removed to the orb
        of the moon, and there, together with the moon, deprived of all motion,
        to be let go, so as to fall together towards the earth, it is certain,
        from what we have demonstrated before, that, in equal times, they would
        describe equal spaces with the moon, and of consequence are to the moon,
        in quantity of matter, as their weights to its weight. Moreover, since
        the satellites of Jupiter perform their
        revolutions in times which observe the sesquiplicate proportion of their
        distances from Jupiter's centre, their accelerative gravities towards
        Jupiter will be reciprocally as the squares of their distances from
        Jupiter's centre; that is, equal, at equal distances. And, therefore,
        these satellites, if supposed to fall towards Jupiter from
        equal heights, would describe equal spaces in equal times, in like
        manner as heavy bodies do on our earth. And, by the same argument, if
        the circumsolar planets were supposed to be let fall at equal distances
        from the sun, they would, in their descent towards the sun, describe
        equal spaces in equal times. But forces which equally accelerate unequal
        bodies must be as those bodies: that is to say, the weights of the
        planets towards the sun, must be as their quantities of
        matter. Further, that the weights of Jupiter and of his satellites
        towards the sun are proportional to the several quantities of their
        matter, appears from the exceedingly regular motions of the satellites
        (by Cor. 3, Prop. LXV, Book 1). For if some of those bodies were more
        strongly attracted to the sun in proportion to their quantity of matter
        than others, the motions of the satellites would be disturbed by that
        inequality of attraction (by Cor. 2, Prop. LXV, Book I). If, at equal
        distances from the sun, any satellite, in proportion to the quantity of
        its matter, did gravitate towards the sun with a force greater than
        Jupiter in proportion to his, according to any given proportion, suppose
        of d to e; then the distance between the centres of
        the sun and of the satellite's orbit would be always greater than the
        distance between the centres of the sun and of Jupiter nearly in the
        subduplicate of that proportion: as by some computations I have found.
        And if the satellite did gravitate towards the sun with a force, lesser
        in the proportion of e to d, the distance of the
        centre of the satellite's orb from the sun would be less than the
        distance of the centre of Jupiter from the sun in the subduplicate of
        the same proportion. Therefore if, at equal distances from the sun, the
        accelerative gravity of any satellite towards the sun were greater or
        less than the accelerative gravity of Jupiter towards the sun but by one
        1/1000 part of the whole
        gravity, the distance of the centre of the satellite's orbit from the
        sun would be greater or less than the distance of Jupiter from the sun
        by one 1/2000 part of
        the whole distance; that is, by a fifth part of the distance of the
        utmost satellite from the centre of Jupiter; an eccentricity of the
        orbit which would be very sensible. But the orbits of the satellites are
        concentric to Jupiter, and therefore the accelerative gravities of
        Jupiter, and of all its satellites towards the sun, are equal among
        themselves. And by the same argument, the weights of Saturn and of his
        satellites towards the sun, at equal distances from the sun, are as
        their several quantities of matter; and the weights of the moon and of
        the earth towards the sun are either none, or accurately proportional to
        the masses of matter which they contain. But some they are, by Cor. 1
        and 3, Prop. V.
    

    
        But further; the weights of all the parts of every planet towards any
        other planet are one to another as the matter
        in the several parts; for if some parts did gravitate more, others less,
        than for the quantity of their matter, then the whole planet, according
        to the sort of parts with which it most abounds, would gravitate more or
        less than in proportion to the quantity of matter in the whole. Nor is
        it of any moment whether these parts are external or internal; for if,
        for example, we should imagine the terrestrial bodies with us to be
        raised up to the orb of the moon, to be there compared with its body: if
        the weights of such bodies were to the weights of the external parts of
        the moon as the quantities of matter in the one and in the other
        respectively; but to the weights of the internal parts in a greater or
        less proportion, then likewise the weights of those bodies would be to
        the weight of the whole moon in a greater or less proportion; against
        what we have shewed above.
    

    
        Cor. 1. Hence the weights of bodies do not
        depend upon their forms and textures; for if the weights could be
        altered with the forms, they would be greater or less, according to the
        variety of forms, in equal matter; altogether against experience.
    

    
        Cor. 2. Universally, all bodies about the earth
        gravitate towards the earth; and the weights of all, at equal distances
        from the earth's centre, are as the quantities of matter which they
        severally contain. This is the quality of all bodies within the reach of
        our experiments; and therefore (by Rule III) to be affirmed of all
        bodies whatsoever. If the aether, or any other body, were
        either altogether void of gravity, or were to gravitate less in
        proportion to its quantity of matter, then, because (according to Aristotle,
        Des Cartes, and others) there is no diiference betwixt that and
        other bodies but in mere form of matter, by a successive
        change from form to form, it might be changed at last into a body of the
        same condition with those which gravitate most in proportion to their
        quantity of matter; and, on the other hand, the heaviest bodies,
        acquiring the first form of that body, might by degrees quite lose their
        gravity. And therefore the weights would depend upon the forms of
        bodies, and with those forms might be changed: contrary to what was
        proved in the preceding Corollary.
    

    
        Cor. 3. All spaces are not equally full; for if
        all spaces were equally full, then the specific gravity of the fluid
        which fills the region of the air, on account of the extreme density of
        the matter, would fall nothing short of the specific gravity of
        quicksilver, or gold, or any other the most dense body; and, therefore,
        neither gold, nor any other body, could descend in air; for bodies do
        not descend in fluids, unless they are specifically heavier than the
        fluids. And if the quantity of matter in a given space can, by any
        rarefaction, be diminished, what should hinder a diminution to infinity?
    

    
        Cor. 4. If all the solid particles of all
        bodies are of the same density, nor can be rarefied without pores, a
        void, space, or vacuum must be granted. By
        bodies of the same density, I mean those whose vires inertiae,
        are in the proportion of their bulks.
    

    
        Cor. 5. The power of gravity is of a different
        nature from the power of magnetism; for the magnetic attraction is not
        as the matter attracted. Some bodies are attracted more by the magnet;
        others less; most bodies not at all. The power of magnetism in one and
        the same body may be increased and diminished; and is sometimes far
        stronger, for the quantity of matter, than the power of gravity; and in
        receding from the magnet decreases not in the duplicate but almost in
        the triplicate proportion of the distance, as nearly as I could judge
        from some rude observations.
    




    
        Proposition vii. Theorem vii.

        
            
                That there is a power of gravity tending to all bodies,
                proportional to the several quantities of matter which they contain.
            
        

    

    
        That all the planets mutually gravitate one towards another, we have
        proved before; as well as that the force of gravity towards every one of
        them, considered apart, is reciprocally as the square of the distance of
        places from the centre of the planet. And thence (by Prop. LXIX, Book I,
        and its Corollaries) it follows, that the gravity tending towards all
        the planets is proportional to the matter which they contain.
    

    
        Moreover, since all the parts of any planet A gravitate towards any
        other planet B; and the gravity of every part is to the gravity of the
        whole as the matter of the part to the matter of the whole; and (by Law
        III) to every action corresponds an equal re-action; therefore the
        planet B will, on the other hand, gravitate towards all the parts of the
        planet A; and its gravity towards any one part will be to the gravity
        towards the whole as the matter of the part to the matter of the whole.
          Q.E.D.
    

    
        Cor. 1. Therefore the force of gravity towards
        any whole planet arises from, and is compounded of, the forces of
        gravity towards all its parts. Magnetic and electric attractions afford
        us examples of this; for all attraction towards the whole arises from
        the attractions towards the several parts. The thing may be easily
        understood in gravity, if we consider a greater planet, as formed of a
        number of lesser planets, meeting together in one globe; for hence
        it would appear that the force of the whole must arise from the
        forces of the component parts. If it is objected, that, according to
        this law, all bodies with us must mutually gravitate one towards
        another, whereas no such gravitation any where appears, I answer, that
        since the gravitation towards these bodies is to the gravitation towards
        the whole earth as these bodies are to the whole earth, the gravitation
        towards them must be far less than to fall under the observation of our
        senses.
    

    
        Cor. 2. The force of gravity towards the
        several equal particles of any body is reciprocally as the square of the
        distance of places from the particles; as appears from Cor. 3, Prop.
        LXXIV, Book I.
    

      




    
        Proposition viii. Theorem viii.

        
            
                In two spheres mutually gravitating each towards the other, if
                the matter in places on all sides round about and equi-distant from
                the centres is similar, the weight of either sphere towards the
                other will be reciprocally as the square of the distance between their centres.
            
        

    

    
        After I had found that the force of gravity towards a whole planet did
        arise from and was compounded of the forces of gravity towards all its
        parts, and towards every one part was in the reciprocal proportion of
        the squares of the distances from the part, I was yet in doubt whether
        that reciprocal duplicate proportion did accurately hold, or but nearly
        so, in the total force compounded of so many partial ones; for it might
        be that the proportion which accurately enough took place in greater
        distances should be wide of the truth near the surface of the planet,
        where the distances of the particles are unequal, and their situation
        dissimilar. But by the help of Prop. LXXV and LXXVI, Book I, and their
        Corollaries, I was at last satisfied of the truth of the Proposition, as
        it now lies before us.
    

    
        Cor. 1. Hence we may find and compare together
        the weights of bodies towards different planets; for the weights of
        bodies revolving in circles about planets are (by Cor. 2, Prop. IV, Book
        I) as the diameters of the circles directly, and the squares of their
        periodic times reciprocally; and their weights at the surfaces of the
        planets, or at any other distances from their centres, are (by this
        Prop.) greater or less in the reciprocal duplicate proportion of the
        distances. Thus from the periodic times of Venus, revolving about the
        sun, in 224d.16¾h, of the utmost circumjovial
        satellite revolving about Jupiter, in 16d.168/15h.;
        of the Huygenian satellite about Saturn in 15d.22⅔h.;
        and of the moon about the earth in 27d.7h.43′;
        compared with the mean distance of Venus from the sun, and with the
        greatest heliocentric elongations of the outmost circumjovial satellite
        from Jupiter's centre, 8′ 16″; of the Huygenian satellite from the
        centre of Saturn, 3′4″; and of the moon from the earth, 10′33″: by
        computation I found that the weight of equal bodies, at equal distances
        from the centres of the sun, of Jupiter, of Saturn, and of the earth,
        towards the sun, Jupiter, Saturn, and the earth, were one to another, as
        1, 1/1067, 1/3021,
        and 1/169282
        respectively. Then because as the distances are increased or diminished,
        the weights are diminished or increased in a duplicate ratio, the
        weights of equal bodies towards the sun, Jupiter, Saturn, and the earth,
        at the distances 10000, 997, 791, and 109 from their centres, that is,
        at their very superficies, will be as 10000, 943, 529, and 435
        respectively. How much the weights of bodies are at the superficies of
        the moon, will be shewn hereafter.
    

    
        Cor. 2. Hence likewise we discover the quantity
        of matter in the several planets; for their
        quantities of matter are as the forces of gravity at equal distances
        from their centres; that is, in the sun, Jupiter, Saturn, and the earth,
        as 1, 1/1067, 1/3021
        and 1/169282
        respectively. If the parallax of the sun be taken greater or less than
        10″ 30‴, the quantity of matter in the earth must be augmented or
        diminished in the triplicate of that proportion.
    

    
        Cor. 3. Hence also we find the densities of the
        planets; for (by Prop. LXXII, Book I) the weights of equal and similar
        bodies towards similar spheres are, at the surfaces of those spheres, as
        the diameters of the spheres and therefore the densities of dissimilar
        spheres are as those weights applied to the diameters of the spheres.
        But the true diameters of the Sun, Jupiter, Saturn, and the earth, were
        one to another as 10000, 997, 791, and 109; and the weights towards the
        same as 10000, 943, 529, and 435 respectively; and therefore their
        densities are as 100, 94½, 67, and 400. The density of the earth, which
        comes out by this computation, does not depend upon the parallax of the
        sun, but is determined by the parallax of the moon, and therefore is
        here truly defined. The sun, therefore, is a little denser than Jupiter,
        and Jupiter than Saturn, and the earth four times denser than the sun;
        for the sun, by its great heat, is kept in a sort of a rarefied state.
        The moon is denser than the earth, as shall appear afterward.
    

    
        Cor. 4. The smaller the planets are, they are,
        caeteris paribus, of so much the greater density; for so the
        powers of gravity on their several surfaces come nearer to equality.
        They are likewise, caeteris paribus, of the greater density,
        as they are nearer to the sun. So Jupiter is more dense than Saturn, and
        the earth than Jupiter; for the planets were to be placed at different
        distances from the sun, that, according to their degrees of density,
        they might enjoy a greater or less proportion to the sun's heat. Our
        water, if it were removed as far as the orb of Saturn, would be
        converted into ice, and in the orb of Mercury would quickly fly away in
        vapour; for the light of the sun, to which its heat is proportional, is
        seven times denser in the orb of Mercury than with us: and by the
        thermometer I have found that a sevenfold heat of our summer sun will
        make water boil. Nor are we to doubt that the matter of Mercury is
        adapted to its heat, and is therefore more dense than the matter of our
        earth; since, in a denser matter, the operations of Nature require a
        stronger heat.
    




    
        Proposition ix. Theorem ix.

        
            
                That the force of gravity, considered downward from the surface
                of the planets, decreases nearly in the proportion of the distances from their centres.
            
        

    

    
        If the matter of the planet were of an uniform density, this
        Proposition would be accurately true (by Prop. LXXIII. Book I). The
        error, therefore, can be no greater than what
        may arise from the inequality of the density.
    




    
        Proposition x. Theorem X.

        That the motions of the planets in the heavens may subsist an exceedingly long time.

    

    
        In the Scholium of Prop. XL, Book II, I have shewed that a globe of
        water frozen into ice, and moving freely in our air, in the time that it
        would describe the length of its semi-diameter, would lose by the
        resistance of the air 1/4586
        part of its motion; and the same proportion holds nearly in all globes,
        how great soever, and moved with whatever velocity. But that our globe
        of earth is of greater density than it would be if the whole consisted
        of water only, I thus make out. If the whole consisted of water only,
        whatever was of less density than water, because of its less specific
        gravity, would emerge and float above. And upon this account, if a globe
        of terrestrial matter, covered on all sides with water, was less dense
        than water, it would emerge somewhere; and, the subsiding water falling
        back, would be gathered to the opposite side. And such is the condition
        of our earth, which in a great measure is covered with seas. The earth,
        if it was not for its greater density, would emerge from the seas, and,
        according to its degree of levity, would be raised more or less above
        their surface, the water of the seas flowing backward to the opposite
        side. By the same argument, the spots of the sun, which float upon the
        lucid matter thereof, are lighter than that matter; and, however the
        planets have been formed while they were yet in fluid masses, all the
        heavier matter subsided to the centre. Since, therefore, the common
        matter of our earth on the surface thereof is about twice as heavy as
        water, and a little lower, in mines, is found about three, or four, or
        even five times more heavy, it is probable that the quantity of the
        whole matter of the earth may be five or six times greater than if it
        consisted all of water; especially since I have before shewed that the
        earth is about four times more dense than Jupiter. If, therefore,
        Jupiter is a little more dense than water, in the space of thirty days,
        in which that planet describes the length of 459 of its semi-diameters,
        it would, in a medium of the same density with our air, lose almost a
        tenth part of its motion. But since the resistance of mediums decreases
        in proportion to their weight or density, so that water, which is 13
        3/5 times lighter than
        quicksilver, resists less in that proportion; and air, which is 860
        times lighter than water, resists less in the same proportion; therefore
        in the heavens, where the weight of the medium in which the planets move
        is immensely diminished, the resistance will almost vanish.
    

    
        It is shewn in the Scholium of Prop. XXII, Book II, that at the height
        of 200 miles above the earth the air is more rare than it is at the
        superficies of the earth in the ratio of 30 to 0,0000000000003998, or as
        75000000000000 to 1 nearly. And hence the planet
        Jupiter, revolving in a medium of the same density with that superior
        air, would not lose by the resistance of the medium the 1000000th part
        of its motion in 1000000 years. In the spaces near the earth the
        resistance is produced only by the air, exhalations, and vapours. When
        these are carefully exhausted by the air-pump from under the receiver,
        heavy bodies fall within the receiver with perfect freedom, and without
        the least sensible resistance: gold itself, and the lightest down, let
        fall together, will descend with equal velocity; and though they fall
        through a space of four, six, and eight feet, they will come to the
        bottom at the same time; as appears from experiments. And therefore the
        celestial regions being perfectly void of air and exhalations, the
        planets and comets meeting no sensible resistance in those spaces will
        continue their motions through them for an immense tract of time.
    




    
        Hypothesis I.

        That the centre of the system of the world is immovable. 

    

    
        This is acknowledged by all, while some contend that the earth, others
        that the sun, is fixed in that centre. Let us see what may from hence follow.
    




    
        Proposition xi. Theorem xi.

        That the common centre of gravity of the earth, the sun, and all the planets, is immovable.

    

    
        For (by Cor. 4 of the Laws) that centre either is at rest, or moves
        uniformly forward in a right line; but if that centre moved, the centre
        of the world would move also, against the Hypothesis.
    




    
        Proposition xii. Theorem xii.

        
            
                That the sun is agitated by a perpetual motion, but never recedes
                far from the common centre of gravity of all the planets.
            
        

    

    
        For since (by Cor. 2, Prop. VIII) the quantity of matter in the sun is
        to the quantity of matter in Jupiter as 1067 to 1; and the distance of
        Jupiter from the sun is to the semi-diameter of the sun in a proportion
        but a small matter greater, the common centre of gravity of Jupiter and
        the sun will fall upon a point a little without the surface of the sun.
        By the same argument, since the quantity of matter in the sun is to the
        quantity of matter in Saturn as 3021 to 1, and the distance of Saturn
        from the sun is to the semi-diameter of the sun in a proportion but a
        small matter less, the common centre of gravity of Saturn and the sun
        will fall upon a point a little within the surface of the sun. And,
        pursuing the principles of this computation, we should find that though
        the earth and all the planets were placed on one side of the sun, the
        distance of the common centre of gravity of all from the centre of the
        sun would scarcely amount to one diameter of the
        sun. In other cases, the distances of those centres are always less; and
        therefore, since that centre of gravity is in perpetual rest, the sun,
        according to the various positions of the planets, must perpetually be
        moved every way, but will never recede far from that centre.
    

    
        Cor. Hence the common centre of gravity of the
        earth, the sun, and all the planets, is to be esteemed the centre of the
        world; for since the earth, the sun, and all the planets, mutually
        gravitate one towards another, and are therefore, according to their
        powers of gravity, in perpetual agitation, as the Laws of Motion
        require, it is plain that their moveable centres can not be taken for
        the immovable centre of the world. If that body were to be placed in the
        centre, towards which other bodies gravitate most (according to common
        opinion), that privilege ought to be allowed to the sun; but since the
        sun itself is moved, a fixed point is to be chosen from which the centre
        of the sun recedes least, and from which it would recede yet less if the
        body of the sun were denser and greater, and therefore less apt to be
        moved.
    




    
        Proposition xiii. Theorem xiii.

        
            
                The planets move in ellipses which have their common focus in the
                centre of the sun; and, by radii drawn to that centre, they describe
                areas proportional to the times of description.
            
        

    

    
        We have discoursed above of these motions from the Phaenomena. Now that
        we know the principles on which they depend, from those principles we
        deduce the motions of the heavens à priori. Because the
        weights of the planets towards the sun are reciprocally as the squares
        of their distances from the sun's centre, if the sun was at rest, and
        the other planets did not mutually act one upon another, their orbits
        would be ellipses, having the sun in their common focus; and they would
        describe areas proportional to the times of description, by
        Prop, I and XI, and Cor. 1, Prop. XIII, Book I. But the mutual actions
        of the planets one upon another are so very small, that they may be
        neglected; and by Prop. LXVI, Book I, they less disturb the motions of
        the planets around the sun in motion than if those motions were
        performed about the sun at rest.
    

    
        It is true, that the action of Jupiter upon Saturn is not to be
        neglected; for the force of gravity towards Jupiter is to the force of
        gravity towards the sun (at equal distances, Cor. 2, Prop. VIII) as 1 to
        1067; and therefore in the conjunction of Jupiter and Saturn, because
        the distance of Saturn from Jupiter is to the distance of Saturn from
        the sun almost as 4 to 9, the gravity of Saturn towards Jupiter will be
        to the gravity of Saturn towards the sun as 81 to 16 x 1067; or, as 1 to
        about 211. And hence arises a perturbation of the orb of Saturn in every
        conjunction of this planet with Jupiter, so sensible, that astronomers
        are puzzled with it. As the planet is
        differently situated in these conjunctions, its eccentricity is
        sometimes augmented, sometimes diminished; its aphelion is sometimes
        carried forward, sometimes backward, and its mean motion is by turns
        accelerated and retarded; yet the whole error in its motion about the
        sun, though arising from so great a force, may be almost avoided (except
        in the mean motion) by placing the lower focus of its orbit in the
        common centre of gravity of Jupiter and the sun (according to Prop.
        LXVII, Book I), and therefore that error, when it is greatest, scarcely
        exceeds two minutes; and the greatest error in the mean motion scarcely
        exceeds two minutes yearly. But in the conjunction of Jupiter and
        Saturn, the accelerative forces of gravity of the sun towards Saturn, of
        Jupiter towards Saturn, and of Jupiter towards the sun, are almost as
        16,81, and 16 x 81 x 3021

        25; or 156609: and therefore the
        difference of the forces of gravity of the sun towards Saturn, and of
        Jupiter towards Saturn, is to the force of gravity of Jupiter towards
        the sun as 65 to 156609, or as 1 to 2409. But the greatest power of
        Saturn to disturb the motion of Jupiter is proportional to this
        difference; and therefore the perturbation of the orbit of Jupiter is
        much less than that of Saturn's. The perturbations of the other orbits
        are yet far less, except that the orbit of the earth is sensibly
        disturbed by the moon. The common centre of gravity of the earth and
        moon moves in an ellipsis about the sun in the focus thereof, and, by a
        radius drawn to the sun, describes areas proportional to the times of
        description. But the earth in the mean time by a menstrual motion is
        revolved about this common centre.
    




    
        Proposition xiv. Theorem xiv.

        The aphelions and nodes of the orbits of the planets are fixed.

    

    
        The aphelions are immovable by Prop. XI, Book I; and so are the planes
        of the orbits, by Prop. I of the same Book. And if the planes are fixed,
        the nodes must be so too. It is true, that some inequalities may arise
        from the mutual actions of the planets and comets in their revolutions;
        but these will be so small, that they may be here passed by.
    

    
        Cor. 1. The fixed stars are immovable, seeing
        they keep the same position to the aphelions and nodes of the planets.
    

    
        Cor. 2. And since these stars are liable to no
        sensible parallax from the annual motion of the earth, they can have no
        force, because of their immense distance, to produce any sensible effect
        in our system. Not to mention that the fixed stars, every where
        promiscuously dispersed in the heavens, by their contrary attractions
        destroy their mutual actions, by Prop. LXX, Book I.
    




    
        Scholium.

    

    
        Since the planets near the sun (viz. Mercury, Venus, the Earth, and
        Mars) are so small that they can act with but little
        force upon each other, therefore their aphelions and nodes must be
        fixed, excepting in so far as they are disturbed by the actions of
        Jupiter and Saturn, and other higher bodies. And hence we may find, by
        the theory of gravity, that their aphelions move a little in
        consequentia, in respect of the fixed stars, and that in the
        sesquiplicate proportion of their several distances from the sun. So
        that if the aphelion of Mars, in the space of a hundred years, is
        carried 33′ 20″ in consequentia, in respect of the fixed
        stars; the aphelions of the Earth, of Venus, and of Mercury, will in a
        hundred years be carried forwards 17′ 40″, 10′ 53″, and 4′ 16″,
        respectively. But these motions are so inconsiderable, that we have
        neglected them in this Proposition,
    




    
        Proposition xv. Problem I.

        To find the principal diameters of the orbits of the planets.

    

    
        They are to be taken in the sub-sesquiplicate proportion of the
        periodic times, by Prop. XV, Book I, and then to be severally augmented
        in the proportion of the sum of the masses of matter in the sun and each
        planet to the first of two mean proportionals betwixt that sum and the
        quantity of matter in the sun, by Prop. LX, Book I.
    




    
        Proposition xvi. Problem ii.

        To find the eccentricities and aphelions of the planets.  

    


    This Problem is resolved by Prop. XVIII, Book I.




    
        Proposition xvii. Theorem xv.

        
            
                That the diurnal motions of the planets are uniform, and that the
                libration of the moon arises from its diurnal motion.
            
        

    

    
        The Proposition is proved from the first Law of Motion, and Cor. 22,
        Prop. LXVI, Book I. Jupiter, with respect to the fixed stars, revolves
        in 9h.56′; Mars in 24h.39′; Venus in about 23h.;
        the Earth in 23h.56′; the Sun in 25½ days, and the moon in 27
        days, 7 hours, 43′. These things appear by the Phaenomena. The spots in
        the sun's body return to the same situation on the sun's disk, with
        respect to the earth, in 27½ days; and therefore with respect to the
        fixed stars the sun revolves in about 25½ days. But because the lunar
        day, arising from its uniform revolution about its axis, is menstrual, that
        is, equal to the time of its periodic revolution in its orb,
        therefore the same face of the moon will be always nearly turned to the
        upper focus of its orb; but, as the situation of that focus requires,
        will deviate a little to one side and to the other from the earth in the
        lower focus; and this is the libration in longitude; for the libration
        in latitude arises from the moon's latitude, and the inclination of its
        axis to the plane of the ecliptic. This theory of the libration of the
        moon, Mr. N. Mercator in his
        Astronomy, published at the beginning of the year 1676, explained more
        fully out of the letters I sent him. The utmost satellite of Saturn
        seems to revolve about its axis with a motion like this of the moon,
        respecting Saturn continually with the same face; for in its revolution
        round Saturn, as often as it comes to the eastern part of its orbit, it
        is scarcely visible, and generally quite disappears; which is like to be
        occasioned by some spots in that part of its body, which is then turned
        towards the earth, as M. Cassini has observed. So also the
        utmost satellite of Jupiter seems to revolve about its axis with a like
        motion, because in that part of its body which is turned from Jupiter it
        has a spot, which always appears as if it were in Jupiter's own body,
        whenever the satellite passes between Jupiter and our eye.
    




    
        Proposition xviii. Theorem xvi.

        
            
                That the axes of the planets are less than the diameters drawn
                perpendicular to the axes.
            
        

    

    
        The equal gravitation of the parts on all sides would give a spherical
        figure to the planets, if it was not for their diurnal revolution in a
        circle. By that circular motion it comes to pass that the parts receding
        from the axis endeavour to ascend about the equator; and therefore if
        the matter is in a fluid state, by its ascent towards the equator it
        will enlarge the diameters there, and by its descent towards the poles
        it will shorten the axis. So the diameter of Jupiter (by the concurring
        observations of astronomers) is found shorter betwixt pole and pole than
        from east to west. And, by the same argument, if our earth was not
        higher about the equator than at the poles, the seas would subside about
        the poles, and, rising towards the equator, would lay all things there
        under water.
    




    
        Proposition xix. Problem iii.

        
            
                To find the proportion of the axis of a planet to the diameter,
                perpendicular thereto.
            
        

    

    
        Our countryman, Mr. Norwood, measuring a distance of 905751
        feet of London measure between London and York,
        in 1635, and observing the difference of latitudes to be 2° 28′,
        determined the measure of one degree to be 367196 feet of London
        measure, that is 57300 Paris toises. M. Picart,
        measuring an arc of one degree, and 22′ 55″ of the meridian between Amiens
        and Malvoisine, found an arc of one degree to be 57060 Paris
        toises. M. Cassini, the father, measured the distance upon the
        meridian from the town of Collioure in Roussillon to
        the Observatory of Paris; and his son added the distance from
        the Observatory to the Citadel of Dunkirk. The whole distance
        was 486156½ toises and the difference of the latitudes of Collioure
        and Dunkirk was 8 degrees, and 31′ 11
        5/6″. Hence an arc of one
        degree appears to be 57061 Paris toises. And from these
        measures we conclude that the circumference of the earth is 123249600,
        and its semi-diameter 19615800 Paris feet, upon the
        supposition that the earth is of a spherical figure.
    

    
        In the latitude of Paris a heavy body falling in a second of
        time describes 15 Paris feet, 1 inch, 17/9
        line, as above, that is, 2173 lines 7/9.
        The weight of the body is diminished by the weight of the ambient air.
        Let us suppose the weight lost thereby to be 1/11000
        part of the whole weight; then that heavy body falling in vacua
        will describe a height of 2174 lines in one second of time.
    

    
        A body in every sidereal day of 23h.56′4″ uniformly
        revolving in a circle at the distance of 19615800 feet from the centre,
        in one second of time describes an arc of 1433,46 feet; the versed sine
        of which is 0,05236561 feet, or 7,54064 lines. And therefore the force
        with which bodies descend in the latitude of Paris is to the
        centrifugal force of bodies in the equator arising from the diurnal
        motion of the earth as 2174 to 7,54064.
    

    
        The centrifugal force of bodies in the equator is to the centrifugal
        force with which bodies recede directly from the earth in the latitude
        of Paris 48° 50′ 10″ in the duplicate proportion of the radius
        to the cosine of the latitude, that is, as 7,54064 to 3,267. Add this
        force to the force with which bodies descend by their weight in the
        latitude of Paris, and a body, in the latitude of Paris,
        falling by its whole undiminished force of gravity, in the time of one
        second, will describe 2177,267 lines, or 15 Paris feet, 1
        inch, and 5,267 lines. And the total force of gravity in that latitude
        will be to the centrifugal force of bodies in the equator of the earth
        as 2177,267 to 7,54064, or as 289 to 1.
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        Wherefore if APBQ represent the figure of the earth, now no longer
        spherical, but generated by the rotation of an ellipsis about its lesser
        axis PQ; and ACQqca a canal full of water, reaching from the
        pole Qq to the centre Cc, and thence rising to the
        equator Aa; the weight of the water in the leg of the canal ACca
        will be to the weight of water in the other leg QCcq as 289 to
        288, because the centrifugal force arising from the circular motion
        sustains and takes off one of the 289 parts of the weight (in the one
        leg), and the weight of 288 in the other sustains the rest. But by
        computation (from Cor. 2, Prop. XCI, Book I) I find, that, if the matter
        of the earth was all uniform, and without any motion, and its axis PQ
        were to the diameter AB as 100 to 101, the force of gravity in the place
        Q towards the earth would be to the force of gravity in the same place Q
        towards a sphere described about the centre C with the radius PC, or QC,
        as 126 to 125. And, by the same argument, the force of gravity in the
        place A towards the spheroid generated by the rotation of the
        ellipsis APBQ about the axis AB is to the force of gravity in the same
        place A, towards the sphere described about the centre C with the radius
        AC, as 125 to 126. But the force of gravity in the place A towards the
        earth is a mean proportional betwixt the forces of gravity towards the
        spheroid and this sphere; because the sphere, by having its diameter PQ
        diminished in the proportion of 101 to 100, is transformed into the
        figure of the earth; and this figure, by having a third diameter
        perpendicular to the two diameters AB and PQ diminished in the same
        proportion, is converted into the said spheroid; and the force of
        gravity in A, in either case, is diminished nearly in the same
        proportion. Therefore the force of gravity in A towards the sphere
        described about the centre C with the radius AC, is to the force of
        gravity in A towards the earth as 126 to 125½. And the force of gravity
        in the place Q towards the sphere described about the centre C with the
        radius QC, is to the force of gravity in the place A towards the sphere
        described about the centre C, with the radius AC, in the proportion of
        the diameters (by Prop. LXXII, Book I), that is, as 100 to 101. If,
        therefore, we compound those three proportions 126 to 125, 126 to 125½,
        and 100 to 101, into one, the force of gravity in the place Q towards
        the earth will be to the force of gravity in the place A towards the
        earth as 126 x 126 x 100 to 125 x 125½ x 101; or as 501 to 500.
    

    
        Now since (by Cor. 3, Prop. XCI, Book I) the force of gravity in either
        leg of the canal ACca, or QCcq, is as the distance of
        the places from the centre of the earth, if those legs are conceived to
        be divided by transverse, parallel, and equidistant surfaces, into parts
        proportional to the wholes, the weights of any number of parts in the
        one leg ACca will be to the weights of the same number of parts
        in the other leg as their magnitudes and the accelerative forces of
        their gravity conjunctly, that is, as 101 to 100, and 500 to 501, or as
        505 to 501. And therefore if the centrifugal force of every part in the
        leg ACca, arising from the diurnal motion, was to the weight of
        the same part as 4 to 505, so that from the weight of every part,
        conceived to be divided into 505 parts, the centrifugal force might take
        off four of those parts, the weights would remain equal in each leg, and
        therefore the fluid would rest in an equilibrium. But the centrifugal
        force of every part is to the weight of the same part as 1 to 289; that
        is, the centrifugal force, which should be 4/505
        parts of the weight, is only 1/289
        part thereof. And, therefore, I say, by the rule of proportion, that if
        the centrifugal force 4/505
        make the height of the water in the leg ACca to exceed the
        height of the water in the leg QCcq by one 1/100
        part of its whole height, the centrifugal force 1/289
        will make the excess of the height in the leg ACca only
        1/289 part of the height of
        the water in the other leg QCcq; and therefore the diameter of
        the earth at the equator, is to its diameter from pole to pole as 230 to
        229. And since the mean semi-diameter of the
        earth, according to Picart's mensuration, is 19615800 Paris
        feet, or 3923,16 miles (reckoning 5000 feet to a mile), the earth will
        be higher at the equator than at the poles by 85472 feet, or 171/10
        miles. And its height at the equator will be about 19658600 feet, and at
        the poles 19573000 feet.
    

    
        If, the density and periodic time of the diurnal revolution remaining
        the same, the planet was greater or less than the earth, the proportion
        of the centrifugal force to that of gravity, and therefore also of the
        diameter betwixt the poles to the diameter at the equator, would
        likewise remain the same. But if the diurnal motion was accelerated or
        retarded in any proportion, the centrifugal force would be augmented or
        diminished nearly in the same duplicate proportion; and therefore the
        difference of the diameters will be increased or diminished in the same
        duplicate ratio very nearly. And if the density of the planet was
        augmented or diminished in any proportion, the force of gravity tending
        towards it would also be augmented or diminished in the same proportion:
        and the difference of the diameters contrariwise would be diminished in
        proportion as the force of gravity is augmented, and augmented in
        proportion as the force of gravity is diminished. Wherefore, since the
        earth, in respect of the fixed stars, revolves in 23h.56′,
        but Jupiter in 9h.56′, and the squares of their periodic
        times are as 29 to 5, and their densities as 400 to 94½, the difference
        of the diameters of Jupiter will be to its lesser diameter as 
        29

        5 x 400

        941/2 x 1

        229 to 1, or as 1 to 9⅓, nearly.
        Therefore the diameter of Jupiter from east to west is to its diameter
        from pole to pole nearly as 10⅓ to 9⅓. Therefore since its greatest
        diameter is 37″, its lesser diameter lying between the poles will be 33″
        25‴. Add thereto about 3″ for the irregular refraction of light, and the
        apparent diameters of this planet will become 40″ and 36″ 25‴; which are
        to each other as 111/6
        to 101/6, very nearly.
        These things are so upon the supposition that the body of Jupiter is
        uniformly dense. But now if its body be denser towards the plane of the
        equator than towards the poles, its diameters may be to each other as 12
        to 11, or 13 to 12, or perhaps as 14 to 13.
    

    
        And Cassini observed in the year 1691, that the diameter of
        Jupiter reaching from east to west is greater by about a fifteenth part
        than the other diameter. Mr. Pound with his 123 feet
        telescope, and an excellent micrometer, measured the diameters of
        Jupiter in the year 1719, and found them as follow.
    

    
        
            
                	The Times.
                	Greatest diam.
                	Lesser diam.
                	The diam. to each other.
            

            
                	
                    

                    January

                    March

                    March

                    April
                
                	
                    Day.

                    28

                    6

                    9

                    9
                
                	
                    Hours

                    6

                    7

                    7

                    9
                
                	
                    Parts

                    13,40

                    13,12

                    13,12

                    12,32
                
                	
                    Parts

                    12,28

                    12,20

                    12,08

                    11,48
                
                	
                    

                    As

                    As

                    As

                    As
                
                	
                    

                    12

                    13¾

                    12⅔

                    14½
                
                	
                    

                    to

                    to

                    to

                    to
                
                	
                    

                    11

                    12¾

                    11⅔

                    13½
                
            

        
    

    
        So that the theory agrees with the phaenomena;
        for the planets are more heated by the sun's rays towards their
        equators, and therefore are a little more condensed by that heat than
        towards their poles.
    

    
        Moreover, that there is a diminution of gravity occasioned by the
        diurnal rotation of the earth, and therefore the earth rises higher
        there than it does at the poles (supposing that its matter is uniformly
        dense), will appear by the experiments of pendulums related under the
        following Proposition.
    




    
        Proposition xx. Problem iv.

        
            
                To find and compare together the weights of bodies in the
                different regions of our earth.
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        Because the weights of the unequal legs of the canal of water ACQqca
        are equal; and the weights of the parts proportional to the whole legs,
        and alike situated in them, are one to another as the weights of the
        wholes, and therefore equal betwixt themselves; the weights of equal
        parts, and alike situated in the legs, will be reciprocally as the legs,
        that is, reciprocally as 230 to 229. And the case is the same in all
        homogeneous equal bodies alike situated in the legs of the canal. Their
        weights are reciprocally as the legs, that is, reciprocally as the
        distances of the bodies from the centre of the earth. Therefore if the
        bodies are situated in the uppermost parts of the canals, or on the
        surface of the earth, their weights will be one to another reciprocally
        as their distances from the centre. And, by the same argument, the
        weights in all other places round the whole surface of the earth are
        reciprocally as the distances of the places from the centre; and,
        therefore, in the hypothesis of the earth's being a spheroid are given
        in proportion.
    

    
        Whence arises this Theorem, that the increase of weight in passing from
        the equator to the poles is nearly as the versed sine of double the
        latitude; or, which comes to the same thing, as the square of the right
        sine of the latitude; and the arcs of the degrees of latitude in the
        meridian increase nearly in the same proportion. And, therefore, since
        the latitude of Paris is 48° 50′, that of places under the
        equator 00° 00′, and that of places under the poles 90°; and the versed
        sines of double those arcs are 11334,00000 and 20000, the radius being
        10000; and the force of gravity at the pole is to the force of gravity
        at the equator as 230 to 229; and the excess of the force of gravity at
        the pole to the force of gravity at the equator as 1 to 229; the excess
        of the force of gravity in the latitude of Paris will be to the force of
        gravity at the equator as 1 x 11334/20000
        to 229, or as 5667 to 2290000. And therefore the whole forces of gravity
        in those places will be one to the other as 2295667 to 2290000.
        Wherefore since the lengths of pendulums vibrating in equal times are as
        the forces of gravity, and in the latitude of Paris,
        the length of a pendulum vibrating seconds is 3 Paris feet,
        and 8½ lines, or rather because of the weight of the air, 85/9
        lines, the length of a pendulum vibrating in the same time under the
        equator will be shorter by 1,087 lines. And by a like calculus the
        following table is made.
    

    
        
            
                	Latitude of
the place.
                	Length of the
pendulum
                	Measure of one degree
in the meridian.
            

            
                	
                    Deg.

                    0

                    5

                    10

                    15

                    20

                    25

                    30

                    35

                    40

                    1

                    2

                    3

                    4

                    45

                    6

                    7

                    8

                    9

                    50

                    55

                    60

                    65

                    70

                    75

                    80

                    85

                    90
                
                	
                    Feet     Lines     

                    3     .    7,468

                    3     .    7,482

                    3     .    7,526

                    3     .    7,596

                    3     .    7,692

                    3     .    7,812

                    3     .    7,948

                    3     .    8,099

                    3     .    8,261

                    3     .    8,294

                    3     .    8,327

                    3     .    8,361

                    3     .    8,394

                    3     .    8,428

                    3     .    8,461

                    3     .    8,494

                    3     .    8,528

                    3     .    8,561

                    3     .    8,594

                    3     .    8,756

                    3     .    8,907

                    3     .    9,044

                    3     .    9,162

                    3     .    9,258

                    3     .    9,329

                    3     .    9,372

                    3     .    9,387
                
                	
                    Toises.

                    56637

                    56642

                    56659

                    56687

                    56724

                    56769

                    56823

                    56882

                    56945

                    56958

                    56971

                    56984

                    56997

                    57010

                    57022

                    57035

                    57048

                    57061

                    57074

                    57137

                    57196

                    57250

                    57295

                    57332

                    57360

                    57377

                    57382
                
            

        
    

    
        By this table, therefore, it appears that the inequality of degrees is
        so small, that the figure of the earth, in geographical matters, may be
        considered as spherical; especially if the earth be a little denser
        towards the plane of the equator than towards the poles.
    

    
        Now several astronomers, sent into remote countries to make
        astronomical observations, have found that pendulum clocks do
        accordingly move slower near the equator than in our climates. And,
        first of all, in the year 1672, M. Richer took notice of it in
        the island of Cayenne; for when, in the month of August,
        he was observing the transits of the fixed stars over the meridian, he
        found his clock to go slower than it ought in respect of the mean motion
        of the sun at the rate of 2′ 28″ a day. Therefore, fitting up a simple
        pendulum to vibrate in seconds, which were measured by an excellent
        clock, he observed the length of that simple pendulum; and this he did
        over and over every week for ten months together. And upon his re turn
        to France, comparing the length of that pendulum with the
        length of the pendulum at Paris
        (which was 3 Paris feet and 83/5
        lines), he found it shorter by 1¼ line.
    

    
        Afterwards, our friend Dr. Halley, about the year 1677,
        arriving at the island of St. Helena, found his pendulum clock
        to go slower there than at London without marking the
        difference. But he shortened the rod of his clock by more than the
        1/8 of an inch, or 1½ line;
        and to effect this, be cause the length of the screw at the lower end of
        the rod was not sufficient, he interposed a wooden ring betwixt the nut
        and the ball.
    

    
        Then, in the year 1682, M. Varin and M. des Hayes
        found the length of a simple pendulum vibrating in seconds at the Royal
        Observatory of Paris to be 3 feet and 85/9
        lines. And by the same method in the island of Goree, they
        found the length of an isochronal pendulum to be 3 feet and 65/9
        lines, differing from the former by two lines. And in the same year,
        going to the islands of Guadaloupe and Martinico,
        they found that the length of an isochronal pendulum in those islands
        was 3 feet and 6½ lines.
    

    
        After this, M. Couplet, the son, in the month of July
        1697, at the Royal Observatory of Paris, so fitted his
        pendulum clock to the mean motion of the sun, that for a considerable
        time together the clock agreed with the motion of the sun. In November
        following, upon his arrival at Lisbon, he found his clock to
        go slower than before at the rate of 2′ 13″ in 24 hours. And next March
        coming to Paraiba, he found his clock to go slower than at Paris,
        and at the rate 4′ 12″ in 24 hours; and he affirms, that the pendulum
        vibrating in seconds was shorter at Lisbon by 2½ lines, and at Paraiba,
        by 3⅔ lines, than at Paris. He had done better to have
        reckoned those differences 1⅓ and 25/9:
        for these differences correspond to the differences of the times 2′ 13″
        and 4′ 12″. But this gentleman's observations are so gross, that we
        cannot confide in them.
    

    
        In the following years, 1699, and 1700, M. des Hayes, making
        another voyage to America, determined that in the island of Cayenne
        and Granada the length of the pendulum vibrating in seconds
        was a small matter less than 3 feet and 6½ lines; that in the island of
        St. Christophers it was 3 feet and 6¾ lines; and in the island
        of St. Domingo 3 feet and 7 lines.
    

    
        And in the year 1704, P. Feuillé, at Puerto Bello
        in America, found that the length of the pendulum vibrating in
        seconds was 3 Paris feet, and only 57/12
        lines, that is, almost 3 lines shorter than at Paris; but the
        observation was faulty. For afterward, going to the island of Martinico,
        he found the length of the isochronal pendulum there 3 Paris
        feet and 510/12 lines.
    

    
        Now the latitude of Paraiba is 6° 38′ south; that of Puerto
        Bello 9° 33′ north; and the latitudes of the islands Cayenne,
        Goree, Gaudaloupe, Martinico, Granada, St. Christophers, and St.
        Domingo, are respectively 4° 55′, 14° 40″, 15° 00′, 14° 44′, 12°
        06′, 17° 19′, and 19° 48′, north. And the
        excesses of the length of the pendulum at Paris above the
        lengths of the isochronal pendulums observed in those latitudes are a
        little greater than by the table of the lengths of the pendulum before
        computed. And therefore the earth is a little higher under the equator
        than by the preceding calculus, and a little denser at the centre than
        in mines near the su face, unless, perhaps, the heats of the torrid zone
        have a little extended the length of the pendulums.
    

    
        For M. Picart has observed, that a rod of iron, which in
        frosty weather in the winter season was one foot long, when heated by
        fire, was lengthened into one foot and ¼ line. Afterward M. de la
        Hire found that a rod of iron, which in the like winter season
        was 6 feet long, when exposed to the heat of the summer sun, was
        extended into 6 feet and ⅔ line. In the former case the heat was greater
        than in the latter; but in the latter it was greater than the heat of
        the external parts of a human body; for metals exposed to the summer sun
        acquire a very considerable degree of heat. But the rod of a pendulum
        clock is never exposed to the heat of the summer sun, nor ever acquires
        a heat equal to that of the external parts of a human body; and,
        therefore, though the 3 feet rod of a pendulum clock will indeed be a
        little longer in the summer than in the winter season, yet the
        difference will scarcely amount to ¼ line. Therefore the total
        difference of the lengths of isochronal pendulums in different climates
        cannot be ascribed to the difference of heat; nor indeed to the mistakes
        of the French astronomers. For although there is not a perfect
        agreement betwixt their observations, yet the errors are so small that
        they may be neglected; and in this they all agree, that isochronal
        pendulums are shorter under the equator than at the Royal Observatory of
        Paris, by a difference not less than 1¼ line, nor greater than
        2⅔ lines. By the observations of M. Richer, in the island of Cayenne,
        the difference was 1¼ line. That difference being corrected by those of
        M. des Hayes, becomes 1½ line or 1¾ line. By the less accurate
        observations of others, the same was made about two lines. And this dis
        agreement might arise partly from the errors of the observations, partly
        from the dissimilitude of the internal parts of the earth, and the
        height of mountains; partly from the different heats of the air.
    

    
        I take an iron rod of 3 feet long to be shorter by a sixth part of one
        line in winter time with us here in England than in the
        summer. Because of the great heats under the equator, subduct this
        quantity from the difference of one line and a quarter observed by M. Richer,
        and there will remain one line 1/12,
        which agrees very well with 187/1000
        line collected, by the theory a little before. M. Richer
        repeated his observations, made in the island of Cayenne,
        every week for ten months together, and compared the lengths of the
        pendulum which he had there noted in the iron rods with the lengths
        thereof which he observed in France. This diligence and care
        seems to have been wanting to the other observers. If this gentleman's
        observations are to be depended on, the earth
        is higher under the equator than at the poles, and that by an excess of
        about 17 miles; as appeared above by the theory.
    




    
        Proposition xxi. Theorem xvii.

        
            
                That the equinoctial points go backward, and that the axis of the
                earth, by a nutation in every annual revolution, twice vibrates
                towards the ecliptic, and as often returns to its former position.
            
        

    

    
        The proposition appears from Cor. 20, Prop. LXVI, Book I; but that
        motion of nutation must be very small, and, indeed, scarcely
        perceptible.
    




    
        Proposition xxii. Theorem xviii.

        
            
                That all the motions of the moon, and all the inequalities of
                those motions, follow from the principles which we have laid down.
            
        

    

    
        That the greater planets, while they are carried about the sun, may in
        the mean time carry other lesser planets, revolving about them; and that
        those lesser planets must move in ellipses which have their foci in the
        centres of the greater, appears from Prop. LXV, Book I. But then their
        motions will be several ways disturbed by the action of the sun, and
        they will suffer such inequalities as are observed in our moon. Thus our
        moon (by Cor. 2, 3, 4, and 5, Prop. LXVI, Book I) moves faster, and, by
        a radius drawn to the earth, describes an area greater for the time, and
        has its orbit less curved, and therefore approaches nearer to the earth
        in the syzygies than in the quadratures, excepting in so far as these
        effects are hindered by the motion of eccentricity; for (by Cor. 9,
        Prop. LXVI, Book I) the eccentricity is greatest when the apogeon of the
        moon is in the syzygies, and least when the same is in the quadratures;
        and upon this account the perigeon moon is swifter, and nearer to us,
        but the apogeon moon slower, and farther from us, in the syzygies than
        in the quadratures. Moreover, the apogee goes forward, and the nodes
        backward; and this is done not with a regular but an unequal motion. For
        (by Cor. 7 and 8, Prop. LXVI, Book I) the apogee goes more swiftly
        forward in its syzygies, more slowly backward in its quadratures; and,
        by the excess of its progress above its regress, advances yearly in
        consequentia. But, contrariwise, the nodes (by Cor. 11, Prop.
        LXVI, Book I) are quiescent in their syzygies, and go fastest back in
        their quadratures. Farther, the greatest latitude of the moon (by Cor.
        10, Prop. LXVI, Book I) is greater in the quadratures of the moon than
        in its syzygies. And (by Cor. 6, Prop. LXVI, Book I) the mean motion of
        the moon is slower in the perihelion of the earth than in its aphelion.
        And these are the principal inequalities (of the moon) taken notice of
        by astronomers.
    

    
        But there are yet other inequalities not
        observed by former astronomers, by which the motions of the moon are so
        disturbed, that to this day we have not been able to bring them under
        any certain rule. For the velocities or horary motions of the apogee and
        nodes of the moon, and their equations, as well as the difference
        betwixt the greatest eccentricity in the syzygies, and the least
        eccentricity in the quadratures, and that inequality which we call the
        variation, are (by Cor. 14, Prop. LXVI, Book I) in the course of the
        year augmented and diminished in the triplicate proportion of the sun's
        apparent diameter. And besides (by Cor. 1 and 2, Lem. 10, and Cor. 16,
        Prop. LXVI, Book I) the variation is augmented and diminished nearly in
        the duplicate proportion of the time between the quadratures. But in
        astronomical calculations, this inequality is commonly thrown into and
        confounded with the equation of the moon's centre.
    




    
        Proposition xxiii. Problem V.

        
            
                To derive the unequal motions of the satellites of Jupiter and
                Saturn from the motions of our moon.
            
        

    

    
        From the motions of our moon we deduce the corresponding motions of the
        moons or satellites of Jupiter in this manner, by Cor. 16, Prop. LXVI,
        Book I. The mean motion of the nodes of the outmost satellite of Jupiter
        is to the mean motion of the nodes of our moon in a proportion
        compounded of the duplicate proportion of the periodic times of the
        earth about the sun to the periodic times of Jupiter about the sun, and
        the simple proportion of the periodic time of the satellite about
        Jupiter to the periodic time of our moon about the earth; and,
        therefore, those nodes, in the space of a hundred years, are carried 8°
        24′ backward, or in antecedentia. The mean motions of the
        nodes of the inner satellites are to the mean motion of the nodes of the
        outmost as their periodic times to the periodic time of the former, by
        the same Corollary, and are thence given. And the motion of the apsis of
        every satellite in consequentia is to the motion of its nodes
        in antecedentia as the motion of the apogee of our moon to the
        motion of its nodes (by the same Corollary), and is thence given. But
        the motions of the apsides thus found must be diminished in the
        proportion of 5 to 9, or of about 1 to 2, on account of a cause which I
        cannot here descend to explain. The greatest equations of the nodes, and
        of the apsis of every satellite, are to the greatest equations of the
        nodes, and apogee of our moon respectively, as the motions of the nodes
        and apsides of the satellites, in the time of one revolution of the
        former equations, to the motions of the nodes and apogee of our moon, in
        the time of one revolution of the latter equations. The variation of a
        satellite seen from Jupiter is to the variation of our moon in the same
        proportion as the whole motions of their nodes respectively
        during the times in which the satellite and our moon (after parting
        from) are revolved (again) to the sun, by the same Corollary; and
        therefore in the outmost satellite the variation does not exceed 5″ 12‴.
    




    
        Proposition xxiv. Theorem xix.

        That the flux and reflux of the sea arise from the actions of the sun and moon.

    

    
        By Cor. 19 and 20, Prop. LXVI, Book I, it appears that the waters of
        the sea ought twice to rise and twice to fall every day, as well lunar
        as solar; and that the greatest height of the waters in the open and
        deep seas ought to follow the appulse of the luminaries to the meridian
        of the place by a less interval than 6 hours; as happens in all that
        eastern tract of the Atlantic and AEthiopic seas between France
        and the Cape of Good Hope; and on the coasts of Chili
        and Peru, in the South Sea; in all which shores the
        flood falls out about the second, third, or fourth hour, unless where
        the motion propagated from the deep ocean is by the shallowness of the
        channels, through which it passes to some particular places, retarded to
        the fifth, sixth, or seventh hour, and even later. The hours I reckon
        from the appulse of each luminary to the meridian of the place; as well
        under as above the horizon; and by the hours of the lunar day I
        understand the 24th parts of that time which the moon, by its apparent
        diurnal motion, employs to come about again to the meridian of the place
        which it left the day before. The force of the sun or moon in raising
        the sea is greatest in the appulse of the luminary to the meridian of
        the place; but the force impressed upon the sea at that time continues a
        little while after the impression, and is afterwards increased by a new
        though less force still acting upon it. This makes the sea rise higher
        and higher, till this new force becoming too weak to raise it any more,
        the sea rises to its greatest height. And this will come to pass,
        perhaps, in one or two hours, but more frequently near the shores in
        about three hours, or even more, where the sea is shallow.
    

    
        The two luminaries excite two motions, which will not appear
        distinctly, but between them will arise one mixed motion compounded out
        of both. In the conjunction or opposition of the luminaries their forces
        will be conjoined, and bring on the greatest flood and ebb. In the
        quadratures the sun will raise the waters which the moon depresses, and
        depress the waters which the moon raises, and from the difference of
        their forces the smallest of all tides will follow. And because (as
        experience tells us) the force of the moon is greater than that of the
        sun, the greatest height of the waters will happen about the third lunar
        hour. Out of the syzygies and quadratures, the greatest tide, which by
        the single force of the moon ought to fall out at the third lunar hour,
        and by the single force of the sun at the third solar hour, by the
        compounded forces of both must fall out in an intermediate time
        that aproaches nearer to the third hour of the moon than to that of the
        sun. And, therefore, while the moon is passing from the syzygies to the
        quadratures, during which time the 3d hour of the sun precedes the 3d
        hour of the moon, the greatest height of the waters will also precede
        the 3d hour of the moon, and that, by the greatest interval, a little
        after the octants of the moon; and, by like intervals, the greatest tide
        will fol low the 3d lunar hour, while the moon is passing from the
        quadratures to the syzygies. Thus it happens in the open sea; for in the
        mouths of rivers the greater tides come later to their height.
    

    
        But the effects of the luminaries depend upon their distances from the
        earth; for when they are less distant, their effects are greater, and
        when more distant, their effects are less, and that in the triplicate
        proportion of their apparent diameter. Therefore it is that the sun, in
        the winter time, being then in its perigee, has a greater effect, and
        makes the tides in the syzygies something greater, and those in the
        quadratures something less than in the summer season; and every month
        the moon, while in the perigee, raises greater tides than at the
        distance of 15 days before or after, when it is in its apogee. Whence it
        comes to pass that two highest tides do not follow one the other in two
        immediately succeeding syzygies.
    

    
        The effect of either luminary doth likewise depend upon its declination
        or distance from the equator; for if the luminary was placed at the
        pole, it would constantly attract all the parts of the waters without
        any intension or remission of its action, and could cause no
        reciprocation of motion. And, therefore, as the luminaries decline from
        the equator towards either pole, they will, by degrees, lose their
        force, and on this account will excite lesser tides in the solstitial
        than in the equinoctial syzygies. But in the solstitial quadratures they
        will raise greater tides than in the quadratures about the equinoxes;
        because the force of the moon, then situated in the equator, most
        exceeds the force of the sun. Therefore the greatest tides fall out in
        those syzygies, and the least in those quadratures, which happen about
        the time of both equinoxes: and the greatest tide in the syzygies is
        always succeeded by the least tide in the quadratures, as we find by
        experience. But, because the sun is less distant from the earth in
        winter than in summer, it comes to pass that the greatest and least
        tides more frequently appear before than after the vernal equinox, and
        more frequently after than before the autumnal.
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        Moreover, the effects of the luminaries depend upon the latitudes of
        places. Let ApEP represent the earth covered with deep waters;
        C its centre; P, p its poles; AE the equator; F any place
        without the equator; Ff the parallel of the place; Dd
        the correspondent parallel on the other side of
        the equator; L the place of the moon three Hours before; H the place of
        the earth directly under it; h the opposite place; K, k
        the places at 90 degrees distance; CH, Ch, the greatest heights
        of the sea from the centre of the earth; and CK, Ck, its least
        heights: and if with the axes Hh, Kk, an ellipsis is
        described, and by the revolution of that ellipsis about its longer axis
        Hh a spheroid HPKhpk is formed, this spheroid will
        nearly represent the figure of the sea; and CF, Cf, CD, Cd,
        will represent the heights of the sea in the places Ff, Dd.
        But farther; in the said revolution of the ellipsis any point N
        describes the circle NM cutting the parallels Ff, Dd,
        in any places RT, and the equator AE in S; CN will represent the height
        of the sea in all those places R, S, T, situated in this circle.
        Wherefore, in the diurnal revolution of any place F, the greatest flood
        will be in F, at the third hour after the appulse of the moon to the
        meridian above the horizon; and afterwards the greatest ebb in Q, at the
        third hour after the setting of the moon; and then the greatest flood in
        f, at the third hour after the appulse of the moon to the
        meridian under the horizon; and, lastly, the greatest ebb in Q, at the
        third hour after the rising of the moon; and the latter flood in f will
        be less than the preceding flood in F. For the whole sea is divided into
        two hemispherical floods, one in the hemisphere KHk on the
        north side, the other in the opposite hemisphere Khk, which we
        may therefore call the northern and the southern floods. These floods,
        being always opposite the one to the other, come by turns to the
        meridians of all places, after an interval of 12 lunar hours. And seeing
        the northern countries partake more of the northern flood, and the
        southern countries more of the southern flood, thence arise tides,
        alternately greater and less in all places without the equator, in which
        the luminaries rise and set. But the greatest tide will happen when the
        moon declines towards the vertex of the place, about the third hour
        after the appulse of the moon to the meridian above the horizon; and
        when the moon changes its declination to the other side of the
        equator, that which was the greater tide will be changed into a
        lesser. And the greatest difference of the floods will fall out about
        the times of the solstices; especially if the ascending node of the moon
        is about the first of Aries. So it is found by experience that the
        morning tides in winter exceed those of the evening, and the evening
        tides in summer exceed those of the morning; at Plymouth by
        the height of one foot, but at Bristol by the height of 15
        inches, according to the observations of Colepress and Sturmy.
    

    
        But the motions which we have been describing suffer some alteration
        from that force of reciprocation, which the waters, being once moved,
        retain a little while by their vis insita. Whence it comes to
        pass that the tides may continue for some time, though the actions of
        the luminaries should cease. This power of
        retaining the impressed motion lessens the difference of the alternate
        tides, and makes those tides which immediately succeed after the
        syzygies greater, and those which follow next after the quadratures
        less. And hence it is that the alternate tides at Plymouth and
        Bristol do not differ much more one from the other than by the
        height of a foot or 15 inches, and that the greatest tides of all at
        those ports are not the first but the third after the syzygies. And,
        besides, all the motions are retarded in their passage through shallow
        channels, so that the greatest tides of all, in some straits and mouths
        of rivers, are the fourth or even the fifth after the syzygies.
    

    
        Farther, it may happen that the tide may be propagated from the ocean
        through different channels towards the same port, and may pass quicker
        through some channels than through others; in which case the same tide,
        divided into two or more succeeding one another, may compound new
        motions of different kinds. Let us suppose two equal tides flowing
        towards the same port from different places, the one preceding the other
        by 6 hours; and suppose the first tide to happen at the third hour of
        the appulse of the moon to the meridian of the port. If the moon at the
        time of the appulse to the meridian was in the equator, every 6 hours
        alternately there would arise equal floods, which, meeting with as many
        equal ebbs, would so balance one the other, that for that day, the water
        would stagnate and remain quiet. If the moon then declined from the
        equator, the tides in the ocean would be alternately greater and less,
        as was said; and from thence two greater and two lesser tides would be
        alternately propagated towards that port. But the two greater floods
        would make the greatest height of the waters to fall out in the middle
        time betwixt both; and the greater and lesser floods would make the
        waters to rise to a mean height in the middle time between them, and in
        the middle time between the two lesser floods the waters would rise to
        their least height. Thus in the space of 24 hours the waters would come,
        not twice, as commonly, but once only to their great est, and once only
        to their least height; and their greatest height, if the moon declined
        towards the elevated pole, would happen at the 6th or 30th hour after
        the appulse of the moon to the meridian; and when the moon changed its
        declination, this flood would be changed into an ebb. An example of all
        which Dr. Halley has given us, from the observations of sea
        men in the port of Batsham, in the kingdom of Tunquin,
        in the latitude of 20° 50′ north. In that port, on the day which follows
        after the passage of the moon over the equator, the waters stagnate:
        when the moon declines to the north, they begin to flow and ebb, not
        twice, as in other ports, but once only every day: and the flood happens
        at the setting, and the greatest ebb at the rising of the moon. This
        tide increases with the declination of the moon till the 7th or 8th day;
        then for the 7 or 8 days following it decreases
        at the same rate as it had increased before, and ceases when the moon
        changes its declination, crossing over the equator to the south. After
        which the flood is immediately changed into an ebb; and thenceforth the
        ebb happens at the setting and the flood at the rising of the moon; till
        the moon, again passing the equator, changes its declination. There are
        two inlets to this port and the neighboring channels, one from the seas
        of China, between the continent and the island of Leuconia;
        the other from the Indian sea, between the continent and the
        island of Borneo. But whether there be really two tides
        propagated through the said channels, one from the Indian sea
        in the space of 12 hours, and one from the sea of China in the
        space of 6 hours, which therefore happening at the 3d and 9th lunar
        hours, by being compounded together, produce those motions; or whether
        there be any other circumstances in the state of those seas. I leave to
        be determined by observations on the neighbouring shores.
    

    
        Thus I have explained the causes of the motions of the moon and of the
        sea. Now it is fit to subjoin something concerning the quantity of those
        motions.
    




    
        Proposition xxv. Problem vi.

        To find the forces with which the sun disturbs the motions of the moon.
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        Let S represent the sun, T the earth, P the moon, CADB the moon's
        orbit. In SP take SK equal to ST; and let SL be to SK in the duplicate
        proportion of SK to SP: draw LM parallel to PT; and if ST or SK is
        supposed to represent the accelerated force of gravity of the earth
        towards the sun, SL will represent the accelerative force of gravity of
        the moon towards the sun. But that force is compounded of the parts SM
        and LM, of which the force LM, and that part of SM which is represented
        by TM, disturb the motion of the moon, as we have shewn in Prop. LXVI,
        Book I, and its Corollaries. Forasmuch as the earth and moon are
        revolved about their common centre of gravity, the motion of the earth
        about that centre will be also disturbed by the like forces; but we may
        consider the sums both of the forces and of the motions as in the moon,
        and represent the sum of the forces by the lines TM and ML, which are
        analogous to thorn both. The force ML (in its mean quantity) is to the
        centripetal force by which the moon may be retained in its orbit
        revolving about the earth at rest, at the distance PT, in the duplicate
        proportion of the periodic time of the moon about the earth to the
        periodic time of the earth about the sun (by Cor. 17, Prop. LXVI, Book
        I); that is, in the duplicate proportion of 27d.7h.43′
        to 365d.6h.9′; or as 1000 to 178725; or as 1 to
        17829/40. But in the
        4th Prop. of this Book we found, that, if both earth
        and moon were revolved about their common centre of gravity, the mean
        distance of the one from the other would be nearly 60½ mean
        semi-diameters of the earth; and the force by which the moon may be kept
        revolving in its orbit about the earth in rest at the distance PT of 60½
        semi-diameters of the earth, is to the force by which it may be revolved
        in the same time, at the distance of 60 semi-diameters, as 60½ to 60:
        and this force is to the force of gravity with us very nearly as 1 to 60
        x 60. Therefore the mean force ML is to the force of gravity on the
        surface of our earth as 1 x 60½ to 60 x 60 x 60 x 17829/40,
        or as 1 to 638092,6; whence by the proportion of the lines TM, ML, the
        force TM is also given; and these are the forces with which the sun
        disturbs the motions of the moon.   Q.E.I.
    




    
        Proposition xxvi. Problem vii.

        
            
                To find the horary increment of the area which the moon, by a
                radius drawn to the earth, describes in a circular orbit.
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        We have above shown that the area which the moon describes by a radius
        drawn to the earth is proportional to the time of description, excepting
        in so far as the moon's motion is disturbed by the action of the sun;
        and here we propose to investigate the inequality of the moment, or
        horary increment of that area or motion so disturbed. To
        render the calculus more easy, we shall suppose the orbit of the moon to
        be circular, and neglect all inequalities but that only which is now
        under consideration; and, because of the immense distance of the sun, we
        shall farther suppose that the lines SP and ST are parallel. By this
        means, the force LM will be always reduced to its mean quantity TP, as
        well as the force TM to its mean quantity 3PK. These forces (by Cor. 2
        of the Laws of Motion) compose the force TL; and this force, by letting
        fall the perpendicular LE upon the radius TP, is resolved into the
        forces TE, EL; of which the force TE, acting constantly in the direction
        of the radius TP, neither accelerates nor retards the description of the
        area TPC made by that radius TP; but EL, acting on the radius
        TP in a perpendicular direction, accelerates or retards the
        description of the area in proportion as it accelerates or
        retards the moon. That acceleration of the
        moon, in its passage from the quadrature C to the conjunction A, is in
        every moment of time as the generating accelerative force EL,
        that is, as 3PK x TK

        TP. Let the time be represented by the
        mean motion of the moon, or (which comes to the same thing) by the angle
        CTP, or even by the arc CP. At right angles upon CT erect CG equal to
        CT; and, supposing the quadrantal arc AC to be divided into an infinite
        number of equal parts Pp, &c., these parts may
        represent the like infinite number of the equal parts of time.
        Let fall pk perpendicular on CT, and draw TG meeting with KP,
        kp produced in F and f; then will FK be equal to TK,
        and Kk be to PK as Pp to Tp, that is, in a
        given proportion; and therefore FK x Kk, or the area FKkf,
        will be as 3PK x TK

        TP, that is, as EL; and compounding, the
        whole area GCKF will be as the sum of all the forces EL impressed upon
        the moon in the whole time CP; and therefore also as the velocity
        generated by that sum, that is, as the acceleration of the description
        of the area CTP, or as the increment of the moment thereof.
        The force by which the moon may in its periodic time CADB of 27d.7h.43′
        be retained revolving about the earth in rest at the distance TP, would
        cause a body falling in the time CT to describe the length ½CT, and at
        the same time to acquire a velocity equal to that with which the moon is
        moved in its orbit. This appears from Cor. 9, Prop, IV., Book I. But
        since Kd, drawn perpendicular on TP, is but a third
        part of EL, and equal to the half of TP, or ML, in the
        octants, the force EL in the octants, where it is greatest, will exceed
        the force ML in the proportion of 3 to 2; and therefore will be to that
        force by which the moon in its periodic time may be retained revolving
        about the earth at rest as 100 to ⅔ x 178721½, or 11915; and in the time
        CT will generate a velocity equal to 100/11915
        parts of the velocity of the moon; but in the time CPA will generate a
        greater velocity in the proportion of CA to CT or TP. Let the greatest
        force EL in the octants be represented by the area FK x Kk, or
        by the rectangle ½TP x Pp, which is equal thereto; and the
        velocity which that greatest force can generate in any time CP will be
        to the velocity which any other lesser force EL can generate in the same
        time as the rectangle ½TP x CP to the area KCGF; but the velocities
        generated in the whole time CPA will be one to the other as the
        rectangle ½TP x CA to the triangle TCG, or as the quadrantal arc CA to
        the radius TP; and therefore the latter velocity generated in the whole
        time will be 100/11915
        parts of the velocity of the moon. To this velocity of the moon, which
        is proportional to the mean moment of the area (supposing this mean
        moment to be represented by the number 11915), we add and subtract the
        half of the other velocity; the sum 11915 + 50, or 11965, will represent
        the greatest moment of the area in the syzygy A; and the difference
        11915 − 50, or 11865, the least moment thereof in the quadratures.
        Therefore the areas which in equal times are described in the syzygies
        and quadratures are one to the other as 11965 to 11865. And if to the
        least moment 11865 we add a moment which shall be to 100, the difference
        of the two former moments, as the trapezium FKCG to the triangle TCG,
        or, which comes to the same thing, as the square of the sine PK to the
        square of the radius TP (that is, as Pd to TP), the sum will
        represent the moment of the area when the moon is in any intermediate
        place P.
    

    
        But these things take place only in the hypothesis that the sun and the
        earth are at rest, and that the synodical revolution of the moon is
        finished in 27d.7h.43′. But since the moon's
        synodical period is really 29d.12h.41′, the
        increments of the moments must be enlarged in the same proportion as the
        time is, that is, in the proportion of 1080853 to 1000000. Upon which
        account, the whole increment, which was 100/11915
        parts of the mean moment, will now become T100/11023
        parts thereof; and therefore the moment of the area in the quadrature of
        the moon will be to the moment thereof in the syzygy as 11023 − 50 to
        11023 + 50; or as 10973 to 11073: and to the moment thereof, when the
        moon is in any intermediate place P, as 10973 to 10973 + Pd;
        that is, supposing TP = 100.
    

    
        The area, therefore, which the moon, by a radius drawn to the earth,
        describes in the several little equal parts of time, is nearly as the
        sum of the number 219,46, and the versed sine of the double distance of
        the moon from the nearest quadrature, considered in a circle which hath
        unity for its radius. Thus it is when the variation in the octants is in
        its mean quantity. But if the variation there is greater or less, that
        versed sine must be augmented or diminished in the same proportion.
    




    
        Proposition xxvii. Problem viii.

        From the horary motion of the moon to find its distance from the earth.

    

    
        The area which the moon, by a radius drawn to the earth, describes in
        every, moment of time, is as the horary motion of the moon and the
        square of the distance of the moon from the earth conjunctly. And
        therefore the distance of the moon from the earth is in a proportion
        compounded of the subduplicate proportion of the area directly, and the
        subduplicate proportion of the horary motion inversely.
          Q.E.I.
    

    
        Cor. 1. Hence the apparent diameter of the moon
        is given; for it is reciprocally as the distance of the moon from the
        earth. Let astronomers try how accurately this rule agrees with the
        phaenomena.
    

    
        Cor. 2. Hence also the orbit of the moon may be
        more exactly defined from the phaenomena than hitherto could be done.
    


     




    
        Proposition xxviii. Problem ix.

        
            
                To find the diameters of the orbit, in which, without
                eccentricity, the moon would move.
            
        

    

    
        The curvature of the orbit which a body describes, if attracted in
        lines perpendicular to the orbit, is as the force of attraction
        directly, and the square of the velocity inversely. I estimate the
        curvatures of lines compared one with another according to the
        evanescent proportion of the sines or tangents of their angles of
        contact to equal radii, supposing those radii to be infinitely
        diminished. But the attraction of the moon towards the earth in the
        syzygies is the excess of its gravity towards the earth above the force
        of the sun 2PK (see Fig. Prop. XXV), by which force the accelerative
        gravity of the moon towards the sun exceeds the accelerative gravity of
        the earth towards the sun, or is exceeded by it. But in the quadratures
        that attraction is the sum of the gravity of the moon towards the earth,
        and the sun's force KT, by which the moon is attracted towards the
        earth. And these attractions, putting N for AT+CT

        2, are nearly as 
        178725

        AT2-2000

        CT x N and 178725

        CT2+1000

        AT x N, or as 178725N x CT² − 2000AT² x
        CT, and 178725N x AT² + 1000CT² x AT. For if the accelerative gravity of
        the moon towards the earth be represented by the number 178725, the mean
        force ML, which in the quadratures is PT or TK, and draws the moon
        towards the earth, will be 1000, and the mean force TM in the syzygies
        will be 3000; from which, if we subtract the mean force ML, there will
        remain 2000, the force by which the moon in the syzygies is drawn from
        the earth, and which we above called 2PK. But the velocity of the moon
        in the syzygies A and B is to its velocity in the quadratures C and D as
        CT to AT, and the moment of the area, which the moon by a radius drawn
        to the earth describes in the syzygies, to the moment of that area described
        in the quadratures conjunctly; that is, as 11073CT to 10973AT. Take this
        ratio twice inversely, and the former ratio once directly, and the
        curvature of the orb of the moon in the syzygies will be to the
        curvature thereof in the quadratures as 120406729 x 178725AT² x CT² x N
        − 120406729 x 2000AT4 x CT to 122611329 x 178725AT² x CT² x N
        + 122611329 x 1000CT4 x AT, that is, as 2151969AT x CT x N −
        24081AT³ to 2191371AT x CT x N + 12261CT³.
    

    
        Because the figure of the moon's orbit is unknown, let us, in its
        stead, assume the ellipsis DBCA, in the centre of which we suppose the
        earth to be situated, and the greater axis DC to lie between the
        quadratures as the lesser AB between the syzygies. But since the plane
        of this ellipsis is revolved about the earth by an angular motion, and
        the orbit, whose curvature we now examine, should be described in a
        plane void of such motion
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        we are to consider the figure which the moon, while it is revolved in
        that ellipsis, describes in this plane, that is to say, the figure Cpa,
        the several points p of which are found by assuming any point
        P in the ellipsis, which may represent the place of the moon, and
        drawing Tp equal to TP in such manner that the angle PTp
        may be equal to the apparent motion of the sun from the time of the last
        quadrature in C; or (which comes to the same thing) that the angle CTp
        may be to the angle CTP as the time of the synodic revolution of the
        moon to the time of the periodic revolution thereof, or as 29d.12h.44′
        to 27d.7h.43′. If, therefore, in this proportion
        we take the angle CTa to the right angle CTA, and make Ta
        of equal length with TA, we shall have a the lower and C the
        upper apsis of this orbit Cpa. But, by computation, I find that
        the difference betwixt the curvature of this orbit Cpa at the
        vertex a, and the curvature of a circle described about the
        centre T with the interval TA, is to the difference between the
        curvature of the ellipsis at the vertex A, and the curvature of the same
        circle, in the duplicate proportion of the angle CTP to the angle CTp;
        and that the curvature of the ellipsis in A is to the curvature of that
        circle in the duplicate proportion of TA to TC; and the curvature of
        that circle to the curvature of a circle described about the centre T
        with the interval TC as TC to TA; but that the curvature of this last
        arch is to the curvature of the ellipsis in C in the duplicate
        proportion of TA to TC; and that the difference betwixt the curvature of
        the ellipsis in the vertex C, and the curvature of this last circle, is
        to the difference betwixt the curvature of the figure Cpa, at
        the vertex C, and the curvature of this same last circle, in
        the duplicate proportion of the angle CTp to the angle CTP; all
        which proportions are easily drawn from the sines of the angles of
        contact, and of the differences of those angles. But, by comparing those
        proportions together, we find the curvature of the figure Cpa
        at a to be to its curvature at C as AT³ − 16824/100000CT²
        AT to CT³ + 16824/100000AT²
        x CT; where the number 16824/100000
        represents the difference of the squares of the angles CTP and CTp,
        applied to the square of the lesser angle CTP; or (which is all one) the
        difference of the squares of the times 27d.7h.43′,
        and 29d.12j.44′, applied to the square of the time
        27d.7h.43′, and 27d.7h.43′
    

    
        Since, therefore, a represents the syzygy of the moon, and C
        its quadrature, the proportion now found must be the same with that
        proportion of the curvature of the moon's orb in the syzygies to the
        curvature thereof in the quadratures, which we found above. Therefore,
        in order to find the proportion of CT to AT,
        let us multiply the extremes and the means, and the terms which come
        out, applied to AT x CT, become 2062,79CT4 - 2151969N x CT³ +
        368676N x AT x CT² + 36342AT² x CT² − 362047N x AT² x CT + 2191371N x
        AT³ + 4051,4AT4 = 0. Now if for the half sum N of the terms
        AT and CT we put 1, and x for their half difference, then CT
        will be = 1 + x, and AT = 1 − x. And substituting
        those values in the equation, after resolving thereof, we shall find x
        = 0,00719; and from thence the semi-diameter CT = 1,00719, and the
        semi-diameter AT = 0,99281, which numbers are nearly as 701/24,
        and 691/24. Therefore
        the moon's distance from the earth in the syzygies is to its distance in
        the quadratures (setting aside the consideration of eccentricity) as 69
        1/24 to 701/24;
        or, in round numbers, as 69 to 70.
    




    
        Proposition xxix. Problem X.

        To find the variation of the moon. 

    

    
        This inequality is owing partly to the elliptic figure of the moon's
        orbit, partly to the inequality of the moments of the area which the
        moon by a radius drawn to the earth describes. If the moon P revolved in
        the ellipsis DBCA about the earth quiescent in the centre of the
        ellipsis, and by the radius TP, drawn to the earth, described the area
        CTP, proportional to the time of description; and the greatest
        semi-diameter CT of the ellipsis was to the least TA as 70 to 69; the
        tangent of the angle CTP would be to the tangent of the angle of the
        mean motion, computed from the quadrature C, as the semi-diameter TA of
        the ellipsis to its semi-diameter TC, or as 69 to 70. But the
        description of the area CTP, as the moon advances from the quadrature to
        the syzygy, ought to be in such manner accelerated, that the moment of
        the area in the moon's syzygy may be to the moment thereof in its
        quadrature as 11073 to 10973; and that the excess of the moment in any
        intermediate place P above the moment in the quadrature may be as the
        square of the sine of the angle CTP; which we may effect with accuracy
        enough, if we diminish the tangent of the angle CTP in the subduplicate
        proportion of the number 10973 to the number 11073, that is, in
        proportion of the number 68,6877 to the number 69. Upon which account
        the tangent of the angle CTP will now be to the tangent of the mean
        motion as 68,6877 to 70; and the angle CTP in the octants, where the
        mean motion is 45°, will be found 44°27′28″, which subtracted from 45°,
        the angle of the mean motion, leaves the greatest variation 32′32″. Thus
        it would be, if the moon, in passing from the quadrature to the syzygy,
        described an angle CTA of 90 degrees only. But because of the motion of
        the earth, by which the sun is apparently transferred in
        consequentia, the moon, before it overtakes the sun, describes an
        angle CT, greater than a right angle, in the proportion of the time of
        the synodic revolution of the moon to the time of its periodic
        revolution, that is, in the proportion of 29d.12h.44′
        to 27d.7h.43′. Whence it comes to pass that all
        the angles about the centre T are dilated in the same proportion; and
        the greatest variation, which otherwise would be but 32′ 32″,
        now augmented in the said proportion, becomes 35′ 10″.
    

    
        And this is its magnitude in the mean distance of the sun from the
        earth, neglecting the differences which may arise from the curvature of
        the orbis magnus, and the stronger action of the sun upon the
        moon when horned and new, than when gibbous and full. In other distances
        of the sun from the earth, the greatest variation is in a proportion
        compounded of the duplicate proportion of the time of the synodic
        revolution of the moon (the time of the year being given) directly, and
        the triplicate proportion of the distance of the sun from the earth
        inversely. And, therefore, in the apogee of the sun, the greatest
        variation is 33′14″, and in its perigee 37′11″, if the eccentricity of
        the sun is to the transverse semi-diameter of the orbis magnus
        as 1615/16 to 1000.
    

    
        Hitherto we have investigated the variation in an orb not eccentric, in
        which, to wit, the moon in its octants is always in its mean distance
        from the earth. If the moon, on account of its eccentricity, is more or
        less removed from the earth than if placed in this orb, the variation
        may be something greater, or something less, than according to this
        rule. But I leave the excess or defect to the determination of
        astronomers from the phenomena.
    




    
        Proposition xxx. Problem xi.

        To find the horary motion of the nodes of the moon, in a circular orbit.

    

    
        Let S represent the sun, T the earth, P the moon, NPn the
        orbit of the moon, Npn the orthographic projection of the orbit
        upon the plane of the ecliptic: N, n the nodes, nTNm
        the line of the nodes produced indefinitely;
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        PI, PK perpendiculars upon the lines ST, Qq;
        Pp a perpendicular upon the plane of the ecliptic; A, B the
        moon's syzygies in the plane of the ecliptic; AZ a perpendicular let
        fall upon Nn, the line of the nodes; Q, g the
        quadratures of the moon in the plane of the ecliptic, and pK a
        perpendicular on the line Qq lying between the quadratures. The
        force of the sun to disturb the motion of the moon (by Prop. XXV) is
        twofold, one proportional to the line LM, the other to the line MT, in
        the scheme of that Proposition; and the moon by the former force is
        drawn towards the earth, by the latter towards the sun, in a direction
        parallel to the right line ST joining the earth and the sun. The former
        force LM acts in the direction of the plane of the moon's orbit, and
        therefore makes no change upon the situation thereof, and is upon that
        account to be neglected; the latter force MT, by which the plane of the
        moon's orbit is disturbed, is the same with the force 3PK or 3IT. And
        this force (by Prop. XXV) is to the force by which the moon may, in its
        periodic time, be uniformly revolved in a circle about the earth at
        rest, as 3IT to the radius of the circle multiplied by the number
        178,725, or as IT to the radius there of multiplied by 59,575. But in
        this calculus, and all that follows, I consider all the lines drawn from
        the moon to the sun as parallel to the line which joins the earth and
        the sun; because what inclination there is almost as much diminishes all
        effects in some cases as it augments them in others; and we are now
        inquiring after the mean motions of the nodes, neglecting such niceties
        as are of no moment, and would only serve to render the calculus more
        perplexed.
    

    
        Now suppose PM to represent an arc which the moon describes in the
        least moment of time, and ML a little line, the half of which the moon,
        by the impulse of the said force 3IT, would describe in the same time;
        and joining PL, MP, let them be produced to m and l,
        where they cut the plane of the ecliptic, and upon Tm let fall
        the perpendicular PH. Now, since the right line ML is parallel to the
        plane of the ecliptic, and therefore can never meet with the right line
        ml which lies in that plane, and yet both those right lines lie
        in one common plane LMPml, they will be parallel, and upon that
        account the triangles LMP, lmP will be similar. And seeing MPm
        lies in the plane of the orbit, in which the moon did move while in the
        place P, the point m will fall upon the line Nn,
        which passes through the nodes N, n, of that orbit. And
        because the force by which the half of the little line LM is generated,
        if the whole had been together, and at once impressed in the point P,
        would have generated that whole line, and caused the moon to move in the
        arc whose chord is LP; that is to say, would have transferred the moon
        from the plane MPmT into the plane LPlT; therefore the
        angular motion of the nodes generated by that force will be equal to the
        angle mTl. But ml is to mP as ML
        to MP; and since MP, because of the time given, is also given, ml
        will be as the rectangle ML x mP,
        that is, as the rectangle IT x mP. And if Tml is a
        right angle, the angle mTl will be as 
        ml

        Tm and therefore as 
        IT x Pm

        Tm, that is (because Tm and mP,
        TP and PH are proportional), as IT
        x PH

        TP; and, therefore, because TP is given,
        as IT x PH. But if the angle Tml or STN is oblique, the angle mTl
        will be yet less, in proportion of the sine of the angle STN to the
        radius, or AZ to AT. And therefore the velocity of the nodes is as IT x
        PH x AZ, or as the solid content of the sines of the three angles TPI,
        PTN, and STN.
    

    
        If these are right angles, as happens when the nodes are in the
        quadratures, and the moon in the syzygy, the little line ml
        will be removed to an infinite distance, and the angle mTl
        will become equal to the angle mPl. But in this case
        the angle mPl is to the angle PTM, which the moon in
        the same time by its apparent motion describes about the earth, as 1 to
        59,575. For the angle mPl is equal to the angle LPM,
        that is, to the angle of the moon's deflexion from a rectilinear path;
        which angle, if the gravity of the moon should have then ceased, the
        said force of the sun 3IT would by itself have generated in that given
        time; and the angle PTM is equal to the angle of the moon's deflexion
        from a rectilinear path; which angle, if the force of the sun 3IT should
        have then ceased, the force alone by which the moon is retained in its
        orbit would have generated in the same time. And these forces (as we
        have above shewn) are the one to the other as 1 to 59,575. Since,
        therefore, the mean horary motion of the moon (in respect of the fixed
        stars) is 32′ 56″ 27‴ 12½iv, the horary motion of the node in
        this case will be 33″ 10‴ 33iv.12v. But in other
        cases the horary motion will be to 33″ 10‴ 33iv.12v,
        as the solid content of the sines of the three angles TPI, PTN, and STN
        (or of the distances of the moon from the quadrature, of the moon from
        the node, and of the node from the sun) to the cube of the radius. And
        as often as the sine of any angle is changed from positive to negative,
        and from negative to positive, so often must the regressive be changed
        into a progressive, and the progressive into a regressive motion. Whence
        it comes to pass that the nodes are progressive as often as the moon
        happens to be placed between either quadrature, and the node nearest to
        that quadrature. In other cases they are regressive, and by the excess
        of the regress above the progress, they are monthly transferred in
        antecedentia.
    

    
        Cor. 1. Hence if from P and M, the extreme
        points of a least arc PM, on the line Qq joining the
        quadratures we let fall the perpendiculars PK, Mk, and produce
        the same till they cut the line of the nodes Nn in D and d,
        the horary motion of the nodes will be as the area MPDd, and
        the square of the line AZ conjunctly. For let PK, PH, and AZ, be the
        three said sines, viz., PK the sine of the distance of the moon from the
        quadrature, 
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        PH the sine of the distance of the moon from the node, and AZ the sine of the
        distance of the node from the sun; and the velocity of the node will be
        as the solid content of PK x PH x AZ. But PT is to PK as PM to Kk;
        and, therefore, because PT and PM are given, Kk will be as PK.
        Likewise AT is to PD as AZ to PH, and therefore PH is as the rectangle
        PD x AZ; and, by compounding those proportions, PK x PH is as the solid
        content Kk x PD x AZ, and PK x PH x AZ as Kk x PD x
        AZ²; that is, as the area PDdM and AZ² conjunctly.
          Q.E.D.
    

    
        Cor. 2. In any given position of the nodes
        their mean horary motion is half their horary motion in the moon's
        syzygies; and therefore is to 16″ 35‴ 16iv.36v. as
        the square of the sine of the distance of the nodes from the syzygies to
        the square of the radius, or as AZ² to AT². For if the moon, by an
        uniform motion, describes the semi-circle QAq, the sum of all
        the areas PDdM, during the time of the moon's passage from Q to
        M, will make up the area QMdE, terminating at the tangent QE of
        the circle; and by the time that the moon has arrived at the point n,
        that sum will make up the whole area EQAn described by the line
        PD: but when the moon proceeds from n to q, the line
        PD will fall without the circle, and describe the area nqe,
        terminating at the tangent qe of the circle, which area,
        because the nodes were before regressive, but are now progressive, must
        be subducted from the former area, and, being itself equal to the area
        QEN, will leave the semi-circle NQAn. While, therefore, the
        moon describes a semi-circle, the sum of all the areas PDdM
        will be the area of that semi-circle; and while the moon describes a
        complete circle, the sum of those areas will be the area of the whole
        circle. But the area PDdM, when the moon is in the syzygies, is
        the rectangle of the arc PM into the radius PT; and the sum of all the
        areas, every one equal to this area, in the time that the moon
        describes a complete circle, is the rectangle of the whole circumference
        into the radius of the circle; and this rectangle, being double the area
        of the circle, will be double the quantity of the former sum. If,
        therefore, the nodes went on with that velocity uniformly continued
        which they acquire in the moon's syzygies, they would describe a space
        double of that which they describe in fact; and, therefore, the mean
        motion, by which, if uniformly continued, they would describe the same
        space with that which they do in fact describe by an unequal motion, is
        but one-half of that motion which they are possessed of in the
        moon's syzygies. Wherefore since their greatest horary motion, if the
        nodes are in the quadratures, is 33″ 10‴ 33iv, their mean
        horary motion in this case will be 16″ 35‴ 16iv.36v.
        And seeing the horary motion of the nodes is every where as AZ² and the
        area PDdM conjunctly, and, therefore, in the moon's syzygies,
        the horary motion of the nodes is as AZ² and the area PDdM
        conjunctly, that is (because the area PDdM described in the
        syzygies is given), as AZ², therefore the mean motion also will be as
        AZ²; and, therefore, when the nodes are without the quadratures, this
        motion will be to 16″ 35‴ 16iv.36v. as AZ² to AT².
          Q.E.D.
    




    
        Proposition xxxi. Problem xii.

        To find the horary motion of the nodes of the moon, in an, elliptic orbit.

    

    
        Let Qpmaq represent an ellipsis described with the greater
        axis Qq, am the lesser axis ab; QAqB a
        circle circumscribed; T the earth in the common centre of both; S the
        sun; p the moon moving in this ellipsis; and
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        pm an arc which it describes in the
        least moment of time; N and n the nodes joined by the line Nn;
        pK and mk perpendiculars upon the axis Qq,
        produced both ways till they meet the circle in P and M, and the line of
        the nodes in D and d. And if the moon, by a radius drawn to
        the earth, describes an area proportional to the time of
        description, the horary motion of the node in the ellipsis will
        be as the area pDdm and AZ² conjunctly.
    

    
        For let PF touch the circle in P, and produced meet TN in F; and pf
        touch the ellipsis in p, and produced meet the same TN in f,
        and both tangents concur in the axis TQ at Y. And let ML represent the
        space which the moon, by the impulse of the above-mentioned force 3IT or
        3PK, would describe with a transverse motion, in the meantime while
        revolving in the circle it describes the arc PM; and ml denote
        the space which the moon revolving in the ellipsis would describe in the
        same time by the impulse of the same force 3IT or 3PK; and let LP and lp
        be produced till they meet the plane of the ecliptic in G and g,
        and FG and fg be joined, of which FG produced may cut pf,
        pg, and TQ, in c, e, and R respectively; and fg
        produced may cut TQ in r. Because the force 3IT or 3PK in the
        circle is to the force 3IT or 3pK in the ellipsis as PK to pK,
        or as AT to aT, the space ML generated by the former force
        will be to the space ml generated by the latter as PK to pK;
        that is, because of the similar figures PYKp and FYRc,
        as FR to cR. But (because of the similar triangles PLM, PGF)
        ML is to FG as PL to PG, that is (on account of the parallels Lk,
        PK, GR), as pl to pe, that is (because of the
        similar triangles plm, cpe) as lm to ce;
        and inversely as LM is to lm, or as FR is to cR, so
        is FG to ce. And therefore if fg was to ce
        as fy to cY, that is, as fr to cR
        (that is, as fr to FR and FR to cR conjunctly, that
        is, as fT to FT, and FG to ce conjunctly), because
        the ratio of FG to ce, expunged on both sides, leaves the
        ratios fg to FG and fT to FT, fg would be
        to FG as fT to FT; and, therefore, the angles which FG and fg
        would subtend at the earth T would be equal to each other. But these
        angles (by what we have shewn in the preceding Proposition) are the
        motions of the nodes, while the moon describes in the circle the arc PM,
        in the ellipsis the arc pm; and therefore the motions of the
        nodes in the circle and in the ellipsis would be equal to each other.
        Thus, I say, it would be, if fg was to ce as fY
        to cY, that is, fg was equal to 
        ce x fY

        cY. But because of the similar triangles
        fgp, cep, fg is to ce as fp to cp;
        and therefore fg is equal to ce
        x fp

        cp; and therefore the angle which fg
        subtends in fact is to the former angle which FG subtends, that is to
        say, the motion of the nodes in the ellipsis is to the motion of the
        same in the circle as this fg or ce
        x fp

        cp to the fromer fg or 
        ce x fY

        cY, that is, as fp x cY
        to fY x cp, or as fp to fY, and
        cY to cp; that is, if ph parallel to TN
        meet FP in h, as Fh to FY and FY to FP; that is, as Fh
        to FP or Dp to DP, and therefore as the area Dpmd to
        the area DPMd. And, therefore, seeing (by Corol. 1, Prop. XXX)
        the latter area and AZ² conjunctly are proportional to the horary motion
        of the nodes in the circle, the former area and AZ² conjunctly will be
        proportional to the horary motion of the nodes in the ellipsis.
          Q.E.D.
    

    
        Cor. Since, therefore, in any given position of
        the nodes, the sum of all the areas pDdm, in the time
        while the moon is carried from the quadrature to any place m,
        is the area mpQEd terminated at the tangent of the
        ellipsis QE; and the sum of all those areas, in one entire revolution,
        is the area of the whole ellipsis; the mean motion of the nodes in the
        ellipsis will be to the mean motion of the nodes in the circle as the
        ellipsis to the circle; that is, as Ta to TA, or 69 to 70. And,
        therefore, since (by Corol 2, Prop. XXX) the mean horary motion of the
        nodes in the circle is to 16″ 35‴ 16iv.36v. as AZ²
        to AT², if we take the angle 16″ 21‴ 3iv.30v. to
        the angle 16″ 35‴ 16iv.36v. as 69 to 70, the mean
        horary motion of the nodes in the ellipsis will be to 16″ 21‴ 3iv.30v.
        as AZ² to AT²; that is, as the square of the sine of the distance of the
        node from the sun to the square of the radius.
    

    
        But the moon, by a radius drawn to the earth, describes the area in the
        syzygies with a greater velocity than it does that in the quadratures,
        and upon that account the time is contracted in the syzygies, and
        prolonged in the quadratures; and together with the time the motion of
        the nodes is likewise augmented or diminished. But the moment of the
        area in the quadrature of the moon was to the moment thereof in the
        syzygies as 10973 to 11073; and therefore the mean moment in the octants
        is to the excess in the syzygies, and to the defect in the quadratures,
        as 11023, the half sum of those numbers, to their half difference 50.
        Wherefore since the time of the moon in the several little equal parts
        of its orbit is reciprocally as its velocity, the mean time in the
        octants will be to the excess of the time in the quadratures, and to the
        defect of the time in the syzygies arising from this cause,
        nearly as 11023 to 50. But, reckoning from the quadratures to the
        syzygies, I find that the excess of the moments of the area, in the
        several places above the least moment in the quadratures, is nearly as
        the square of the sine of the moon's distance from the quadratures; and
        therefore the difference betwixt the moment in any place, and the mean
        moment in the octants, is as the difference betwixt the square of the
        sine of the moon's distance from the quadratures, and the square of the
        sine of 45 degrees, or half the square of the radius; and the increment
        of the time in the several places between the octants and quadratures,
        and the decrement thereof between the octants and syzygies, is in the
        same proportion. But the motion of the nodes, while the moon describes
        the several little equal parts of its orbit, is accelerated or retarded
        in the duplicate proportion of the time; for
        that motion, while the moon describes PM, is (caeteris paribus]
        as ML, and ML is in the duplicate proportion of the time. Wherefore the
        motion of the nodes in the syzygies, in the time while the moon
        describes given little parts of its orbit, is diminished in the
        duplicate proportion of the number 11073 to the number 11023; and the
        decrement is to the remaining motion as 100 to 10973; but to the whole
        motion as 100 to 11073 nearly. But the decrement in the places between
        the octants and syzygies, and the increment in the places between the
        octants and quadratures, is to this decrement nearly as the whole motion
        in these places to the whole motion in the syzygies, and the difference
        betwixt the square of the sine of the moon's distance from the
        quadrature, and the half square of the radius, to the half square of the
        radius conjunctly. Wherefore, if the nodes are in the quadratures, and
        we take two places, one on one side, one on the other, equally distant
        from the octant and other two distant by the same interval, one from the
        syzygy, the other from the quadrature, and from the decrements of the
        motions in the two places between the syzygy and octant we subtract the
        increments of the motions in the two other places between the octant and
        the quadrature, the remaining decrement will be equal to the decrement
        in the syzygy, as will easily appear by computation; and therefore the
        mean decrement, which ought to be subducted from the mean motion of the
        nodes, is the fourth part of the decrement in the syzygy. The whole
        horary motion of the nodes in the syzygies (when the moon by a radius
        drawn to the earth was supposed to describe an area proportional to the
        time) was 32″ 42‴ 7iv. And we have shewn that the decrement
        of the motion of the nodes, in the time while the moon, now moving with
        greater velocity, describes the same space, was to this motion as 100 to
        11073; and therefore this decrement is 17‴ 43iv.11v.
        The fourth part of which 4‴ 25iv.48v. subtracted
        from the mean horary motion above found, 16″ 21‴ 3iv.30v.
        leaves 16″ 16‴ 37iv.42v. their correct mean horary
        motion.
    

    
        If the nodes are without the quadratures, and two places are
        considered, one on one side, one on the other, equally distant from the
        syzygies, the sum of the motions of the nodes, when the moon is in those
        places, will be to the sum of their motions, when the moon is in the
        same places and the nodes in the quadratures, as AZ² to AT². And the
        decrements of the motions arising from the causes but now explained will
        be mutually as the motions themselves, and therefore the remaining
        motions will be mutually betwixt themselves as AZ² to AT²; and the mean
        motions will be as the remaining motions. And, therefore, in any given
        position of the nodes, their correct mean horary motion is to 16″ 16‴ 37iv.42v.
        as AZ² to AT²; that is, as the square of the sine of the distance of the
        nodes from the syzygies to the square of the radius.
    

     




    
        Proposition xxxii. Problem xiii.

        To find the mean motion of the nodes of the moon. 
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        The yearly mean motion is the sum of all the mean horary motions
        throughout the course of the year. Suppose that the node is in N, and
        that, after every hour is elapsed, it is drawn back again to its former
        place; so that, notwithstanding its proper motion, it may constantly
        remain in the same situation with respect to the fixed stars; while in
        the mean time the sun S, by the motion of the earth, is seen to leave
        the node, and to proceed till it completes its apparent annual course by
        an uniform motion. Let Aa represent a given least arc, which
        the right line TS always drawn to the sun, by its intersection with the
        circle NAn, describes in the least given moment of time; and
        the mean horary motion (from what we have above shewn) will be as AZ²,
        that is (because AZ and ZY are proportional), as the rectangle of AZ
        into ZY, that is, as the area AZYa; and the sum of all the mean
        horary motions from the beginning will be as the sum of all the areas aYZA,
        that is, as the area NAZ. But the greatest AZYa is equal to the
        rectangle of the arc Aa into the radius of the circle; and
        therefore the sum of all these rectangles in the whole circle will be to
        the like sum of all the greatest rectangles as the area of the whole
        circle to the rectangle of the whole circumference into the radius, that
        is, as 1 to 2. But the horary motion corresponding to that greatest
        rectangle was 16″ 16‴ 37iv.42v. and this motion in
        the complete course of the sidereal year, 365d.6h.9′,
        amounts to 39° 38′ 7″ 50‴, and therefore the half thereof, 19° 49′ 3″
        55‴, is the mean motion of the nodes corresponding to the whole circle.
        And the motion of the nodes, in the time while the sun is carried from N
        to A, is to 19° 49′ 3″ 55‴ as the area NAZ to the whole circle.
    

    
        Thus it would be if the node was after every hour drawn back again to
        its former place, that so, after a complete revolution, the sun at the
        year's end would be found again in the same node which it had left when
        the year begun. But, because of the motion of the node in the mean time,
        the sun must needs meet the node sooner; and now it remains that we
        compute the abbreviation of the time. Since, then, the sun, in the
        course of the year, travels 360 degrees, and the node in the same time
        by its greatest motion would be carried 39° 38′ 7″ 50‴, or 39,6355
        degrees; and the mean motion of the node in any place N is to its mean
        motion in its quadrature as AZ² to AT²; the motion of the sun will be to
        the motion of the node in N as 360AT² to
        39,6355 AZ²; that is, as 9,0827646AT² to AZ². Wherefore if we suppose
        the circumference NAn of the whole circle to be divided into
        little equal parts, such as Aa, the time in which the sun would
        describe the little arc Aa, if the circle was quiescent, will
        be to the time of which it would describe the same arc, supposing the
        circle together with the nodes to be revolved about the centre T,
        reciprocally as 9,0827646AT² to 9,0827646AT² + AZ²; for the time is
        reciprocally as the velocity with which the little arc is described, and
        this velocity is the sum of the velocities of both sun and node. If,
        therefore, the sector NTA represent the time in which the sun by itself,
        without the motion of the node, would describe the arc NA, and the
        indefinitely small part ATa of the sector represent the little
        moment of the time in which it would describe the least arc Aa;
        and (letting fall aY perpendicular upon Nn) if in AZ
        we take dZ of such length that the rectangle of dZ
        into ZY may be to the least part ATa of the sector as AZ² to
        9,0827646AT² + AZ², that is to say, that dZ may be to ½AZ as
        AT² to 9,0827646AT² + AZ²; the rectangle of dZ into ZY will
        represent the decrement of the time arising from the motion of the node,
        while the arc Aa is described; and if the curve NdGn
        is the locus where the point d is always found, the
        curvilinear area NdZ will be as the whole decrement of time
        while the whole arc NA is described; and, therefore, the excess of the
        sector NAT above the area NdZ will be as the whole time. But
        because the motion of the node in a less time is less in proportion of
        the time, the area AaYZ must also be diminished in the same
        proportion; which may be done by taking in AZ the line eZ of
        such length, that it may be to the length of AZ as AZ² to 9,0827646AT² +
        AZ²; for so the rectangle of eZ into ZY will be to the area
        AZYa as the decrement of the time in which the arc Aa
        is described to the whole time in which it would have been described, if
        the node had been quiescent; and, therefore, that rectangle will be as
        the decrement of the motion of the node. And if the curve NeFn
        is the locus of the point e, the whole area NeZ,
        which is the sum of all the decrements of that motion, will be
        as the whole decrement thereof during the time in which the
        arc AN is described; and the remaining area NAe will be as the
        remaining motion, which is the true motion of the node, during the time
        in which the whole arc NA is described by the joint motions of both sun
        and node. Now the area of the semi-circle is to the area of the figure NeFn
        found by the method of infinite series nearly as 793 to 60. But the
        motion corresponding or proportional to the whole circle was
        19° 49′ 3″ 55‴; and therefore the motion corresponding to double the
        figure NeFn is 1° 29′ 58″ 2‴, which taken from the
        former motion leaves 18° 19′ 5″ 53‴, the whole motion of the node with
        respect to the fixed stars in the interval between two of its
        conjunctions with the sun; and this motion subducted from the annual
        motion of the sun 360°, leaves 341° 40′ 54″ 7‴, the
        motion of the sun in the interval between the same conjunctions. But as
        this motion is to the annual motion 360°, so is the motion of the node
        but just now found 18° 19′ 5″ 53‴ to its annual motion, which will
        therefore be 19° 18′ 1″ 23‴; and this is the mean motion of the nodes in
        the sidereal year. By astronomical tables, it is 19° 21′ 21″ 50‴ . The
        difference is less than 1/300
        part of the whole motion, and seems to arise from the eccentricity of
        the moon's orbit, and its inclination to the plane of the ecliptic. By
        the eccentricity of this orbit the motion of the nodes is too much
        accelerated; and, on the other hand, by the inclination of the orbit,
        the motion of the nodes is something retarded, and reduced to its just
        velocity.
    




    
        Proposition xxxiii. Problem xiv.

        To find the true motion of the nodes of the moon. 
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        In the time which is as the area NTA − NdZ (in the preceding
        Fig.) that motion is as the area NAe, and is thence given; but
        because the calculus is too difficult, it will be better to use the
        following construction of the Problem. About the centre C, with any
        interval CD, describe the circle BEFD; produce DC to A so as AB may be
        to AC as the mean motion to half the mean true motion when the nodes are
        in their quadratures (that is, as 19° 18′ 1″ 23‴ to 19° 49′ 3″ 55‴; and
        therefore BC to AC as the difference of those motions 0° 31′ 2″ 32‴ to
        the latter motion 19° 49′ 3″ 55‴, that is, as 1 to 38
        3/10).
        Then through the point D draw the indefinite line Gg, touching
        the circle in D; and if we take the angle BCE, or BCF, equal to the
        double distance of the sun from the place of the node, as found by the
        mean motion, and drawing AE or AF cutting the perpendicular DG in G, we
        take another angle which shall be to the whole motion of the node in the
        interval between its syzygies (that is, to 9° 11′ 3″) as the tangent DG
        to the whole circumference of the circle BED, and add this last
        angle (for which the angle DAG may be used) to the mean motion of the
        nodes, while they are passing from the quadratures to the syzygies, and
        subtract it from their mean motion while they are passing from the
        syzygies to the quadratures, we shall have their true motion; for the
        true motion so found will nearly agree with the true motion which comes
        out from assuming the times as the area NTA − NdZ, and the
        motion of the node as the area NAe; as whoever will please to
        examine and make the computations will find: and this is the
        semi-menstrual equation of the motion of the nodes. But there is also a
        menstrual equation, but which is by no means necessary for finding
        of the moon's latitude; for since the variation of
        the inclination of the moon's orbit to the plane of the ecliptic is
        liable to a twofold inequality, the one semi-menstrual, the other
        menstrual, the menstrual inequality of this variation, and the
        menstrual equation of the nodes, so moderate and correct each other,
        that in computing the latitude of the moon both may be neglected.
    

    
        Cor. From this and the preceding Prop, it
        appears that the nodes are quiescent in their syzygies, but regressive
        in their quadratures, by an hourly motion of 16″ 19‴ 26iv.;
        and that the equation of the motion of the nodes in the octants is 1°
        30; all which exactly agree with the phaenomena of the heavens.
    




    
        Scholium.

    

    
        
            Mr. Machin, Astron., Prof. Gresh.. and Dr. Henry
            Pemberton, separately found out the motion of the nodes by a
            different method. Mention has been made of this method in another
            place. Their several papers, both of which I have seen, contained two
            Propositions, and exactly agreed with each other in both of them. Mr.
            Machin's paper coming first to my hands, I shall here insert
            it.
        

    

    
        Of the Motion of the Moon's Nodes.

            Proposition i.

            
                The mean motion of the sun from the node is defined by a
                geometric mean proportional between the mean motion of the sun and
                that mean motion with which the sun recedes with the greatest
                swiftness from the node in the quadratures.
                
            

        

        
            Let T be the earth's place, Nn the line of the moon's nodes
            at any given time, KTM a perpendicular thereto, TA a right line
            revolving about the centre with the same angular velocity with which
            the sun and the node recede from one another, in such sort that the
            angle between the quiescent right line Nn and the revolving
            line TA may be always equal to the distance of the places of the sun
            and node. Now if any right line TK be divided into parts TS and SK,
            and those parts be taken as the mean horary motion of the sun to the
            mean horary motion of the node in the quadratures, and there be taken
            the right line TH, a mean proportional between the part TS and the
            whole TK, this right line will be proportional to the sun's mean
            motion from the node.
        

        
            For let there be described the circle NKnM from the centre
            T and with the radius TK, and about the same centre, with the
            semi-axis TH 
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            and TN, let there be described an ellipsis NHnL; and in the
            time in which the sun recedes from the node through the arc Na,
            if there be drawn the right line Tba, the area of the sector
            NTa will be the exponent of the sum of the motions of the sun
            and node in the same time. Let, therefore, the extremely small arc aA
            be that which the right line Tba, revolving according to the
            aforesaid law, will uniformly describe in a given particle of time,
            and the extremely small sector TAa will be as the sum of the
            velocities with which the sun and node are carried two different ways
            in that time. Now the sun's velocity is almost uniform, its inequality
            being so small as scarcely to produce the least inequality in the mean
            motion of the nodes. The other part of this sum, namely, the mean
            quantity of the velocity of the node, is increased in the recess from
            the syzygies in a duplicate ratio of the sine of its distance from the
            sun (by Cor. Prop. XXXI, of this Book), and, being greatest in its
            quadratures with the sun in K, is in the same ratio to the sun's
            velocity as SK to TS, that is, as (the difference of the squares of TK
            and TH, or) the rectangle KHM to TH². But the ellipsis NBH divides the
            sector ATa, the exponent of the sum of these two velocities,
            into two parts ABba and BTb, proportional to the
            velocities. For produce BT to the circle in β, and from the
            point B let fall upon the greater axis the perpendicular BG, which
            being produced both ways may meet the circle in the points F and f;
            and because the space ABba is to the sector TBb as
            the rectangle ABβ to BT² (that rectangle being equal to the
            difference of the squares of TA and TB, because the right line Aβ
            is equally cut in T, and unequally in B), therefore when the space ABba
            is the greatest of all in K, this ratio will be the same as the ratio
            of the rectangle KHM to HT². But the greatest mean velocity of the
            node was shewn above to be in that very ratio
            to the velocity of the sun; and therefore in the quadratures the
            sector ATa is divided into parts proportional to the
            velocities. And because the rectangle KHM is to HT² as FBf to
            BG², and the rectangle ABβ is equal to the rectangle FBf,
            therefore the little area ABba, where it is greatest, is to
            the remaining sector TBb as the rectangle ABβ to
            BG². But the ratio of these little areas always was as the rectangle
            ABβ to BT²; and therefore the little area ABba in
            the place A is less than its correspondent little area in the
            quadratures in the duplicate ratio of BG to BT, that is, in the
            duplicate ratio of the sine of the sun's distance from the node. And
            therefore the sum of all the little areas ABba, to wit, the
            space ABN, will be as the motion of the node in the time in which the
            sun hath been going over the arc NA since he left the node; and the
            remaining space, namely, the elliptic sector NTB, will be as the sun's
            mean motion in the same time. And because the mean annual motion of
            the node is that motion which it performs in the time that the sun
            completes one period of its course, the mean motion of the node from
            the sun will be to the mean motion of the sun itself as the area of
            the circle to the area of the ellipsis; that is, as the right line TK
            to the right line TH, which is a mean proportional between TK and TS;
            or, which comes to the same as the mean proportional TH to the right
            line TS.
        

    

    
        
            Proposition ii.

            The mean motion of the moon's nodes being given, to find their true motion.

        

        
            Let the angle A be the distance of the sun from the mean place of
            the node, or the sun's mean motion from the node. Then if we take the
            angle B, whose tangent is to the tangent of the angle A as TH to TK,
            that is,
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            in the sub-duplicate ratio of the mean horary motion of the sun to the mean
            horary motion of the sun from the node, when the node is in the
            quadrature, that angle B will be the distance of the sun from the
            node's true place. For join FT, and, by the demonstration of the last
            Proportion, the angle FTN will be the distance of the sun from the
            mean place of the node, and the angle ATN the distance from the true
            place, and the tangents of these angles are between themselves as TK to TH.
        

        
            Cor. Hence the angle FTA is the equation of
            the moon's nodes; and the sine of this angle, where it is greatest in
            the octants, is to the radius as KH to TK + TH. But the sine of this
            equation in any other place A is to the greatest sine as the sine of
            the sums of the angles FTN + ATN to the radius; that is, nearly as the
            sine of double the distance of the sun from the mean place of the node
            (namely, 2FTN) to the radius.
        

    

    
        Scholium.


        
            If the mean horary motion of the nodes in the quadratures be 16″ 16‴
            37iv.42v. that is, in a whole sidereal year, 39°
            38′ 7″ 50‴, TH will be to TK in the subduplicate ratio of the number
            9,0827646 to the number 10,0827646, that is, as 18,6524761 to
            19,6524761. And, therefore, TH is to HK as 18,6524761 to 1; that is,
            as the motion of the sun in a sidereal year to the mean motion of the
            node 19° 18′ 1″ 23⅔‴.
        

        
            But if the mean motion of the moon's nodes in 20 Julian years is
            386° 50′ 15″, as is collected from the observations made use of in the
            theory of the moon, the mean motion of the nodes in one sidereal year
            will be 19° 20′ 31″ 58‴. and TH will be to HK as 360° to 19° 20′ 31″
            58‴; that is, as 18,61214 to 1: and from hence the mean horary motion
            of the nodes in the quadratures will come out 16″ 18‴ 48iv.
            And the greatest equation of the nodes in the octants will be 1° 29′ 57″.“
        

    




    
        Proposition xxxiv. Problem xv.

        
            
                To find the horary variation of the inclination, of the moon's
                orbit to the plane of the ecliptic.
            
        

    

    
        Let A and a represent the syzygies; Q and q the
        quadratures; N and n the nodes; P the place of the moon in its
        orbit; p the orthographic projection of that place upon the
        plane of the ecliptic; and mTl the momentaneous
        motion of the nodes as above. If upon Tm we let fall the
        perpendicular PG, and joining pG we produce it till it meet Tl
        in g, and join also Pg, the angle PGp will
        be the inclination of the moon's orbit to the plane of the ecliptic when
        the moon is in P; and the angle Pgp will be the inclination of
        the same after a small moment of time is elapsed; and therefore the
        angle GPg will be the momentaneous variation of the
        inclination. But this angle GPg is to the angle GTg as
        TG to PG and Pp to PG conjunctly. And, therefore, if for the
        moment of time we assume
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        an hour, since the angle GTg (by Prop. XXX) is to the angle 33″
        10‴ 33iv. as IT x PG x AZ to AT³, the angle GPg (or
        the horary variation of the inclination) will be to the angle 33″ 10‴ 33iv.
        as IT x AZ x TG x Pp

        PG to AT³.   Q.E.I.
    

    
        And thus it would be if the moon was uniformly revolved in a circular
        orbit. But if the orbit is elliptical, the mean motion of the nodes will
        be diminished in proportion of the lesser axis to the greater, as we
        have shewn above; and the variation of the inclination will be also
        diminished in the same proportion.
    

    
        Cor. 1. Upon Nn erect the
        perpendicular TF, and let pM be the horary motion of the moon
        in the plane of the ecliptic; upon QT let fall the perpendiculars pK,
        Mk, and produce them till they meet TF in H and h;
        then IT will be to AT as Kk to Mp; and TG to Hp
        as TZ to AT; and, therefore, IT x TG will be equal to 
        Kk x Hp x TZ

        Mp, that is, equal to the area HpMh
        multiplied into the ratio TZ

        Mp : and therefore the horary variation
        of the inclination will be to 33″ 10‴ 33iv. as the area HpMh
        multiplied into AZ x TZ

        Mp x Pp

        PG to AT³.
    

    
        Cor. 2. And, therefore, if the earth and nodes
        were after every hour drawn back from their new and instantly restored
        to their old places, so as their situation might continue given for a
        whole periodic month together, the whole variation of the inclination
        during that month would be to  33″ 10‴ 33iv.
        as the aggregate of all the areas HpMh, generated in
        the time of one revolution of the point p (with due regard in
        summing to their proper signs + −), multiplied into AZ
        x TZ x Pp

        PG to Mp x AT³; that
        is, as the whole circle QAqa multiplied into AZ
        x TZ x Pp

        PG to Mp x AT³, that
        is, as the circumference QAqa multiplied into AZ
        x TZ x Pp

        PG to 2Mp x AT².
    

    
        Cor. 3. And, therefore, in a given position of
        the nodes, the mean horary variation, from which, if uniformly continued
        through the whole month, that menstrual variation might be generated, is
        to 33″ 10‴ 33iv. as AZ x TZ x Pp

        PG to 2AT², or as Pp
        x AZ x TZ

        1/2AT to
        PG x 4AT; that is (because Pp is to PG as the sine of the
        aforesaid inclination to the radius, and AZ
        x TZ

        1/2AT to 4AT as
        the sine of double the angle ATn to four times the radius), as
        the sine of the same inclination multiplied into the sine of double the
        distance of the nodes from the sun to four times the square of the
        radius.
    

    
        Cor. 4. Seeing the horary variation of the
        inclination, when the nodes are in the quadratures, is (by this Prop.)
        to the angle 33″ 10‴ 33iv. as IT x AZ x
        TG x Pp

        PG to AT³, that is, as
        IT x TG

        1/2AT x
        Pp

        PG to 2AT, that is, as the
        sine of double the distance of the moon from the quadratures multiplied
        into Pp

        PG to twice the radius, the sum of all
        the horary variations during the time that the moon, in this situation
        of the nodes, passes from the quadrature to the syzygy (that is, in the
        space of 1771/6 hours)
        will be to the sum of as many angles 33″ 10‴ 33iv. or 5878″,
        as the sum of all the sines of double the distance of the moon from the
        quadratures multiplied into Pp

        PG to the sum of as many diameters;
        that is, as the diameter multiplied into Pp

        PG to the circumference; that is, if
        the inclination be 5° 1′, as 7 x 874/10000
        to 22, or as 278 to 10000. And, therefore, the whole variation, composed
        out of the sum of all the horary variations in the aforesaid time, is
        163″, or 2′ 43″.
    


     




    
        Proposition xxxv. Problem xvi.

        
            
                To a given time to find the inclination of the moon's orbit to
                the plant of the ecliptic.
            
        

    

    
        Let AD be the sine of the greatest inclination, and AB the sine of the
        least. Bisect BD in C; and round the centre C, with the interval BC,
        describe the circle BGD. In AC take CE in the same proportion to EB
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        as EB to twice BA.
        And if to the time given we set off the angle AEG equal to double the distance of the nodes from the
        quadratures, and upon AD let fall the perpendicular GH, AH will be the
        sine of the inclination required.
    

    
        For GE² is equal to GH² + HE² = BHD + HE² = HBD + HE² − BH² = HBD + BE²
        − 2BH x BE = BE² + 2EC x BH = 2EC x AB + 2EC x BH = 2EC x AH; wherefore
        since 2EC is given, GE² will be as AH. Now let AEg represent
        double the distance of the nodes from the quadratures, in a given moment
        of time after, and the arc Gg, on account of the given angle GEg,
        will be as the distance GE. But Hh is to Gg as GH to
        GC, and, therefore, Hh is as the rectangle GH x Gg, or
        GH x GE, that is, as GH

        GE x GE², or GH

        GE x AH; that is, as AH and the sine of
        the angle AEG conjunctly. If, therefore, in any one case, AH be the sine
        of inclination, it will increase by the same increments as the sine of
        inclination doth, by Cor. 3 of the preceding Prop. and therefore will
        always continue equal to that sine. But when the point G falls upon
        either point B or D, AH is equal to this sine, and therefore remains
        always equal thereto.   Q.E.D.
    

    
        In this demonstration I have supposed that the angle BEG, representing
        double the distance of the nodes from the quadratures, increaseth
        uniformly; for I cannot descend to every minute circumstance of
        inequality. Now suppose that BEG is a right angle, and that Gg
        is in this case the horary increment of double the distance of the nodes
        from the sun; then, by Cor. 3 of the last Prop. the horary variation of
        the inclination in the same case will be to 33″ 10‴ 33iv. as
        the rectangle of AH, the sine of the inclination, into the sine of the
        right angle BEG, double the distance of the nodes from the sun, to four
        times the square of the radius; that is, as AH, the
        sine of the mean inclination, to four times the radius; that is, seeing
        the mean inclination is about 5° 8½, as its sine 896 to 40000, the
        quadruple of the radius, or as 224 to 10000. But the whole variation
        corresponding to BD, the difference of the sines, is to this horary
        variation as the diameter BD to the arc Gg, that is, conjunctly
        as the diameter BD to the semi-circumference BGD, and as the time of
        20797/10 hours, in which
        the node proceeds from the quadratures to the syzygies, to one hour,
        that is as 7 to 11, and 20797/10
        to 1. Wherefore, compounding all these proportions, we shall have the
        whole variation BD to 33″ 10‴ 33iv. as 224 x 7 x 20797/10
        to 110000, that is, as 29645 to 1000; and from thence that variation BD
        will come out 16′ 23½″.
    

    
        And this is the greatest variation of the inclination, abstracting from
        the situation of the moon in its orbit; for if the nodes are in the
        syzygies, the inclination suffers no change from the various positions
        of the moon. But if the nodes are in the quadratures, the inclination is
        less when the moon is in the syzygies than when it is in the quadratures
        by a difference of 2′ 43″, as we shewed in Cor. 4 of the preceding
        Prop.; and the whole mean variation BD, diminished by 1′ 21½″, the half
        of this excess, becomes 15′ 2″, when the moon is in the quadratures; and
        increased by the same, becomes 17′ 45″ when the moon is in the syzygies.
        If, therefore, the moon be in the syzygies, the whole variation in the
        passage of the nodes from the quadratures to the syzygies will be 17′
        45″; and, therefore, if the inclination be 5° 17′ 20″, when the nodes
        are in the syzygies, it will be 4° 59′ 35″ when the nodes are in the
        quadratures and the moon in the syzygies. The truth of all which is
        confirmed by observations.
    

    
        Now if the inclination of the orbit should be required when the moon is
        in the syzygies, and the nodes any where between them and the
        quadratures, let AB be to AD as the sine of 4° 59′ 35″ to the sine of 5°
        17′ 20″, and take the angle AEG equal to double the distance of the
        nodes from the quadratures; and AH will be the sine of the inclination
        desired. To this inclination of the orbit the inclination of the same is
        equal, when the moon is 90° distant from the nodes. In other situations
        of the moon, this menstrual inequality, to which the variation of the
        inclination is obnoxious in the calculus of the moon's latitude, is
        balanced, and in a manner took off, by the menstrual inequality of the
        motion of the nodes (as we said before), and therefore may be neglected
        in the computation of the said latitude.
    




    Scholium.


    
        By these computations of the lunar motions I was willing to shew that
        by the theory of gravity the motions of the moon could be calculated
        from their physical causes. By the same theory I moreover found that the
        annual equation of the mean motion of the moon arises from the various
        dilatation which the orbit of the moon suffers from
        the action of the sun according to Cor. 6, Prop. LXVI, Book 1. The force
        of this action is greater in the perigeon sun, and dilates the moon's
        orbit; in the apogeon sun it is less, and permits the orbit to be again
        contracted. The moon moves slower in the dilated and faster in the
        contracted orbit; and the annual equation, by which this inequality is
        regulated, vanishes in the apogee and perigee of the sun. In the mean
        distance of the sun from the earth it arises to about 11′ 50″; in other
        distances of the sun it is proportional to the equation of the sun's
        centre, and is added to the mean motion of the moon, while the earth is
        passing from its aphelion to its perihelion, and subducted while the
        earth is in the opposite semi-circle. Taking for the radius of the orbis
        magnus 1000, and 167/8
        for the earth's eccentricity, this equation, when of the greatest
        magnitude, by the theory of gravity comes out 11′ 49″. But the
        eccentricity of the earth seems to be something greater, and with the
        eccentricity this equation will be augmented in the same proportion.
        Suppose the eccentricity 1611/12,
        and the greatest equation will be 11′ 51″.
    

    
        Farther; I found that the apogee and nodes of the moon move faster in
        the perihelion of the earth, where the force of the sun's action is
        greater, than in the aphelion thereof, and that in the reciprocal
        triplicate proportion of the earth's distance from the sun; and hence
        arise annual equations of those motions proportional to the equation of
        the sun's centre. Now the motion of the sun is in the reciprocal
        duplicate proportion of the earth's distance from the sun; and the
        greatest equation of the centre which this inequality generates is 1°
        56′ 20″, corresponding to the abovementioned eccentricity of the sun, 16
        11/12. But if the motion of
        the sun had been in the reciprocal triplicate proportion of the
        distance, this inequality would have generated the greatest equation 2°
        54′ 30″; and therefore the greatest equations which the inequalities of
        the motions of the moon's apogee and nodes do generate are to 2° 54′ 30″
        as the mean diurnal motion of the moon's apogee and the mean diurnal
        motion of its nodes are to the mean diurnal motion of the sun. Whence
        the greatest equation of the mean motion of the apogee comes out 19′
        43″, and the greatest equation of the mean motion of the nodes 9′ 24″.
        The former equation is added, and the latter subducted, while the earth
        is passing from its perihelion to its aphelion, and contrariwise when
        the earth is in the opposite semi-circle.
    

    
        By the theory of gravity I likewise found that the action of the sun
        upon the moon is something greater when the transverse diameter of the
        moon's orbit passeth through the sun than when the same is perpendicular
        upon the line which joins the earth and the sun; and therefore the
        moon's orbit is something larger in the former than in the latter case.
        And hence arises another equation of the moon's mean motion, depending
        upon the situation of the moon's apogee in respect
        of the sun, which is in its greatest quantity when the moon's apogee is
        in the octants of the sun, and vanishes when the apogee arrives at the
        quadratures or syzygies; and it is added to the mean motion while the
        moon's apogee is passing from the quadrature of the sun to the syzygy,
        and subducted while the apogee is passing from the syzygy to the
        quadrature. This equation, which I shall call the semi-annual, when
        greatest in the octants of the apogee, arises to about 3′ 45″, so far as
        I could collect from the phaenomena: and this is its quantity in the
        mean distance of the sun from the earth. But it is increased and
        diminished in the reciprocal triplicate proportion of the sun's
        distance, and therefore is nearly 3′ 34″ when that distance is greatest,
        and 3′ 56″ when least. But when the moon's apogee is without the
        octants, it becomes less, and is to its greatest quantity as the sine of
        double the distance of the moon's apogee from the nearest syzygy or
        quadrature to the radius.
    

    
        By the same theory of gravity, the action of the sun upon the moon is
        something greater when the line of the moon's nodes passes through the
        sun than when it is at right angles with the line which joins the sun
        and the earth; and hence arises another equation of the moon's mean
        motion, which I shall call the second semi-annual; and this is greatest
        when the nodes are in the octants of the sun, and vanishes when they are
        in the syzygies or quadratures; and in other positions of the nodes is
        proportional to the sine of double the distance of either node from the
        nearest syzygy or quadrature. And it is added to the mean motion of the
        moon, if the sun is in antecedentia, to the node which is
        nearest to him, and subducted if in consequentia; and in the
        octants, where it is of the greatest magnitude, it arises to 47″ in the
        mean distance of the sun from the earth, as I find from the theory of
        gravity. In other distances of the sun, this equation, greatest in the
        octants of the nodes, is reciprocally as the cube of the sun's distance
        from the earth; and therefore in the sun's perigee it comes to about
        49″, and in its apogee to about 45″.
    

    
        By the same theory of gravity, the moon's apogee goes forward at the
        greatest rate when it is either in conjunction with or in opposition to
        the sun, but in its quadratures with the sun it goes backward; and the
        eccentricity comes, in the former case, to its greatest quantity; in the
        latter to its least, by Cor. 7, 8, and 9, Prop. LXVI, Book 1. And those
        inequalities, by the Corollaries we have named, are very great, and
        generate the principal which I call the semi-annual equation of the
        apogee; and this semi-annual equation in its greatest quantity comes to
        about 12° 18′, as nearly as I could collect from the phaenomena. Our
        countryman, Horrox, was the first who advanced the theory of
        the moon's moving in an ellipsis about the earth placed in its lower
        focus. Dr. Halley improved the notion, by putting the centre
        of the ellipsis in an epicycle whose centre is
        uniformly revolved about the earth; and from the motion in this epicycle
        the mentioned inequalities in the progress and regress of the apogee,
        and in the quantity of eccentricity, do arise. Suppose the mean distance
        of the moon from the earth to be divided into 100000 parts, and let T
        represent the earth, and TC the moon's mean eccentricity of 5505 such
        parts. Produce TC to B, so as CB may be the sine of the greatest
        semi-annual equation 12° 18′ to the radius TC; and the circle BDA
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        described about the centre C, with the interval CB,
        will be the epicycle spoken of, in which the centre of the moon's
        orbit is placed, and revolved according to the order of the letters BDA.
        Set off the angle BCD equal to twice the annual argument, or twice the
        distance of the sun's true place from the place of the moon's apogee
        once equated, and CTD will be the semi-annual equation of the moon's
        apogee, and TD the eccentricity of its orbit, tending to the place of
        the apogee now twice equated. But, having the moon's mean motion, the
        place of its apogee, and its eccentricity, as well as the longer axis of
        its orbit 200000, from these data the true place of the moon
        in its orbit, together with its distance from the earth, may be
        determined by the methods commonly known.
    

    
        In the perihelion of the earth, where the force of the sun is greatest,
        the centre of the moon's orbit moves faster about the centre C than in
        the aphelion, and that in the reciprocal triplicate proportion of the
        sun's distance from the earth. But, because the equation of the sun's
        centre is included in the annual argument, the centre of the moon's
        orbit moves faster in its epicycle BDA, in the reciprocal duplicate
        proportion of the sun's distance from the earth. Therefore, that it may
        move yet faster in the reciprocal simple proportion of the distance,
        suppose that from D, the centre of the orbit, a right line DE is drawn,
        tending towards the moon's apogee once equated, that is, parallel to TC;
        and set off the angle EDF equal to the excess of the aforesaid annual
        argument above the distance of the moon's apogee from the sun's perigee
        in consequentia; or, which comes to the same thing, take the
        angle CDF equal to the complement of the sun's true anomaly to 360°; and
        let DF be to DC as twice the eccentricity of the orbis magnus
        to the sun's mean distance from the earth, and the sun's mean diurnal
        motion from the moon's apogee to the sun's mean diurnal motion from its
        own apogee conjunctly, that is, as 337/8
        to 1000, and 52′ 27″ 16‴ to 59′ 8″ 10‴ conjunctly, or as 3 to 100; and
        imagine the centre of the moon's orbit placed in the point F to be
        revolved in an epicycle whose centre is D; and radius DF, while the
        point D moves in the circumference of the circle DABD: for by this means
        the centre of the moon's orbit comes to
        describe a certain curve line about the centre C, with a velocity which
        will be almost reciprocally as the cube of the sun's distance from the
        earth, as it ought to be.
    

    
        The calculus of this motion is difficult, but may be rendered more easy
        by the following approximation. Assuming, as above, the moon's mean
        distance from the earth of 100000 parts, and the eccentricity TC of 5505
        such parts, the line CB or CD will be found 1172¾, and DF 351/5
        of those parts; and this line DF at the distance TC subtends the angle
        at the earth, which the removal of the centre of the orbit from the
        place D to the place F generates in the motion of this centre; and
        double this line DF in a parallel position, at the distance of the upper
        focus of the moon's orbit from the earth, subtends at the earth the same
        angle as DF did before, which that removal generates in the motion of
        this upper focus; but at the distance of the moon from the earth this
        double line 2DF at the upper focus, in a parallel position to the first
        line DF, subtends an angle at the moon, which the said removal generates
        in the motion of the moon, which angle may be therefore called the
        second equation of the moon's centre; and this equation, in the mean
        distance of the moon from the earth, is nearly as the sine of the angle
        which that line DF contains with the line drawn from the point F to the
        moon, and when in its greatest quantity amounts to 2′ 25″. But the angle
        which the line DF contains with the line drawn from the point F to the
        moon is found either by subtracting the angle EDF from the mean anomaly
        of the moon, or by adding the distance of the moon from the sun to the
        distance of the moon's apogee from the apogee of the sun; and as the
        radius to the sine of the angle thus found, so is 2′ 25″ to the second
        equation of the centre: to be added, if the forementioned sum be less
        than a semi-circle; to be subducted, if greater. And from the moon's
        place in its orbit thus corrected, its longitude may be found in the
        syzygies of the luminaries.
    

    
        The atmosphere of the earth to the height of 35 or 40 miles refracts
        the sun's light. This refraction scatters and spreads the light over the
        earth's shadow; and the dissipated light near the limits of the shadow
        dilates the shadow. Upon which account, to the diameter of the shadow,
        as it comes out by the parallax, I add 1 or 1⅓ minute in lunar eclipses.
    

    
        But the theory of the moon ought to be examined and proved from the
        phenomena, first in the syzygies, then in the quadratures, and last of
        all in the octants; and whoever pleases to undertake the work will find
        it not amiss to assume the following mean motions of the sun and moon at
        the Royal Observatory of Greenwich, to the last day of December
        at noon, anno 1700, O.S. viz. The mean motion of the sun
        ♑ 20° 43′ 40″, and of its apogee ♋
        7° 44′ 30″; the mean motion of the moon ♒
        15° 21′ 00″; of its apogee, ♊ 8°
        20′ 00″; and of its ascending node ♌
        27° 24′ 20″; and the difference of meridians betwixt the Observatory at
        Greenwich and the Royal Observatory at
        Paris, Oh.9′20″: but the mean motion of the moon and
        of its apogee are not yet obtained with sufficient accuracy.
    




    
        Proposition xxxvi. Problem xvii.

        To find the force of the sun to move the sea.

    

    
        The sun's force ML or PT to disturb the motions of the moon, was (by
        Prop. XXV.) in the moon's quadratures, to the force of gravity with us,
        as 1 to 638092,6; and the force TM − LM or 2PK in the moon's syzygies is
        double that quantity. But, descending to the surface of the earth, these
        forces are diminished in proportion of the distances from the centre of
        the earth, that is, in the proportion of 60½ to 1; and therefore the
        former force on the earth's surface is to the force of gravity as 1 to
        38604600; and by this force the sea is depressed in such places as are
        90 degrees distant from the sun. But by the other force, which is twice
        as great, the sea is raised not only in the places directly under the
        sun, but in those also which are directly opposed to it; and the sum of
        these forces is to the force of gravity as 1 to 12868200. And because
        the same force excites the same motion, whether it depresses the waters
        in those places which are 90 degrees distant from the sun, or raises
        them in the places which are directly under and directly opposed to the
        sun, the aforesaid sum will be the total force of the sun to disturb the
        sea, and will have the same effect as if the whole was employed in
        raising the sea in the places directly under and directly opposed to the
        sun, and did not act at all in the places which are 90 degrees removed
        from the sun.
    

    
        And this is the force of the sun to disturb the sea in any given place,
        where the sun is at the same time both vertical, and in its mean
        distance from the earth. In other positions of the sun, its force to
        raise the sea is as the versed sine of double its altitude above the
        horizon of the place directly, and the cube of the distance from the
        earth reciprocally.
    

    
        Cor. Since the centrifugal force of the parts
        of the earth, arising from the earth's diurnal motion, which is to the
        force of gravity as 1 to 289, raises the waters under the equator to a
        height exceeding that under the poles by 85472 Paris feet, as
        above, in Prop. XIX., the force of the sun, which we have now shewed to
        be to the force of gravity as 1 to 12868200, and therefore is to that
        centrifugal force as 289 to 12868200, or as 1 to 44527, will be able to
        raise the waters in the places directly under and directly opposed to
        the sun to a height exceeding that in the places which arc 90 degrees
        removed from the sun only by one Paris foot and 1131/30
        inches; for this measure is to the measure of 85472 feet as 1 to 44527.
    




    
        Proposition xxxvii. Problem xviii.

        To find the force of the moon to move the sea.

    

    
        The force of the moon to move the sea is to be deduced from its
        proportion to the force of the sun, and this
        proportion is to be collected from the proportion of the motions of the
        sea, which are the effects of those forces. Before the mouth of the
        river Avon, three miles below Bristol, the height of
        the ascent of the water in the vernal and autumnal syzygies of the
        luminaries (by the observations of Samuel Sturmy) amounts to
        about 45 feet, but in the quadratures to 25 only. The former of those
        heights arises from the sum of the aforesaid forces, the latter from
        their difference. If, therefore, S and L are supposed to represent
        respectively the forces of the sun and moon while they are in the
        equator, as well as in their mean distances from the earth, we shall
        have L + S to L − S as 45 to 25, or as 9 to 5.
    

    
        At Plymouth (by the observations of Samuel Colepress)
        the tide in its mean height rises to about 16 feet, and in the spring
        and autumn the height thereof in the syzygies may exceed that in the
        quadratures by more than 7 or 8 feet. Suppose the greatest difference of
        those heights to be 9 feet, and L + S will be to L − S as 20½ to 11½, or
        as 41 to 23; a proportion that agrees well enough with the former. But
        because of the great tide at Bristol, we are rather to depend
        upon the observations of Sturmy; and, therefore, till we
        procure something that is more certain, we shall use the proportion of 9
        to 5.
    

    
        But because of the reciprocal motions of the waters, the greatest tides
        do not happen at the times of the syzygies of the luminaries, but, as we
        have said before, are the third in order after the syzygies; or
        (reckoning from the syzygies) follow next after the third appulse of the
        moon to the meridian of the place after the syzygies; or rather (as Sturmy
        observes) are the third after the day of the new or full moon, or rather
        nearly after the twelfth hour from the new or full moon, and therefore
        fall nearly upon the forty-third hour after the new or full of the moon.
        But in this port they fall out about the seventh hour after the appulse
        of the moon to the meridian of the place; and therefore follow next
        after the appulse of the moon to the meridian, when the moon is distant
        from the sun, or from opposition with the sun by about 18 or 19 degrees
        in consequentia. So the summer and winter seasons come not to
        their height in the solstices themselves, but when the sun is advanced
        beyond the solstices by about a tenth part of its whole course, that is,
        by about 36 or 37 degrees. In like manner, the greatest tide is raised
        after the appulse of the moon to the meridian of the place, when the
        moon has passed by the sun, or the opposition thereof; by
        about a tenth part of the whole motion from one greatest tide to
        the next following greatest tide. Suppose that distance about 18½
        degrees; and the sun's force in this distance of the moon from the
        syzygies and quadratures will be of less moment to augment and diminish
        that part of the motion of the sea which proceeds from the motion of the
        moon than in the syzygies and quadratures themselves in the proportion
        of the radius to the co-sine of double this
        distance, or of an angle of 37 degrees; that is in proportion of
        10000000 to 7986355; and, therefore, in the preceding analogy, in place
        of S we must put 0,7986355S.
    

    
        But farther; the force of the moon in the quadratures must be
        diminished, on account of its declination from the equator; for the moon
        in those quadratures, or rather in 18½ degrees past the quadratures,
        declines from the equator by about 23° 13′; and the force of either
        luminary to move the sea is diminished as it declines from the equator
        nearly in the duplicate proportion of the co-sine of the declination;
        and therefore the force of the moon in those quadratures is only
        0.8570327L; whence we have L + 0,7986355S to 0,8570327L − 0,7986355S as
        9 to 5.
    

    
        Farther yet; the diameters of the orbit in which the moon should move,
        setting aside the consideration of eccentricity, are one to the other as
        69 to 70; and therefore the moon's distance from the earth in the
        syzygies is to its distance in the quadratures, caeteris paribus,
        as 69 to 70; and its distances, when 18½ degrees advanced beyond the
        syzygies, where the greatest tide was excited, and when 18½ degrees
        passed by the quadratures, where the least tide was produced, are to its
        mean distance as 69,098745 and 69,897345 to 69½. But the force of the
        moon to move the sea is in the reciprocal triplicate proportion of its
        distance; and therefore its forces, in the greatest and least of those
        distances, are to its force in its mean distance is 0.9830427 and
        1,017522 to 1. From whence we have 1,017522L x 0,7986355S to 0,9830427 x
        0,8570327L − 0,7986355S as 9 to 5; and S to L as 1 to 4,4815. Wherefore
        since the force of the sun is to the force of gravity as 1 to 12868200,
        the moon's force will be to the force of gravity as 1 to 2871400.
    

    
        Cor. 1. Since the waters excited by the sun's
        force rise to the height of a foot and 111/30
        inches, the moon's force will raise the same to the height of 8 feet and
        75/22 inches; and the
        joint forces of both will raise the same to the height of 10½ feet; and
        when the moon is in its perigee to the height of 12½ feet, and more,
        especially when the wind sets the same way as the tide. And a force of
        that quantity is abundantly sufficient to excite all the motions of the
        sea, and agrees well with the proportion of those motions; for in such
        seas as lie free and open from east to west, as in the Pacific
        sea, and in those tracts of the Atlantic and Ethiopic
        seas which lie without the tropics, the waters commonly rise to 6, 9,
        12, or 15 feet; but in the Pacific sea, which is of a greater
        depth, as well as of a larger extent, the tides are said to be greater
        than in the Atlantic and Ethiopic seas; for to have
        a full tide raised, an extent of sea from east to west is required of no
        less than 90 degrees. In the Ethiopic sea, the waters rise to
        a less height within the tropics than in the temperate zones, because of
        the narrowness of the sea between Africa and the southern
        parts of America. In the middle of the open sea the waters
        cannot rise with out falling together, and at
        the same time, upon both the eastern and western shores, when,
        notwithstanding, in our narrow seas, they ought to fall on those shores
        by alternate turns; upon which account there is commonly but a small
        flood and ebb in such islands as lie far distant from the continent. On
        the contrary, in some ports, where to fill and empty the bays
        alternately the waters are with great violence forced in and out through
        shallow channels, the flood and ebb must be greater than ordinary; as at
        Plymouth and Chepstow Bridge in England, at
        the mountains of St. Michael, and the town of Auranches,
        in Normandy, and at Cambaia and Pegu in
        the East Indies. In these places the sea is hurried in and out
        with such violence, as sometimes to lay the shores under water, some
        times to leave them dry for many miles. Nor is this force of the influx
        and efflux to be broke till it has raised and depressed the waters to
        30, 40, or 50 feet and above. And a like account is to be given of long
        and shallow channels or straits, such as the Magellanic
        straits, and those channels which environ England. The tide in
        such ports and straits, by the violence of the influx and efflux, is
        augmented above measure. But on such shores as lie towards the deep and
        open sea with a steep descent, where the waters may freely rise and fall
        without that precipitation of influx and efflux, the proportion of the
        tides agrees with the forces of the sun and moon.
    

    
        Cor. 2. Since the moon's force to move the sea
        is to the force of gravity as 1 to 2871400, it is evident that this
        force is far less than to appear sensibly in statical or hydrostatical
        experiments, or even in those of pendulums. It is in the tides only that
        this force shews itself by any sensible effect.
    

    
        Cor. 3. Because the force of the moon to move
        the sea is to the like force of the sun as 4,4815 to 1, and those forces
        (by Cor. 14, Prop. LXVI, Book 1) are as the densities of the bodies of
        the sun and moon and the cubes of their apparent diameters conjunctly,
        the density of the moon will be to the density of the sun as 4,4815 to 1
        directly, and the cube of the moon's diameter to the cube of the sun's
        diameter inversely; that is (seeing the mean apparent diameters of the
        moon and sun are 31′ 16½″, and 32′ 12″), as 4891 to 1000. But the
        density of the sun was to the density of the earth as 1000 to 4000; and
        therefore the density of the moon is to the density of the earth as 4891
        to 4000, or as 11 to 9. Therefore the body of the moon is more dense and
        more earthly than the earth itself.
    

    
        Cor. 4. And since the true diameter of the moon
        (from the observations of astronomers) is to the true diameter of the
        earth as 100 to 365, the mass of matter in the moon will be to the mass
        of matter in the earth as 1 to 39,788.
    

    
        Cor. 5. And the accelerative gravity on the
        surface of the moon will be about three times
        less than the accelerative gravity on the surface of the earth.
    

    
        Cor. 6. And the distance of the moon's centre
        from the centre of the earth will be to the distance of the moon's
        centre from the common centre of gravity of the earth and moon as 40,788
        to 39,788
    

    
        Cor. 7. And the mean distance of the centre of
        the moon from the centre of the earth will be (in the moon's octants)
        nearly 602/5 of the
        great est semi-diameters of the earth; for the greatest semi-diameter of
        the earth was 19658600 Paris feet, and the mean distance of
        the centres of the earth and moon, consisting of 602/5
        such semi-diameters, is equal to 1187379440 feet. And this distance (by
        the preceding Cor.) is to the distance of the moon's centre from the
        common centre of gravity of the earth and moon as 40,788 to 39,788;
        which latter distance, therefore, is 1158268534 feet. And since the
        moon, in respect of the fixed stars, performs its revolution in 27d.7h.43
        4/9′, the versed sine of
        that angle which the moon in a minute of time describes is 12752341 to
        the radius 1000,000000,000000; and as the radius is to this versed sine,
        so are 1158268534 feet to 14,7706353 feet. The moon, therefore, falling
        towards the earth by that force which retains it in its orbit, would in
        one minute of time describe 14,7706353 feet; and if we augment this
        force in the proportion of 17829/40
        to 17729/40, we shall
        have the total force of gravity at the orbit of the moon, by Cor. Prop.
        III; and the moon falling by this force, in one minute of time would
        describe 14,8538067 feet. And at the 60th part of the distance of the
        moon from the earth's centre, that is, at the distance of 197896573 feet
        from the centre of the earth, a body falling by its weight, would, in
        one second of time, likewise describe 14,8538067 feet. And, therefore,
        at the distance of 19615800, which compose one mean semi-diameter of the
        earth, a heavy body would describe in falling 15,11175, or 15 feet, 1
        inch, and 41/11 lines,
        in the same time. This will be the descent of bodies in the latitude of
        45 degrees. And by the foregoing table, to be found under Prop. XX, the
        descent in the latitude of Paris will be a little greater by
        an excess of about ⅔ parts of a line. Therefore, by this computation,
        heavy bodies in the latitude of Paris falling in vacuo will
        describe 15 Paris feet, 1 inch, 425/33
        lines, very nearly, in one second of time. And if the gravity be
        diminished by taking away a quantity equal to the centrifugal force
        arising in that latitude from the earth's diurnal motion, heavy bodies
        falling there will describe in one second of time 15 feet, 1 inch, and
        1½ line. And with this velocity heavy bodies do really fall in the
        latitude of Paris, as we have shewn above in Prop. IV and XIX.
    

    
        Cor. 8. The mean distance of the centres of the
        earth and moon in the syzygies of the moon is equal to 60 of the
        greatest semi-diameters of the earth, subducting only about one 30th
        part of a semi- diameter: and in the moon's
        quadratures the mean distance of the same centres is 605/6
        such semi-diameters of the earth; for these two distances are to the
        mean distance of the moon in the octants as 69 and 70 to 69½, by Prop.
        XXVIII.
    

    
        Cor. 9. The mean distance of the centres of the
        earth and moon in the syzygies of the moon is 60 mean semi-diameters of
        the earth, and a 10th part of one semi-diameter; and in the moon's
        quadratures the mean distance of the same centres is 61 mean
        semi-diameters of the earth, subducting one 30th part of one
        semi-diameter.
    

    
        Cor. 10. In the moon's syzygies its mean
        horizontal parallax in the latitudes of 0, 30, 38, 45, 52, 60, 90
        degrees is 57′ 20″, 57′ 16″, 57′ 14″, 57′ 12″, 57′ 10″, 57′ 8″, 57′ 4″,
        respectively.
    

    
        In these computations I do not consider the magnetic attraction of the
        earth, whose quantity is very small and unknown: if this quantity should
        ever be found out, and the measures of degrees upon the meridian, the
        lengths of isochronous pendulums in different parallels, the laws of the
        motions of the sea, and the moon's parallax, with the apparent diameters
        of the sun and moon, should be more exactly determined from phenomena:
        we should then be enabled to bring this calculation to a greater
        accuracy.
    




    
        Proposition xxxviii. Problem xix.

        To find the figure of the moon's body.

    

    
        If the moon's body were fluid like our sea, the force of the earth to
        raise that fluid in the nearest and remotest parts would be to the force
        of the moon by which our sea is raised in the places under and opposite
        to the moon as the accelerative gravity of the moon towards the earth to
        the accelerative gravity of the earth towards the moon, and the diameter
        of the moon to the diameter of the earth conjunctly; that is, as 39,788
        to 1, and 100 to 365 conjunctly, or as 1081 to 100. Wherefore, since our
        sea, by the force of the moon, is raised to 83/5
        feet, the lunar fluid would be raised by the force of the earth to 93
        feet; and upon this account the figure of the moon would be a spheroid,
        whose greatest diameter produced would pass through the centre of the
        earth, and exceed the diameters perpendicular thereto by 186 feet. Such
        a figure, therefore, the moon affects, and must have put on from the
        beginning.   Q.E.I.
    

    
        Cor. Hence it is that the same face of the moon
        always respects the earth; nor can the body of the moon possibly rest in
        any other position, but would return always by a libratory motion to
        this situation; but those librations, however, must be exceedingly slow,
        because of the weakness of the forces which excite them; so that the
        face of the moon, which should be always obverted to the earth, may, for
        the reason assigned in Prop. XVII. be turned towards the other focus of
        the moon's orbit, without being immediately drawn back, and converted
        again towards the earth.
    




    
        
        Lemma I.

            
                If APEp represent the earth uniformly dense, marked
                with the centre C, the poles P, p, and the
                equator AE; and if about the centre C, with the
                radius CP, we suppose the sphere Pape to be
                described, and QR to denote the plane on which a right
                line, drawn from the centre of the sun to the centre of the earth,
                insists at right angles; and further suppose that the several
                particles of the whole exterior earth PapAPepE, without
                the height of the said sphere, endeavour to recede towards this
                side and that side from the plane QR, every particle by a
                force proportional to its distance from that plane; I say, in the
                first place, that the whole force and efficacy of all the
                particles that are situate in AE, the circle of the
                equator, and disposed uniformly without the globe, encompassing
                the same after the manner of a ring, to wheel the earth about its
                centre, is to the whole force and efficacy of as many particles in
                that point A of the equator which is at the greatest
                distance from the plane QR, to wheel the earth about its
                centre with a like circular motion, as 1 to 2.
                And that circular motion will be performed about an axis lying in
                the common section of the equator and the plane QR.
            

        

        
            For let there be described from the centre K, with the diameter IL,
            the semi-circle INL. Suppose the semi-circumference INL to be divided
            into innumerable equal parts, and from the several parts N to the diameter
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            IL let fall the sines NM.
            Then the sums of the squares of all the sines NM will be equal to the sums
            of the squares of the sines KM, and both sums together will be equal
            to the sums of the squares of as many semi-diameters KN; and therefore
            the sum of the squares of all the sines NM will be but half so great
            as the sum of the squares of as many semi-diameters KN.
        

        
            Suppose now the circumference of the circle AE to be divided into the
            like number of little equal parts, and from every such part F a
            perpendicular FG to be let fall upon the plane QR, as well as the
            perpendicular AH from the point A. Then the force by which the
            particle F recedes from the plane QR will (by
            supposition) be as that perpendicular FG; and this force multiplied by
            the distance CG will represent the power of the particle F to turn the
            earth round its centre. And, therefore, the power of a particle in the
            place F will be to the power of a particle in the place A as FG x GC
            to AH x HC; that is, as FC² to AC²: and therefore the whole power of
            all the particles F, in their proper places F, will be to the power of
            the like number of particles in the place A as the sum of all the FC²
            to the sum of all the AC², that is (by what we have demonstrated
            before), as 1 to 2.   Q.E.D.
        

        
            And because the action of those particles is exerted in the direction
            of lines perpendicularly receding from the plane QR, and that equally
            from each side of this plane, they will wheel about the circumference
            of the circle of the equator, together with the adherent body of the
            earth, round an axis which lies as well in the plane QR as in that of
            the equator.
        

    

    
        Lemma ii.

            
                The same things still supposed, I say, in the second place,
                that the total force or power of all the particles situated every
                where about the sphere to turn the earth about the said axis is to
                the whole force of the like number of particles, uniformly
                disposed round the whole circumference of the equator AE in
                the fashion of a ring, to turn the whole earth about with the like
                circular motion, as 2 to 5.
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            For let IK be any lesser circle parallel to the equator AE, and let Ll
            be any two equal particles in this circle, situated without the sphere
            Pape; and if upon the plane QR, which is at right angles with
            a radius drawn to the sun, we let fall the perpendiculars LM, lm,
            the total forces by which these particles recede from the plane QR
            will be proportional to the perpendiculars LM, lm. Let the
            right line Ll be drawn parallel to the plane Pape,
            and bisect the same in X; and through the point X draw Nn
            parallel to the plane QR, and meeting the perpendiculars LM, lm,
            in N and n; and upon the plane QR let full the perpendicular
            XY. And the contrary forces of the particles L and l to
            wheel about the earth contrariwise are as LM x MC,
            and lm x mC; that is, as
            LN x MC + NM x MC, and ln
            x mC − nm x mC; or LN
            x MC + NM x MC, and LN x mC −
            NM x mC, and LN x Mm −
            NM x (MC + mC), the difference of the two, is the force of
            both taken together to turn the earth round. The affirmative part of
            this difference LN x Mm, or 2LN x NX, is to 2AH x HC, the
            force of two particles of the same size situated in A, as LX² to AC²;
            and the negative part  NM x
            (MC + mC), or 2XY x CY, is to 2AH x HC, the force of the same
            two particles situated in A, as CX² to AC². And therefore the
            difference of the parts, that is, the force of the two particles L and
            l, taken together, to wheel the earth about, is to the force
            of two particles, equal to the former and situated in the place A, to
            turn in like manner the earth round, as LX² − CX² to AC². But if the
            circumference IK of the circle IK is supposed to be divided into an
            infinite number of little equal parts L, all the LX² will be to the
            like number of IX² as 1 to 2 (by Lem. 1); and to the same number of
            AC² as IX² to 2AC²; and the same number of CX² to as many AC² as 2CX²
            to 2AC². Wherefore the united forces of all the particles in the
            circumference of the circle IK are to the joint forces of as many
            particles in the place A as IX² − 2CX² to 2AC²; and therefore (by Lem.
            1) to the united forces of as many particles in the circumference of
            the circle AE as IX² − 2CX² to AC².
        

        
            Now if Pp, the diameter of the sphere, is conceived to be
            divided into an infinite number of equal parts, upon which a like
            number of circles IK are supposed to insist, the matter in the
            circumference of every circle IK will be as IX²; and therefore the
            force of that matter to turn the earth about will be as IX² into IX² −
            2CX²; and the force of the same matter, if it was situated in the
            circumference of the circle AE, would be as IX² into AC². And
            therefore the force of all the particles of the whole matter situated
            without the sphere in the circumferences of all the circles is to the
            force of the like number of particles situated in the circumference of
            the greatest circle AE as all the IX² into IX² − 2CX² to as many IX²
            into AC²; that is, as all the AC² − CX² into AC² − 3CX² to as many AC²
            − CX² into AC²; that is, as all the AC4 − 4AC² x CX² + 3CX4
            to as many AC4 − AC² x CX²; that is, as the whole fluent
            quantity, whose fluxion is AC4 − 4AC² x CX² + 3CX4,
            to the whole fluent quantity, whose fluxion is AC4 − AC² x
            CX²; and, therefore, by the method of fluxions, as AC4 x CX
            − 4/3AC² x CX³ +
            3/5CX5 to AC4
            x CX − ⅓AC² x CX³; that is, if for CX we write the whole Cp,
            or AC, as 4/15 AC5
            to ⅔AC5; that is, as 2 to 5.   Q.E.D.
        

    

    
        Lemma iii.

            
                The same things still supposed, I say, in the third place, that
                the motion of the whole earth about the axis above-named arising
                from the motions of all the particles, will be to the motion of
                the aforesaid ring about the same axis in a proportion compounded
                of the proportion of the matter in the earth to the matter in the
                ring; and the proportion of three squares of the quadrantal arc of
                any circle to two squares of its diameter, that is, in the
                proportion of the matter to the matter, and of the number
                925275 to the number 1000000.
            

        

        
            For the motion of a cylinder revolved about its quiescent axis is to
            the motion of the inscribed sphere revolved
            together with it as any four equal squares to three circles inscribed
            in three of those squares; and the motion of this cylinder is to the
            motion of an exceedingly thin ring surrounding both sphere and
            cylinder in their common contact as double the matter in the cylinder
            to triple the matter in the ring; and this motion of the ring,
            uniformly continued about the axis of the cylinder, is to the uniform
            motion of the same about its own diameter performed in the same
            periodic time as the circumference of a circle to double its diameter.
        

    

    
        Hypothesis ii.

            
                
                    If the other parts of the earth were taken away, and the
                    remaining ring was carried alone about the sun in the orbit of the
                    earth by the annual motion, while by the diurnal motion it was in
                    the mean time revolved about its own axis inclined to the plane of
                    the ecliptic by an angle of 23½ degrees, the motion of the
                    equinoctial points would be the same, whether the ring were fluid,
                    or whether it consisted of a hard and rigid matter.
                
            

        

    

    
        Proposition xxxix. Problem xx.

            To find the precession of the equinoxes. 

        

    

    
        The middle horary motion of the moon's nodes in a circular orbit, when
        the nodes are in the quadratures, was 16″ 35‴ 16iv.36v.;
        the half of which, 8″ 17‴ 38iv.18v. (for the
        reasons above explained) is the mean horary motion of the nodes in such
        an orbit, which motion in a whole sidereal year becomes 20° 11′ 46″.
        Because, therefore, the nodes of the moon in such an orbit would be
        yearly transferred 20° 11′ 46″ in antecedentia; and, if there
        were more moons, the motion of the nodes of every one (by Cor. 16, Prop.
        LXVI. Book 1) would be as its periodic time; if upon the surface of the
        earth a moon was revolved in the time of a sidereal day, the annual
        motion of the nodes of this moon would be to 20° 11′ 46″ as 23h.56′,
        the sidereal day, to 27d.7h.43′, the periodic time
        of our moon, that is, as 1436 to 39343. And the same thing would happen
        to the nodes of a ring of moons encompassing the earth, whether these
        moons did not mutually touch each the other, or whether they were
        molten, and formed into a continued ring, or whether that ring should
        become rigid and inflexible.
    

    
        Let us, then, suppose that this ring is in quantity of matter equal to
        the whole exterior earth PapAPepE, which lies without
        the sphere Pape (see fig. Lem. II); and because this sphere is
        to that exterior earth as aC² to AC² − aC², that is
        (seeing PC or aC the least semi-diameter of the earth is to AC
        the greatest semi-diameter of the same as 229 to 230), as 52441 to 459;
        if this ring encompassed the earth round the equator, and both together
        were revolved about the diameter of the ring, the motion of the
        ring (by Lem. III) would be to the motion of the inner sphere as 459 to
        52441 and 1000000 to 925275 conjunctly, that is, as 4590 to 485223; and
        therefore the motion of the ring would be to the sum of the motions of
        both ring and sphere as 4590 to 489813. Wherefore if the ring adheres to
        the sphere, and communicates its motion to the sphere, by which its
        nodes or equinoctial points recede, the motion remaining in the ring
        will be to its former motion as 4590 to 489813; upon which account the
        motion of the equinoctial points will be diminished in the same
        proportion. Wherefore the annual motion of the equinoctial points of the
        body, composed of both ring and sphere, will be to the motion 20° 11′
        46″ as 1436 to 39343 and 4590 to 489813 conjunctly, that is, as 100 to
        292369. But the forces by which the nodes of a number of moons (as we
        explained above), and therefore by which the equinoctial points of the
        ring recede (that is, the forces 3IT, in fig. Prop. XXX), are in the
        several particles as the distances of those particles from the plane QR;
        and by these forces the particles recede from that plane: and therefore
        (by Lem. II) if the matter of the ring was spread all over the surface
        of the sphere, after the fashion of the figure PapAPepE,
        in order to make up that exterior part of the earth, the total force or
        power of all the particles to wheel about the earth round any diameter
        of the equator, and therefore to move the equinoctial points, would
        become less than before in the proportion of 2 to 5. Wherefore the
        annual regress of the equinoxes now would be to 20° 11′ 46″ as 10 to
        73092; that is, would be 9″ 56‴ 50iv.
    

    
        But because the plane of the equator is inclined to that of the
        ecliptic, this motion is to be diminished in the proportion of the sine
        91706 (which is the co-sine of 23½ deg.) to the radius 100000; and the
        remaining motion will now be 9″ 7‴ 20iv. which is the annual
        precession of the equinoxes arising from the force of the sun.
    

    
        But the force of the moon to move the sea was to the force of the sun
        nearly as 4,4815 to 1; and the force of the moon to move the equinoxes
        is to that of the sun in the same proportion. Whence the annual
        precession of the equinoxes proceeding from the force of the moon comes
        out 40″ 52‴ 52iv. and the total annual precession arising
        from the united forces of both will be 50″ 00‴ 12iv. the
        quantity of which motion agrees with the phaenomena; for the precession
        of the equinoxes, by astronomical observations, is about 50″ yearly.
    

    
        If the height of the earth at the equator exceeds its height at the
        poles by more than 171/6
        miles, the matter thereof will be more rare near the surface than at the
        centre; and the precession of the equinoxes will be augmented by the
        excess of height, and diminished by the greater rarity.
    

    
        And now we have described the system of the sun, the earth, moon, and
        planets, it remains that we add something about the comets.
    




    
        
        
            Lemma iv.

            That the comets are higher than the moon, and in the regions of the planets.

        

    

    
        As the comets were placed by astronomers above the moon, because they
        were found to have no diurnal parallax, so their annual parallax is a
        convincing proof of their descending into the regions of the planets;
        for all the comets which move in a direct course according to the order
        of the signs, about the end of their appearance become more than
        ordinarily slow or retrograde, if the earth is between them and the sun;
        and more than ordinarily swift, if the earth is approaching to a
        heliocentric opposition with them; whereas, on the other hand, those
        which move against the order of the signs, towards the end of their
        appearance appear swifter than they ought to be, if the earth is between
        them and the sun; and slower, and perhaps retrograde, if the earth is in
        the other side of its orbit. And these appearances proceed chiefly from
        the diverse situations which the earth acquires in the course of its
        motion, after the same manner as it happens to the planets, which appear
        sometimes retrograde, sometimes more slowly, and sometimes more swiftly,
        progressive, according as the motion of the earth falls in with that of
        the planet, or is directed the contrary way. If the earth move the same
        way with the comet, but, by an angular motion about the sun, so much
        swifter that right lines drawn from the earth to the comet converge
        towards the parts beyond the comet, the comet seen from the earth,
        because of its slower motion, will appear retrograde; and even if the
        earth is slower than the comet, the motion of the earth being subducted,
        the motion of the comet will at least appear retarded; but if the earth
        tends the contrary way to that of the comet, the motion of the comet
        will from thence appear accelerated; and from this apparent
        acceleration, or retardation, or regressive motion, the distance of the
        comet may be inferred in this manner.
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        Let ♈ QA, ♈
        QB, ♈ QC, be three observed
        longitudes of the comet about the time of its first appearing, and
        ♈ QF its last observed longitude before
        its disappearing. Draw the right line ABC, whose parts AB, BC,
        intercepted between the right lines QA and QB, QB and QC, may be one to
        the other as the two times between the three first observations. Produce
        AC to G, so as AG may be to AB as the time between the first and last
        observation to the time between the first and second; and join QG. Now
        if the comet did move uniformly in a right line, and the earth either
        stood still, or was likewise carried forwards in a right line by an
        uniform motion, the angle ♈ QG
        would be the longitude of the comet at the time
        of the last observation. The angle, therefore, FQG, which is the
        difference of the longitude, proceeds from the inequality of the motions
        of the comet and the earth; and this angle, if the earth and comet move
        contrary ways, is added to the angle ♈
        QG, and accelerates the apparent motion of the comet; but if the comet
        move the same way with the earth, it is subtracted, and either retards
        the motion of the comet, or perhaps renders it retrograde, as we have
        but now explained. This angle, therefore, proceeding chiefly from the
        motion of the earth, is justly to be esteemed the parallax of the comet;
        neglecting, to wit, some little increment or decrement that may arise
        from the unequal motion of the comet in its orbit: and from this
        parallax we thus deduce the distance of the comet.
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        Let S represent the sun, acT the orbis magnus, a
        the earth's place in the first observation, c the place of the
        earth in the third observation, T the place of the earth in the last
        observation, and T♈ a right line
        drawn to the beginning of Aries. Set off the angle ♈
        TV equal to the angle ♈ QF, that
        is, equal to the longitude of the comet at the time when the earth is in
        T; join ac, and produce it to g, so as ag
        may be to ac as AG to AC; and g will be the place at
        which the earth would have arrived in the time of the last observation,
        if it had continued to move uniformly in the right line ac.
        Wherefore, if we draw g♈
        parallel to T♈, and make the angle
        ♈ gV equal to the angle
        ♈ QG, this angle ♈
        gV will be equal to the longitude of the comet seen from the
        place g, and the angle TVg will be the parallax which
        arises from the earth's being transferred from the place g
        into the place T; and therefore V will be the place of the comet in the
        plane of the ecliptic. And this place V is commonly lower than the orb
        of Jupiter.
    

    
        The same thing may be deduced from the incurvation of the way of the
        comets; for these bodies move almost in great circles, while their
        velocity is great; but about the end of their course, when that part of
        their apparent motion which arises from the parallax bears a greater
        proportion to their whole apparent motion, they commonly deviate from
        those circles, and when the earth goes to one side, they deviate to the
        other; and this deflexion, because of its corresponding with the motion
        of the earth, must arise chiefly from the parallax; and the quantity
        thereof is so considerable, as, by my computation, to place the
        disappearing comets a good deal lower than Jupiter. Whence it follows
        that when they approach nearer to us in their perigees and perihelions
        they often descend below the orbs of Mars and the inferior planets.
    

    
        The near approach of the comets is farther
        confirmed from the light of their heads; for the light of a celestial
        body, illuminated by the sun, and receding to remote parts, is
        diminished in the quadruplicate proportion of the distance; to wit, in
        one duplicate proportion, on account of the increase of the distance
        from the sun, and in another duplicate proportion, on account of the
        decrease of the apparent diameter. Wherefore if both the quantity of
        light and the apparent diameter of a comet are given, its distance will
        be also given, by taking the distance of the comet to the distance of a
        planet in the direct proportion of their diameters and the reciprocal
        subduplicate proportion of their lights. Thus, in the comet of the year
        1682, Mr. Flamsted observed with a telescope of 16 feet, and
        measured with a micrometer, the least diameter of its head, 2′ 00; but
        the nucleus or star in the middle of the head scarcely amounted to the
        tenth part of this measure; and therefore its diameter was only 11″ or
        12″; but in the light and splendor of its head it surpassed that of the
        comet in the year 1680, and might be compared with the stars of the
        first or second magnitude. Let us suppose that Saturn with its ring was
        about four times more lucid; and because the light of the ring was
        almost equal to the light of the globe within, and the apparent diameter
        of the globe is about 21″, and therefore the united light of both globe
        and ring would be equal to the light of a globe whose diameter is 30″,
        it follows that the distance of the comet was to the distance of Saturn
        as 1 to √4 inversely, and 12″ to 30 directly;
        that is, as 24 to 30, or 4 to 5. Again; the comet in the month of April
        1665, as Hevelius informs us, excelled almost all the fixed
        stars in splendor, and even Saturn itself, as being of a much more vivid
        colour; for this comet was more lucid than that other which had appeared
        about the end of the preceding year, and had been compared to the stars
        of the first magnitude. The diameter of its head was about 6′; but the
        nucleus, compared with the planets by means of a telescope, was plainly
        less than Jupiter; and sometimes judged less, sometimes judged equal, to
        the globe of Saturn within the ring. Since, then, the diameters of the
        heads of the comets seldom exceed 8′ or 12′, and the diameter of the
        nucleus or central star is but about a tenth or perhaps fifteenth part
        of the diameter of the head, it appears that these stars are generally
        of about the same apparent magnitude with the planets. But in regard
        that their light may be often compared with the light of Saturn, yea,
        and sometimes exceeds it, it is evident that all comets in their
        perihelions must either be placed below or not far above Saturn; and
        they are much mistaken who remove them almost as far as the fixed stars;
        for if it was so, the comets could receive no more light from our sun
        than our planets do from the fixed stars.
    

    
        So far we have gone, without considering the obscuration which comets
        suffer from that plenty of thick smoke which encompasseth their heads,
        and through which the heads always shew dull, as through a cloud; for by
        how much the more a body is obscured by this
        smoke, by so much the more near it must be allowed to come to the sun,
        that it may vie with the planets in the quantity of light which it
        reflects. Whence it is probable that the comets descend far below the
        orb of Saturn, as we proved before from their parallax. But, above all,
        the thing is evinced from their tails, which must be owing either to the
        sun's light reflected by a smoke arising from them, and dispersing
        itself through the aether, or to the light of their own heads. In the
        former case, we must shorten the distance of the comets, lest we be
        obliged to allow that the smoke arising from their heads is propagated
        through such a vast extent of space, and with such a velocity and
        expansion as will seem altogether incredible; in the latter case, the
        whole light of both head and tail is to be ascribed to the central
        nucleus. But, then, if we suppose all this light to be united and
        condensed within the disk of the nucleus, certainly the nucleus will by
        far exceed Jupiter itself in splendor, especially when it emits a very
        large and lucid tail. If, therefore, under a less apparent diameter, it
        reflects more light, it must be much more illuminated by the sun, and
        therefore much nearer to it; and the same argument will bring down the
        heads of comets sometimes within the orb of Venus, viz., when, being hid
        under the sun's rays, they emit such huge and splendid tails, like beams
        of fire, as sometimes they do; for if all that light was supposed to be
        gathered together into one star, it would sometimes exceed not one Venus
        only, but a great many such united into one.
    

    
        Lastly; the same thing is inferred from the light of the heads, which
        increases in the recess of the comets from the earth towards the sun,
        and decreases in their return from the sun towards the earth; for so the
        comet of the year 1665 (by the observations of Hevelius), from
        the time that it was first seen, was always losing of its apparent
        motion, and therefore had already passed its perigee; but yet the
        splendor of its head was daily in creasing, till, being hid under the
        sun's rays, the comet ceased to appear. The comet of the year 1683 (by
        the observations of the same Hevelius), about the end of July,
        when it first appeared, moved at a very slow rate, advancing only about
        40 or 45 minutes in its orb in a day's time; but from that time its
        diurnal motion was continually upon the increase, till September
        4, when it arose to about 5 degrees; and therefore, in all this interval
        of time, the comet was approaching to the earth. Which is like wise
        proved from the diameter of its head, measured with a micrometer; for, August
        6, Hevelius found it only 6′ 05″, including the coma,
        which, September 2 he observed to be 9′ 07″, and therefore its
        head appeared far less about the beginning than towards the end of the
        motion; though about the beginning, because nearer to the sun, it
        appeared far more lucid than towards the end, as the same Hevelius
        declares. Wherefore in all this interval of time, on account of its
        recess from the sun, it decreased in splendor,
        notwithstanding its access towards the earth. The comet of the year
        1618, about the middle of December, and that of the year 1680,
        about the end of the same month, did both move with their greatest
        velocity, and were therefore then in their perigees; but the greatest
        splendor of their heads was seen two weeks before, when they had just
        got clear of the sun's rays; and the greatest splendor of their tails a
        little more early, when yet nearer to the sun. The head of the former
        comet (according to the observations of Cysatus), December
        1, appeared greater than the stars of the first magnitude; and, December
        16 (then in the perigee), it was but little diminished in magnitude, but
        in the splendor and brightness of its light a great deal. January
        7, Kepler, being uncertain about the head, left off observing.
        December 12, the head of the latter comet was seen and observed
        by Mr. Flamsted, when but 9 degrees distant from the sun;
        which is scarcely to be done in a star of the third magnitude. December
        15 and 17, it appeared as a star of the third magnitude, its lustre
        being diminished by the brightness of the clouds near the setting sun. December
        26, when it moved with the greatest velocity, being almost in its
        perigee, it was less than the mouth of Pegasus, a star of the
        third magnitude. January 3, it appeared as a star of the
        fourth. January 9, as one of the fifth. January 13,
        it was hid by the splendor of the moon, then in her increase. January
        25, it was scarcely equal to the stars of the seventh magnitude. If we
        compare equal intervals of time on one side and on the other from the
        perigee, we shall find that the head of the comet, which at both
        intervals of time was far, but yet equally, removed from the earth, and
        should have therefore shone with equal splendor, appeared brightest on
        the side of the perigee towards the sun, and disappeared on the other.
        Therefore, from the great difference of light in the one situation and
        in the other, we conclude the great vicinity of the sun and comet in the
        former; for the light of comets uses to be regular, and to appear
        greatest when the heads move fastest, and are therefore in their
        perigees; excepting in so far as it is increased by their nearness to
        the sun.
    

    
        Cor. 1. Therefore the comets shine by the sun's light, which they reflect.
    

    
        Cor. 2. From what has been said, we may
        likewise understand why comets are so frequently seen in that hemisphere
        in which the sun is, and so seldom in the other. If they were visible in
        the regions far above Saturn, they would appear more frequently in the
        parts opposite to the sun; for such as were in those parts would be
        nearer to the earth, whereas the presence of the sun must obscure and
        hide those that appear in the hemisphere in which he is. Yet, looking
        over the history of comets, I find that four or five times more have
        been seen in the hemisphere towards the sun than in the opposite
        hemisphere; besides, without doubt, not a few, which have been hid by
        the light of the sun: for comets descending into
        our parts neither emit tails, nor are so well illuminated by the sun, as
        to discover themselves to our naked eyes, until they are come nearer to
        us than Jupiter. But the far greater part of that spherical space, which
        is described about the sun with so small an interval, lies on that side
        of the earth which regards the sun; and the comets in that greater part
        are commonly more strongly illuminated, as being for the most part
        nearer to the sun.
    

    
        Cor. 3. Hence also it is evident that the
        celestial spaces are void of resistance; for though the comets are
        carried in oblique paths, and some times contrary to the course of the
        planets, yet they move every way with the greatest freedom, and preserve
        their motions for an exceeding long time, even where contrary to the
        course of the planets. I am out in my judgment if they are not a sort of
        planets revolving in orbits returning into themselves with a perpetual
        motion; for, as to what some writers contend, that they are no other
        than meteors, led into this opinion by the perpetual changes that happen
        to their heads, it seems to have no foundation; for the heads of comets
        are encompassed with huge atmospheres, and the lowermost parts of these
        atmospheres must be the densest; and therefore it is in the clouds only,
        not in the bodies of the comets them selves, that these changes are
        seen. Thus the earth, if it was viewed from the planets, would, without
        all doubt, shine by the light of its clouds, and the solid body would
        scarcely appear through the surrounding clouds. Thus also the belts of
        Jupiter are formed in the clouds of that planet, for they change their
        position one to another, and the solid body of Jupiter is hardly to be
        seen through them; and much more must the bodies of comets be hid under
        their atmospheres, which are both deeper and thicker.
    




    
        Proposition xl. Theorem xx.

        
            
                That the comets move in some of the conic sections, having their
                foci in the centre of the sun; and by radii drawn to the sun
                describe areas proportional to the times.
            
        

    

    
        This proposition appears from Cor. 1, Prop. XIII, Book 1, compared with
        Prop. VIII, XII, and XIII, Book III.
    

    
        Cor. 1. Hence if comets are revolved in orbits
        returning into themselves, those orbits will be ellipses; and their
        periodic times be to the periodic times of the planets in the
        sesquiplicate proportion of their principal axes. And therefore the
        comets, which for the most part of their course are higher than the
        planets, and upon that account describe orbits with greater axes, will
        require a longer time to finish their revolutions. Thus if the axis of a
        comet's orbit was four times greater than the axis of the orbit of
        Saturn, the time of the revolution of the comet would be to the time of
        the revolution of Saturn, that is, to 30 years, as 4 √4
        (or 8) to 1, and would therefore be 240 years.
    

    
        Cor. 2. But their
        orbits will be so near to parabolas, that parabolas may be used for them
        without sensible error.
    

    
        Cor. 3. And, therefore, by Cor. 7, Prop. XVI,
        Book 1, the velocity of every comet will always be to the velocity of
        any planet, supposed to be revolved at the same distance in a circle
        about the sun, nearly in the subduplicate proportion of double the
        distance of the planet from the centre of the sun to the distance of the
        comet from the sun's centre, very nearly. Let us suppose the radius of
        the orbis manus, or the greatest semidiameter of the ellipsis
        which the earth describes, to consist of 100000000 parts; and then the
        earth by its mean diurnal motion will describe 1720212 of those parts,
        and 71675½ by its horary motion. And therefore the comet, at the same
        mean distance of the earth from the sun, with a velocity which is to the
        velocity of the earth as √2 to 1, would by
        its diurnal motion describe 2432747 parts, and 101364½ parts by its
        horary motion. But at greater or less distances both the diurnal and
        horary motion will be to this diurnal and horary motion in the
        reciprocal subduplicate proportion of the distances, and is therefore
        given.
    

    
        Cor. 4. Wherefore if the latus rectum
        of the parabola is quadruple of the radius of the orbis magnus,
        and the square of that radius is sup posed to consist of 100000000
        parts, the area which the comet will daily describe by a radius drawn to
        the sun will be 1216373½ parts, and the horary area will be 50682¼
        parts. But, if the latus rectum is greater or less in any
        proportion, the diurnal and horary area will be less or greater in the
        subduplicate of the same proportion reciprocally.
    




    
        Lemma V.

        
            
                To find a curve line of the parabolic kind which shall pass
                through any given number of points.
            
        

    

     Let those points be A, B, C, D, E, F, &c., and from the same to
        any right line HN, given in position, let fall as many perpendiculars
        AH, BI, CK, DL, EM, FN, &c.
    

    
        
            
                	
                    
                        
                            
                                	b
                                	 
 
                                	2b
                                	 
 
                                	3b
                                	 
 
                                	4b
                                	 
 
                                	5b
                            

                            
                                	 
 
                                	c
                                	 
 
                                	2c
                                	 
 
                                	3c
                                	 
 
                                	4c
                                	 
 
                            

                            
                                	 
 
                                	 
 
                                	d
                                	 
 
                                	2d
                                	 
 
                                	3d
                                	 
 
                                	 
 
                            

                            
                                	 
 
                                	 
 
                                	 
 
                                	e
                                	 
 
                                	2e
                                	 
 
                                	 
 
                                	 
 
                            

                            
                                	 
 
                                	 
 
                                	 
 
                                	 
 
                                	f
                                	 
 
                                	 
 
                                	 
 
                                	 
 
                            

                        
                    

                
                	
                    
                        [image: Mathematical Principles of Natural Philosophy figure: 466]
                    
                
            

        
    

    
        Case 1. If HI, IK, KL, &c., the intervals
        of the points H, I, K, L, M, N, &c., are equal, take b, 2b, 3b,
        4b, 5b, &c., the first differences of the perpendiculars AH,
        BI, CK, &c.; their second differences c, 2c, 3c, 4c, &c.;
        their third, d, 2d, 3d, &c., that is to say, so as AH − BI
        may be = b, BI − CK = 2b, CK
        − DL = 3b, DL + EM = 4b, − EM + FN = 5b,
        &c.; then b − 2b = c, &c., and so
        on to the last difference, which is here f. Then, erecting any
        perpendicular RS, which may be considered as an ordinate of the curve
        required, in order to find the length of this ordinate, suppose the
        intervals HI, IK, KL, LM, &c., to be units, and let AH = a,
        −HS = p, ½p into −IS = q, ⅓q into
        + SK = r, ¼r into + SL = s,
        1/5s
        into + SM = t; proceeding, to wit, to ME, the last
        perpendicular but one, and prefixing negative signs before the terms HS,
        IS, &c., which lie from S towards A; and affirmative signs before
        the terms SK, SL, &c., which lie on the other side of the point S;
        and, observing well the signs, RS will be = a + bp + cq + dr + es
        + ft, + &c.
    

    
        Case 2. But if HI, IK, &c., the intervals
        of the points H, I, K, L, &c.. are unequal, take b, 2b, 3b, 4b,
        5b, &c., the first differences of the perpendiculars AH, BI,
        CK, &c., divided by the intervals between those perpendiculars; c,
        2c, 3c, 4c, &c., their second differences, divided by the
        intervals between every two; d, 2d, 3d, &c., their third
        differences, divided by the intervals between every three; e, 2e,
        &c., their fourth differences, divided by the intervals between
        every four; and so forth; that is, in such manner, that b may
        be =AH-BI

        HI, 2b=BI-CK

        IK, 3b=CK-DL

        KL, &c., then c =
        b-2b

        HK, 2c=2b-3b

        IL, 3c=3b-4b

        KM, &c., then d=
        c-2c

        HL, 2d=2c-3c

        IM, &c. And those differences being
        found, let AH be = a, − HS = p, p into −IS = q,
        q into + SK = r, r into + SL = s, s into + SM
        = t; proceeding, to wit, to ME, the last perpendicular but
        one: and the ordinate RS will be = a + bp + cq + dr + es + ft,
        + &c.
    

    
        Cor. Hence the areas of all curves may be
        nearly found; for if some number of points of the curve to be squared
        are found, and a parabola be supposed to be drawn through those points,
        the area of this parabola will be nearly the same with the area of the
        curvilinear figure proposed to be squared: but the parabola can be
        always squared geometrically by methods vulgarly known.
    




    
        Lemma vi.

        
            
                Certain observed places of a comet being given, to find the place
                of the same to any intermediate given time.
            
        

    

    
        Let HI, IK, KL, LM (in the preceding Fig.), represent the times between
        the observations; HA, IB, KC, LD, ME, five observed longitudes of the
        comet; and HS the given time between the first observation and the
        longitude required. Then if a regular curve ABCDE is supposed to be
        drawn through the points A, B, C, D, E, and the ordinate RS is found out
        by the preceding lemma, RS will be the longitude required.
    

    
        After the same method, from five observed
        latitudes, we may find the latitude to a given time.
    

    
        If the differences of the observed longitudes are small, suppose of 4
        or 5 degrees, three or four observations will be sufficient to find a
        new longitude and latitude; but if the differences are greater, as of 10
        or 20 degrees, five observations ought to be used.
    




    
        Lemma vii.

        
            Through a given point P to draw a right line BC, whose
            parts PB, PC, cut off by two right lines AB, AC,
            given in position, may be one to the other in a given proportion.
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        From the given point P suppose any right line PD to be drawn to either
        of the right lines given, as AB; and produce the same towards AC, the
        other given right line, as far as E, so as PE may be to PD in the given
        proportion. Let EC be parallel to AD. Draw CPB, and PC will be to PB as
        PE to PD.   Q.E.F.
    




    
        Lemma viii.

        
            Let ABC be a parabola, having its focus in S.
            By the chord AC bisected in I cut off the
            segment ABCI, whose diameter is Iμ and vertex μ.
            In Iμ produced take μO equal to one half of
            Iμ. Join OS, and produce it to ξ, so as Sξ may
            be equal to 2SO. Now, supposing a comet to revolve in the
            arc CBA, draw ξB, cutting AC in E;
            I say, the point E will cut off from the chord AC the
            segment AE, nearly proportional to the time.
        

    

    
        For if we join EO, cutting the parabolic arc ABC in Y, and draw μX
        touching the same arc in the vertex μ, and meeting EO in X,
        the curvilinear area AEXμA will be to the curvilinear area ACYμA
        as AE to AC; and, therefore, since the triangle ASE is to the triangle
        ASC in the same proportion, the whole area ASEXμA will be to
        the whole area ASCYμA as
        [image: Mathematical Principles of Natural Philosophy figure: 468b]
        
        AE to AC. But, because ξO is to SO as 3 to 1, and EO to XO in the
        same proportion, SX will be parallel to EB; and, therefore, joining BX,
        the triangle SEB will be equal to the triangle XEB. Wherefore if to the
        area ASEXμA we add the triangle EXB, and from the sum subduct
        the triangle SEB, there will remain the area ASBXμA, equal to
        the area ASEXμA, and therefore in proportion to the area ASCYμA
        as AE to AC. But the area ASBYμA is nearly equal to the area
        ASBXμA; and this area ASBYμA is to the area ASCYμA
        as the time of description of the arc AB to the time of description of
        the whole arc AC; and, therefore, AE is to AC nearly in the proportion
        of the times.   Q.E.D.
    

    
        Cor. When the point B falls upon the vertex μ
        of the parabola, AE is to AC accurately in the proportion of the times.
    




    Scholium.


    
        If we join μξ cutting AC in δ, and in it take ξn
        in proportion to μB as 27MI to 16Mμ, and draw Bn,
        this Bn will cut the chord AC, in the proportion of the times,
        more accurately than before; but the point n is to be taken
        beyond or on this side the point ξ, according as the point B
        is more or less distant from the principal vertex of the parabola than
        the point μ.
    




    
        Lemma ix.

        
            The right lines Iμ and μM, and the length
            AI2

            4Sμ, are equal among themselves.
        

    

    
        For 4Sμ is the latus rectum of the parabola belonging to the
        vertex μ.
    




    
        Lemma X.

        
            Produce Sμ to N and P, so as μN
            may be one third of μI, and SP may be to
            SN as SN to Sμ; and in the time that a comet
            would describe the arc AμC, if it was supposed to
            move always forwards with the velocity which it hath in a height
            equal to SP, it would describe a length equal to the chord
            AC.
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        For if the comet with the velocity which it hath in μ was in
        the said time supposed to move uniformly forward in the right line which
        touches the parabola in μ, the area which it would describe by
        a radius drawn to the point's would be equal to the parabolic area ASCμA;
        and therefore the space contained under the length described in the
        tangent and the length Sμ would be to the space contained under
        the lengths AC and SM as the area ASCμA
        to the triangle ASC, that is, as SN to SM. Wherefore AC is to the length
        described in the tangent as Sμ to SN. But since the velocity of
        the comet in the height SP (by Cor. 6, Prop. XVI., Book I) is to the
        velocity of the same in the height Sμ in the reciprocal
        subduplicate proportion of SP to Sμ, that is, in the proportion
        of Sμ to SN, the length described with this velocity will be to
        the length in the same time described in the tangent as Sμ to
        SN. Wherefore since AC, and the length described with this new velocity,
        are in the same proportion to the length described in the tangent, they
        mast be equal betwixt themselves.   Q.E.D.
    

    
        Cor. Therefore a comet, with that velocity
        which it hath in the height Sμ + ⅔Iμ, would in the
        same time describe the chord AC nearly.
    




    
        Lemma xi.

        
            If a comet void of all motion was let fall from, the height
            SN, or Sμ + ⅓Iμ, towards the sun, and was still
            impelled to the sun by the same force uniformly continued by which
            it was impelled at first, the same, in one half of that time in
            which it might describe the arc AC in its own orbit, would
            in descending describe a space equal to the length Iμ.
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        For in the same time that the comet would require to describe the
        parabolic arc AC, it would (by the last Lemma), with that velocity which
        it hath in the height SP, describe the chord AC; and, therefore (by Cor.
        7, Prop. XVI, Book 1), if it was in the same time supposed to revolve by
        the force of its own gravity in a circle whose semi-diameter was SP, it
        would describe an arc of that circle, the length of which would be to
        the chord of the parabolic arc AC in the subduplicate proportion of 1 to
        2. Wherefore if with that weight, which in the height SP it hath towards
        the sun, it should fall from that height towards the sun, it would (by
        Cor. 9, Prop. XVI, Book 1) in half the said time describe a space equal
        to the square of half the said chord applied to quadruple the height SP,
        that is, it would describe the space AI2

        4SP. But since the weight of the comet
        towards the sun in the height SN is to the weight of the same towards
        the sun in the height SP as SP to Sμ, the comet, by the weight
        which it hath in the height SN, in falling from that height towards the
        sun, would in the same time describe the space 
        AI2

        4Sμ; that is, a space equal to the length
        Iμ or μM .   Q.E.D.
    

     




    
        Proposition xli. Problem xxi.

        
            
                From three observations given to determine the orbit of a comet
                moving in a parabola.
            
        

    

    
        This being a Problem of very great difficulty, I tried many methods of
        resolving it; and several of these Problems, the composition whereof I
        have given in the first Book, tended to this purpose. But afterwards I
        contrived the following solution, which is something more simple.
    

    
        Select three observations distant one from another by intervals of time
        nearly equal; but let that interval of time in which the comet moves
        more slowly be somewhat greater than the other; so, to wit, that the
        difference of the times may be to the sum of the times as the sum of the
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        times to about 600 days; or that the point E may fall upon M nearly,
        and may err therefrom rather towards I than
        towards A. If such direct observations are not at hand, a new place of
        the comet must be found, by Lem. VI.
    

    
        Let S represent the sun; T, t, τ, three places of the earth
        in the orbis magnus; TA, tB, τC, three
        observed longitudes of the comet; V the time between the first
        observation and the second; W the time between the second and the third;
        X the length which in the whole time V + W
        [image: Mathematical Principles of Natural Philosophy figure: 471b]
        the comet might describe with that velocity which it hath in the mean
        distance of the earth from the sun, which length is to be found by Cor.
        3, Prop. XL, Book III; and tV a
        perpendicular upon the chord Tτ. In the mean observed longitude
        tB take at pleasure the point B, for the place of the comet in
        the plane of the ecliptic; and from thence, towards the sun S, draw the
        line BE, which may be to the perpendicular tV as the content
        under SB and St² to the cube of the hypothenuse of the right
        angled triangle, whose sides are SB, and the tangent of the latitude of
        the comet in the second observation to the radius tB. And
        through the point E (by Lemma VII) draw the right line AEC, whose parts
        AE and EC, terminating in the right lines TA and τC, may be
        one to the other as the times V and W: then A and C will be nearly the
        places of the comet in the plane of the ecliptic in the first and third
        observations, if B was its place rightly assumed in the second.
    

    
        Upon AC, bisected in I, erect the perpendicular Ii. Through B
        draw the obscure line Bi parallel to AC. Join the obscure line
        Si, cutting AC in λ, and complete the parallelogram iI
        λμ. Take Iσ equal to 3Iλ; and through the sun
        S draw the obscure line σξ equal to 3Sσ + 3iλ.
        Then, cancelling the letters A, E, C, I, from the point B towards the
        point ξ, draw the new obscure line BE, which may be to the
        former BE in the duplicate proportion of the distance BS to the quantity
        Sμ + ⅓iλ. And through the point E draw again the right
        line AEC by the same rule as before; that is, so as its parts AE and EC
        may be one to the other as the times V and W between the observations.
        Thus A and C will be the places of the comet more accurately.
    

    
        Upon AC, bisected in I, erect the perpendiculars AM, CN, IO, of which
        AM and CN may be the tangents of the latitudes in the first and third
        observations, to the radii TA and τC. Join MN, cutting IO in
        O. Draw the rectangular parallelogram iIλμ, as
        before. In IA produced take ID equal to Sμ + ⅔iλ. Then
        in MN, towards N, take MP, which may be to the above found length X in
        the subduplicate proportion of the mean distance of the earth from the
        sun (or of the semi-diameter of the orbis magnus) to the
        distance OD. If the point P fall upon the point N; A, B, and C, will be
        three places of the comet, through which its orbit is to be described in
        the plane of the ecliptic. But if the point P falls not upon the point
        N, in the right line AC take CG equal to NP, so as the points G and P
        may lie on the same side of the line NC.
    

    
        By the same method as the points E, A, C, G, were found from the
        assumed point B, from other points b and β assumed
        at pleasure, find out the new points e, a, c, g; and ε,
        α, κ, γ. Then through G, g, and γ, draw the
        circumference of a circle Ggγ, cutting the right line τC
        in Z: and Z will he one place of the comet in the plane of the ecliptic.
        And in AC, ac, ακ, taking AF, af, αΦ, equal
        respectively to CG, cg, κγ; through the points F, f,
        and Φ, draw the circumference of a circle FfΦ,
        cutting the right line AT in X; and the point X will be another place of
        the comet in the plane of the ecliptic. And at
        the points X and Z, erecting the tangents of the latitudes of the comet
        to the radii TX and τZ, two places of the comet in its own
        orbit will be determined. Lastly, if (by Prop. XIX., Book 1) to the
        focus S a parabola is described passing through those two places, this
        parabola will be the orbit of the comet.   Q.E.I.
    

    
        The demonstration of this construction follows from the preceding
        Lemmas, because the right line AC is cut in E in the proportion of the
        times, by Lem. VII., as it ought to be, by Lem. VIII.; and BE; by Lem.
        XI., is a portion of the right line BS or Bξ in the plane of
        the ecliptic, intercepted between the arc ABC and the chord AEC; and MP
        (by Cor. Lem. X.) is the length of the chord of that arc, which the
        comet should describe in its proper orbit between the first and third
        observation, and therefore is equal to MN, providing B is a true place
        of the comet in the plane of the ecliptic.
    

    
        But it will be convenient to assume the points B, b, β, not
        at random, but nearly true. If the angle AQt, at which the
        projection of the orbit in the plane of the ecliptic cuts the right line
        tB, is rudely known, at that angle with Bt draw the
        obscure line AC, which may be to 4/3Tτ
        in the subduplicate proportion of SQ, to St; and, drawing the
        right line SEB so as its part EB may be equal to the length Vt,
        the point B will be determined, which we are to use for the first time.
        Then, cancelling the right line AC, and drawing anew AC according to the
        preceding construction, and, moreover, finding the length MP, in tB
        take the point b, by this rule, that, if TA and τC
        intersect each other in Y, the distance Yb may be to the
        distance YB in a proportion compounded of the proportion of MP to MN,
        and the subduplicate proportion of SB to Sb. And by the same
        method you may find the third point β, if you please to repeat
        the operation the third time; but if this method is followed, two
        operations generally will be sufficient; for if the distance Bb
        happens to be very small, after the points F, f, and G, g,
        are found, draw the right lines Ff and Gg, and they
        will cut TA and τC in the points required, X and Z.
    




    
        Example.

        
            Let the comet of the year 1680 be proposed. The following table shews
            the motion thereof, as observed by Flamsted, and calculated
            afterwards by him from his observations, and corrected by Dr. Halley
            from the same observations. 
        

    

    
        
            
                	
                    1680, Dec.
                    12

                    21

                    24

                    26

                    29

                    30

                    1681, Jan. 5

                    9

                    10

                    13

                    25

                    30

                    
                    Feb. 2

                    5
                
                	Time
                	sun's
Longitude
                	Comet's
            

            
                	Appar.
                	True.
                	Longitude.
                	Lat. N.
            

            
                	
                    h.   ″

                    4.46

                    6.32½

                    6.12

                    5.14

                    7.55

                    8.02

                    5.51

                    6.49

                    5.54

                    6.56

                    7.44

                    8.07

                    6.20

                    6.50
                
                	
                    h.   '   ″

                    4.46.0

                    6.36.59

                    6.17.52

                    5.20.44

                    8.03.02

                    8.10.26

                    6.01.38

                    7.00.53

                    6.06.10

                    7.08.55

                    7.58.42

                    8.21.53

                    6.34.51

                    7.04.41
                
                	
                    °   '   ″

                    ♑   1.51.23

                    11.06.44

                    14.09.26

                    16.09.22

                    19.19.43

                    20.21.09

                    26.22.18

                    ♒   0.29.02

                    1.27.43

                    4.33.20

                    16.45.36

                    21.49.58

                    24.46.59

                    27.49.51
                
                	
                    °   '   ″

                    ♑   6.32.30

                    ♒   5.08.12

                    18.49.23

                    28.24.13

                    ♓   13.10.41

                    17.38.20

                    ♈ 8.48.53

                    18.44.04

                    20.40.50

                    25.59.48

                    ♉ 9.35.0

                    13.19.51

                    15.13.53

                    16.59.06
                
                	
                    °   '   ″

                    8.25. 0

                    21.42.13

                    25.23. 5

                    27.00.52

                    28.09.58

                    28.11.53

                    26.15. 7

                    24.11.56

                    23.43.52

                    22.17.28

                    17.56.30

                    16.42.18

                    16.04. 1

                    15.27. 3
                
            

        
    

    To these you may add some observations of mine.

    
      
        
            	
                1681, Feb. 25

                27

                Mar. 1

                2

                5

                7

                9
            
            	Ap.
Time.
            	Comet's
        

        
            	 
  
            	Longitude
            	Lat. N.
        

        
            	
                h.   '

                8.30

                8.15

                11. 0

                8. 0

                11.30

                9.30

                8.30
            
            	
                °   '   ″

                ♉   26.18.35

                27.04.30

                27.52.42

                28.12.48

                29.18. 0

                ♊     0. 4. 0

                0. 43. 4
            
            	
                °   '   ″

                12.46.46

                12.36.12

                12.23.40

                12.19.38

                12.03.16

                11.57. 0

                11.45.52
            
        

      
    

    
        These observations were made by a telescope of 7 feet, with a
        micrometer and threads placed in the focus of the telescope; by which
        instruments we determined the positions both of the fixed stars among
        themselves, and of the comet in respect of the fixed stars. Let A
        represent the star of the fourth magnitude in the left heel of Perseus
        (Bayer's' ο), B the following star of the third magnitude in
        the left foot (Bayer's ζ), C a star of the sixth magnitude (Bayer's
        n) in the heel of the same foot, and D, E, F, G, H, I, K, L, M,
        N, O, Z, α, β, γ, δ, other smaller stars in the same foot; and
        let p, P, Q, R, S, T, V, X, represent the places of the comet
        in the observations above set down; and, reckoning the distance AB of 80
        7/12 parts, AC was 52¼ of
        those parts; BC, 585/6;
        AD, 575/12; BD, 82
        6/11; CD, 23⅔; AE, 294/7;
        CE, 57½; DE, 4911/12;
        AI, 277/12; BI, 52
        1/6; CI, 367/12;
        DI, 535/11; AK, 38⅔; BK,
        43; CK, 315/9; FK, 29;
        FB, 23; FC, 36¼; AH, 186/7;
        DH, 507/8; BN, 465/12;
        CN, 31⅓; BL, 455/12; NL,
        315/7. HO was to HI as 7
        to 6, and, produced, did pass between the stars D and E, so as the
        distance of the star D from this right line was 1/6CD.
        LM was to LN as 2 to 9, and, produced, did pass through the star H. Thus
        were the positions of the fixed stars determined in respect of one
        another. 
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        Mr. Pound has since observed a second time the positions of
        those fixed stars amongst themselves, and collected their longitudes and
        latitudes according to the following table.
    

    
        
            
                	The
fixed
stars.
                	Their
Longitudes
                	Latitude
North.
                	The
fixed
stars.
                	Their
Longitudes
                	Latitude
North.
            

            
                	
                     

                    A

                    B

                    C

                    E

                    F

                    G

                    H

                    I

                    K
                
                	
                    °   '   ″

                    ♉   26.41.50

                    28.40.23

                    27.58.30

                    26.27.17

                    28.28.37

                    26.56. 8

                    27.11.45

                    27.25. 2

                    27.42. 7
                
                	
                    °   '   ″

                    ♉   12. 8.36

                    11.17.54

                    12.40.25

                    12.52. 7

                    11.52.22

                    14.4.58

                    12.2. 1

                    11.53.11

                    11.53.26
                
                	
                     

                    L

                    M

                    N

                    Z

                    α

                    β

                    γ

                    δ
                
                	
                    °   '   ″

                    ♉   29.33.34

                    29.18.54

                    28.48.29

                    29.44.48

                    29.52. 3

                    ♊   0. 8.23

                    0.40.10

                    1. 3.20
                
                	
                    °   '   ″

                    12. 7.48

                    12. 7.20

                    12.31. 9

                    11.57.13

                    11.55.48

                    11.48.53

                    11.55.18

                    11.30.42
                
            

        
    

    The positions of the comet to these fixed stars were observed to be as follow:

    
        Friday, February 25, O.S. at 8½h. P. M. the
        distance of the comet in p from the star E was less than
        3/13AE, and greater than
        1/5AE, and therefore nearly
        equal to 3/14AE; and
        the angle ApE was a little obtuse, but almost right. For from
        A, letting fall a perpendicular on pE; the distance of the
        comet from that perpendicular was 1/5pE.
    

    
        The same night, at 9½h., the distance of the comet in P from
        the star E was greater than 1

        41/2 AE, and less
        than 1

        51/4 AE, and
        therefore nearly equal to 1

        47/8 of AE, or
        8/39 AE. But the distance of
        the comet from the perpendicular let fall from the star A upon the right
        line PE was 4/5PE.
    

    
        Sunday, February 27, 8¼h. P. M. the distance of
        the comet in Q from the star O was equal to the distance of the stars O
        and H; and the right line QO produced passed between the stars K and B.
        I could not, by reason of intervening clouds, determine the position of
        the star to greater accuracy.
    

    
        Tuesday, March 1, 11h . P. M. the comet in R lay
        exactly in a line between the stars K and C, so as the part CR of the
        right line CRK was a little greater than ⅓CK, and a little less than ⅓CK
        + 1/8CR, and therefore
        = ⅓CK + 1/16CR, or
        16/45CK.
    

    
        Wednesday, March 2, 8h. P. M. the distance of the
        comet in S from the star C was nearly 4/9FC;
        the distance of the star F from the right line CS produced was 1/24FC;
        and the distance of the star B from the same right line was five times
        greater than the distance of the star F; and the right line NS produced
        passed between the stars H and I five or six times nearer to the star H
        than to the star I.
    

    
        Saturday, March 5, 11½h. P. M. when the comet was
        in T, the right line MT was equal to ½ML, and the right line LT produced
        passed between B and F four or five times nearer to F than to B, cutting
        off from BF a fifth or sixth part thereof towards F: and MT produced
        passed on the outside of the space BF towards the star B four times
        nearer to the star B than to the star F. M was a very small star,
        scarcely to be seen by the telescope; but the star L was greater, and of
        about the eighth magnitude.
    

    
        Monday, March 7, 9½h. P. M. the comet being in V,
        the right line Va produced did pass between B and F, cutting
        off, from BF towards F, 1/10
        of BF, and was to the right line Vβ as 5 to 4. And the distance
        of the comet from the right line αβ was ½Vβ.
    

    
        Wednesday, March 9, 8½h. P. M. the comet being in
        X, the right line γX was equal to ¼γδ and the
        perpendicular let fall from the star δ upon the right γX
        was 2/5 of γδ.
    

    
        The same night, at 12h. the comet being in Y, the right line
        γY was equal to ⅓ of γδ, or
        a little less, as perhaps 5/16
        of γδ; and a perpendicular let fall from the star δ
        on the right line γY was equal to about 1/6
        or 1/7 γδ.
        But the comet being then extremely near the horizon, was scarcely
        discernible, and therefore its place could not be determined with that
        certainty as in the foregoing observations.
    

    
        Prom these observations, by constructions of figures and calculations,
        I deduced the longitudes and latitudes of the comet; and Mr. Pound,
        by correcting the places of the fixed stars, hath determined more
        correctly the places of the comet, which correct places are set down
        above. Though my micrometer was none of the best, yet the errors in
        longitude and latitude (as derived from my observations) scarcely exceed
        one minute. The comet (according to my observations), about the end of
        its motion, began to decline sensibly towards the north, from the
        parallel which it described about the end of February.
    

    
        Now, in order to determine the orbit of the comet out of the
        observations above described, I selected those three which Flamsted
        made, Dec. 21, Jan. 5, and Jan. 25; from
        which I found St of 9842,1 parts, and Vt of 455, such
        as the semi-diameter of the orbis magnus contains 10000. Then
        for the first observation, assuming tB of 5657 of those parts,
        I found SB 9747, BE for the first time 412, Sμ 9503, iλ
        413, BE for the second time 421, OD 10186, X 8528,4, PM 8450, MN 8475,
        NP 25; from whence, by the second operation, I collected the distance tb
        5640; and by this operation I at last deduced the distances TX 4775 and
        τZ 11322. From which, limiting the orbit, I found its
        descending node in ♋, and ascending node in ♑
        1° 53; the inclination of its plane to the plane of the ecliptic 61°
        20⅓, the vertex thereof (or the perihelion of the comet) distant from
        the node 8° 38, and in ♐ 27°
        43′, with latitude 7° 34′ south; its latus rectum 236,8; and
        the diurnal area described by a radius drawn to the sun 93585, supposing
        the square of the semi-diameter of the orbis magnus 100000000;
        that the comet in this orbit moved directly according to the order of
        the signs, and on Dec. 8d.00h.04′ P. M
        was in the vertex or perihelion of its orbit. All which I determined by
        scale and compass, and the chords of angles, taken from the table of
        natural sines, in a pretty large figure, in which, to wit, the radius of
        the orbis magnus (consisting of 10000 parts) was equal to 16⅓
        inches of an English foot.
    

    
        Lastly, in order to discover whether the comet did truly move in the
        orbit so determined, I investigated its places in this orbit partly by
        arithmetical operations, and partly by scale and compass, to the times
        of some of the observations, as may be seen in the following table:—
        
    

    
        
            
                	The Comet's
            

            
                	 
 
                	Dist.
from
sun.
                	Longitude
computed.
                	Latitud.
computed.
                	Longitude
observed.
                	Latitude
observed
                	Dif.
Lo.
                	Dif.
Lat.
            

            
                	
                    Dec. 12

                    29

                    
                    Feb. 5

                    
                    Mar. 5
                
                	
                    2792

                    8403

                    16669

                    21737
                
                	
                    ♑ 6°.32′

                    ♓ 13 .13⅔

                    ♉ 17 .00

                    29 .19¾
                
                	
                    8°.18½

                    28 .00

                    15 .29⅔

                    12 . 4
                
                	
                    ♑ 6° 31½

                    ♓ 13 .11

                    ♉ 16 .597/8

                    29 .206/7
                
                	
                    8°.26

                    28 .101/12

                    15 .272/5

                    12 .3½
                
                	
                    +1

                    +2

                    +0

                    -1
                
                	
                    -7½

                    -101/12

                    + 2¼

                    + ½
                
            

        
    

    
        But afterwards Dr. Halley did determine the orbit to a
        greater accuracy by an arithmetical calculus than could be done by
        linear descriptions; and, retaining the place of the nodes in ♋ and ♑
        1° 53′, and the inclination of the plane of the orbit to the ecliptic
        61° 20⅓′, as well as the time of the comet's being in perihelio, Dec.
        8d.00h.04′, he found the distance of the
        perihelion from the ascending node measured in the comet's orbit 9° 20′,
        and the lutus rectum of the parabola 2430 parts, supposing the
        mean distance of the sun from the earth to be 100000 parts; and from
        these data, by an accurate arithmetical calculus, he computed
        the places of the comet to the times of the observations as follows:—
    

    
        
            
                	The Comet's
            

            
                	True time.
                	Dist from
the sun.
                	Longitude
computed.
                	Latitude
computed.
                	Errors in
Long.     Lat.
            

            
                	
                    d.   h.   ′ ″

                    Dec. 12.4.46.  

                    21.6.37.  

                    24.6.18.  

                    26.5.20.  

                    29.8. 3.  

                    30.8.10.  

                    
                    Jan. 5.3.1.½

                    9.7. 0.  

                    10.6. 6.  

                    13.7. 9.  

                    25.7.59.  

                    30.8.22.  

                    
                    Feb. 2.6.35.  

                    5.7.4.½

                    25.8.41.  

                    
                    Mar. 5.11.39.   
                
                	
                    

                    28025

                    61076

                    70008

                    75576

                    84021

                    86661

                    101440

                    110959

                    113162

                    120000

                    145370

                    155303

                    160951

                    166686

                    202570

                    216205
                
                	
                    °   ′   ″

                    ♑ 6.29.25

                    ♒ 5.6.30

                    18.48.20

                    28.22.45

                    ♓ 13.12.40

                    17.40.5

                    ♈ 8.49.49

                    18.44.36

                    20.41.0

                    26.0.21

                    ♉ 9.33.40

                    13.17.41

                    15.11.11

                    16.58.55

                    26.15.46

                    29.18.35
                
                	
                    °   ′   ″

                    8.26.0 bor.

                    21.43.20

                    25.22.40

                    27.1.36

                    28.10.10

                    28.11.20

                    26.15.15

                    24.12.54

                    23.44.10

                    22.17.30

                    17.57.55

                    16.42.7

                    16.4.15

                    15.29.13

                    12.48.0

                    15.5.40
                
                	
                    ′   ″

                    -3.5

                    -1.42

                    -1.3

                    -1.28

                    +1.59

                    +1.45

                    +0.56

                    +0.32

                    0.10

                    0.33

                    -1.20

                    -2.10

                    -2.42

                    -0.41

                    -2.49

                    +0.35
                
                	
                    ′   ″

                    -2.0

                    +1.7

                    -0.25

                    +0.44

                    +0.12

                    -0.33

                    +0.8

                    0.58

                    +0.18

                    +0.2

                    +1.25

                    -0.11

                    +0.14

                    +2.0

                    +1.10

                    +2.14
                
            

        
    

    
        This comet also appeared in the November before, and at Coburg,
        in Saxony, was observed by Mr. Gottfried Kirch, on
        the 4th of that month, on the 6th and 11th O. S.; from its positions to
        the nearest fixed stars observed with sufficient accuracy, sometimes
        with a two feet, and sometimes with a ten feet telescope; from the
        difference of longitudes of Coburg and London, 11°;
        and from the places of the fixed stars observed by Mr. Pound,
        Dr. Halley has determined the places of the comet as follows:—
    

    
        Nov. 3, 17h.2′, apparent
        time at London, the comet was in ♌
        29 deg. 51′, with 1 deg. 17′ 45″ latitude north.
    

    
        November 5. 15h.58′ the comet was in ♍ 3° 23′, with 1° 6′ nortl. lat.

    
        November 10, 16h.31′, the comet was equally distant
        from two stars in ♌ which are σ
        and τ in Bayer; but it had not quite touched the
        right line that joins them, but was very little distant from it. In Flamsted's
        catalogue this star σ was then in ♍
        14° 15′, with 1 deg. 41′ lat. north nearly, and τ in ♍ 17° 3½′, with 0 deg. 34 lat. south; and the
        middle point between those stars was ♍
        15° 39¼′, with 0° 33½′ lat. north. Let the distance of the comet from
        that right line be about 10′ or 12′; and the difference of the longitude
        of the comet and that middle point will be 7′; and the difference of the
        latitude nearly 7½′; and thence it follows that the comet was in
        ♍ 15° 32′, with about 26′ lat. north.
    

    
        The first observation from the position of the comet with respect to
        certain small fixed stars had all the exactness that could be desired;
        the second also was accurate enough. In the third observation, which was
        the least accurate, there might be an error of 6 or 7 minutes, but
        hardly greater. The longitude of the comet, as found in the first and
        most accurate observation, being computed in the aforesaid parabolic
        orbit, comes out ♌ 29° 30′ 22″, its
        latitude north 1° 25′ 7″, and its distance from the sun 115546.
    

    
        Moreover, Dr. Halley, observing that a remarkable comet had
        appeared four times at equal intervals of 575 years (that is, in the
        month of September after Julius Caesar was killed; An.
        Chr. 531, in the consulate of Lampadius and Orestes;
        An. Chr. 1106, in the month of February; and at the
        end of the year 1680; and that with a long and remarkable tail, except
        when it was seen after Caesar's death, at which time, by
        reason of the inconvenient situation of the earth, the tail was not so
        conspicuous), set himself to find out an elliptic orbit whose greater
        axis should be 1382957 parts, the mean distance of the earth from the
        sun containing 10000 such; in which orbit a comet might revolve in 575
        years; and, placing the ascending node in ♋
        2° 2′, the inclination of the plane of the orbit to the plane of the
        ecliptic in an angle of 61° 6′ 48″, the perihelion of the comet in this
        plane in ♐ 22° 44′ 25″, the
        equal time of the perihelion December 7d.23h.9′,
        the distance of the perihelion from the ascending node in the plane of
        the ecliptic 9° 17′ 35″, and its conjugate axis 18481,2, he computed the
        motions of the comet in this elliptic orbit. The places of the comet, as
        deduced from the observations, and as arising from computation made in
        this orbit, may be seen in the following table. 
    

    
        
            
                	True time.
                	Longitudes
observed.
                	Latitude
North
obs.
                	Longitude
computed.
                	Latitude
computed.
                	Errors in
Long.   Lat.
            

            
                	
                    d.   h.   ′

                    Nov. 3.16.47

                    5.15.37

                    10.16.18

                    16.17.00

                    18.21.34

                    20.17.0

                    23.17.5

                    Dec. 12.4.46

                    21.6.37

                    24.6.18

                    26.5.21

                    29.8.3

                    30.8.10

                    Jan. 5.6.1½

                    9.7.7

                    10.6.6

                    13.7.9

                    25.7.59

                    30.8.22

                    Feb. 2.6.35

                    5.7.4½

                    25.8.41

                    Mar. 1.11.10

                    5.11.39

                    9.8.38
                
                	
                    °   ′   ″

                    ♌   29.51.0

                    ♍   3.23.0

                    15.32. 0

                    

                    

                    

                    

                    ♑   6.32.30

                    ♒ 5. 8.12

                    18.49.23

                    28.24.13

                    ♓   13.10.41

                    17.38. 0

                    ♈   8.48.53

                    18.44. 4

                    20.40.50

                    25.59.48

                    ♉   9.35. 0

                    13.19.51

                    15.13.53

                    16.59. 6

                    26.18.35

                    27.52.42

                    29.18. 0

                    ♊   0.43.4
                
                	
                    °   ′   ″

                    1.17.45

                    1.6. 0

                    0.27. 0

                    

                    

                    

                    

                    8.28. 0

                    21.42.13

                    25.23. 5

                    27. 0.52

                    28. 9.58

                    28.11.53

                    26.15. 7

                    24.11.56

                    23.43.32

                    22.17.28

                    17.56.30

                    16.42.18

                    16. 4. 1

                    15.27. 3

                    12.46.46

                    12.23.40

                    12. 3.16

                    11.45.52
                
                	
                    °   ′   ″

                    ♌   29.51.22

                    ♍   3.24.32

                    15.33. 2

                    ♎   8.16.45

                    18.52.15

                    28.10.36

                    ♏   13.22.42

                    ♑   6.31.20

                    ♒   5. 6.14

                    18.47.30

                    28.21.42

                    ♓   13.11.14

                    17.38.27

                    ♈   8.48.51

                    18.43.51

                    20.40.23

                    26. 0. 8

                    ♉   9.34.11

                    13.18.25

                    15.11.59

                    16.59.17

                    26.16.59

                    27.51.47

                    29.20.11

                    ♊   0.42.43
                
                	
                    °   ′   ″

                    1.17.32    N

                    1. 6. 9

                    0.25. 7

                    0.53. 7    S

                    1.26.54

                    1.53.35

                    2.29. 0

                    8.29. 6    N

                    21.44.42

                    25.23.35

                    27. 2. 1

                    28.10.38

                    28.11.37

                    26.14.57

                    24.12.17

                    23.43.25

                    22.16.32

                    17.56. 6

                    16.40. 5

                    16. 2.17

                    15.27. 0

                    12.45.22

                    12.22.28

                    12. 2.50

                    11.45.35
                
                	
                    ′   ″

                    +0.22

                    +1.32

                    +1.2

                    

                    

                    

                    

                    -1.10

                    -1.58

                    -1.53

                    -2.31

                    +0,33

                    +0.7

                    -0.2

                    -0.13

                    -0.27

                    +0.20

                    -0,49

                    -1.23

                    -1.54

                    +0.11

                    -1.36

                    -0.55

                    +2.11

                    -0.21
                
                	
                    ′   ″

                    -0.13

                    +0.9

                    -1.53

                    

                    

                    

                    

                    +1.6

                    +2.29

                    +0.30

                    +1.9

                    +0.40

                    -0.16

                    -0.10

                    +0.21

                    -0.7

                    -0.56

                    -0.24

                    -2.13

                    -1.54

                    -0.3

                    -1.24

                    -1.12

                    -0.26

                    -0.17
                
            

        
    

    
        The observations of this comet from the beginning to the end agree at
        perfectly with the motion of the comet in the orbit just now described
        as the motions of the planets do with the theories from whence they are
        calculated; and by this agreement plainly evince that it was one and the
        same comet that appeared all that time, and also that the orbit of that
        comet is here rightly defined.
    

    
        In the foregoing table we have omitted the observations of Nov.
        16, 18, 20. and 23, as not sufficiently accurate, for at those times
        several persons had observed the comet. Nov. 17, O. S. Ponthaeus
        and his companions, at 6h. in the morning at Rome
        (that is, 5h.10′ at London], by threads directed to
        the fixed stars, observed the comet in ♎
        8° 30′, with latitude 0° 40 south. Their observations may be seen in a
        treatise which Ponthaeus published concerning this comet. Cellius,
        who was present, and communicated his observations in a letter to Cassini
        saw the comet at the same hour in ♎
        8° 30′, with latitude 0° 30 south. It was likewise seen by Galletius
        at the same hour at Avignon (that is, at 5h.42′
        morning at London) in ♎
        8° without latitude. But by the theory the comet was at that time in
        ♎ 8° 16′ 45″, and its latitude was 0°
        53′ 7″ south.
    

    
        Nov. 18, at 6h.30′ in the morning at Rome
        (that is, at 5h.40′ at London), Ponthaeus
        observed the comet in ♎ 13° 30,
        with latitude 1° 20′ south; and Cellius
        in ♎ 13° 30′, with latitude 1° 00
        south. But at 5h.30′ in the morning at Avignon, Galletius
        saw it in ♎ 13° 00′, with latitude
        1° 00 south. In the University of La Fleche, in France,
        at 5h. in the morning (that is, at 5h.9 at London),
        it was seen by P. Ango, in the middle between two small stars,
        one of which is the middle of the three which lie in a right line in the
        southern hand of Virgo, Bayers ψ; and the other is the outmost
        of the wing, Bayer's θ. Whence the comet was then in ♎ 12° 46′ with latitude 50′ south. And I was
        informed by Dr. Halley, that on the same day at Boston
        in New England, in the latitude of 42½ deg. at 5h.
        in the morning (that is, at 9h.44′ in the morning at London),
        the comet was seen near ♎ 14°,
        with latitude 1° 30 south.
    

    
        Nov. 19, at 4½h. at Cambridge, the comet
        (by the observation of a young man) was distant from Spica
        ♍ about 2° towards the north west. Now
        the spike was at that time in ♎
        19° 23′ 47″, with latitude 2° 1′ 59″ south. The same day, at 5h.
        in the morning, at Boston in New England, the comet
        was distant from Spica ♍ 1°, with
        the difference of 40′ in latitude. The same day, in the island of Jamaica,
        it was about 1° distant from Spica ♍.
        The same day, Mr. Arthur Storer, at the river Patuxent,
        near Hunting Creek, in Maryland, in the confines of
        Virginia, in lat. 38½°, at 5 in the morning (that is, at 10h.
        at London), saw the comet above Spica ♍, and very nearly joined with it, the distance
        between them being about ¾ of one deg. And from these observations
        compared. I conclude, that at 9h.44′ at London the
        comet was in ♎ 18° 50′, with about
        1° 25′ latitude south. Now by the theory the comet was at that time in
        ♎ 18° 52′ 15″, with 1° 26′ 54″ lat.
        south.
    

    
        Nov. 20, Montenari, professor of astronomy at Padua,
        at 6h. in the morning at Venice (that is, 5h.10
        at London), saw the comet in ♎
        23°, with latitude 1° 30′ south. The same day, at Boston, it was distant
        from Spica ♍ by about 4° of
        longitude east, and therefore was in ♎
        23° 24′ nearly.
    

    
        Nov. 21, Ponthaeus and his companions, at 7¼h.
        in the morning, observed the comet in ♎
        27° 50′, with latitude 1° 16′ south; Cellius, in ♎ 28°; P. Ango at 5h. in the
        morning, in ♎ 27° 45′; Montenari
        in ♎ 27° 51′. The same day, in the
        island of Jamaica, it was seen near the beginning of ♏, and of about the same latitude with Spica
        ♍, that is, 2° 2′. The same day, at
        5h. morning, at Ballasore, in the East Indies
        (that is, at 11h.20′ of the night preceding at London),
        the distance of the comet from Spica ♍
        was taken 7° 35′ to the east. It was in a right line between the spike
        and the balance, and therefore was then in ♎
        26° 58′, with about 1° 11′ lat. south; and after 5h.40′ (that
        is, at 5h. morning at London), it was in ♎ 28° 12′, with 1° 16′ lat. south. Now by the
        theory the comet was then in ♎ 28°
        10′ 36″, with 1° 53′ 35″ lat. south.
    

    
        Nov. 22, the comet was seen by Montenari in ♏ 2° 33′; but at Boston in
        New England, it was found in about ♏
        3°, and with almost the same latitude as before, that is, 1° 30′. The
        same day, at 5h. morning at Ballasore,ihe comet was
        observed in ♏ 1° 50′; and
        therefore at 5h. morning at London, the comet was
        ♏ 3° 5′ nearly. The same day, at 6½h.
        in the morning at London, Dr. Hook observed it in
        about ♏ 3° 30′, and that in the
        right line which passeth through Spica ♍
        and Cor Leonis; not, indeed, exactly, but deviating a little
        from that line towards the north. Montenari likewise observed,
        that this day, and some days after, a right line drawn from the comet
        through Spica passed by the south side of Cor Leonis
        at a very small distance therefrom. The right line through Cor
        Leonis and Spica ♍
        did cut the ecliptic in ♍ 3° 46′
        at an angle of 2° 51′; and if the comet had been in this line and in
        ♏ 3°, its latitude would have been 2°
        26′; but since Hook and Montenari agree that the
        comet was at some small distance from this line towards the north, its
        latitude must have been something less. On the 20th, by the observation
        of Montenari, its latitude was almost the same with that of Spica
        ♍, that is, about 1° 30′. But by
        the agreement of Hook, Montenari, and Ango,
        the latitude was continually increasing, and therefore must now, on the
        22d, be sensibly greater than 1° 30′; and, taking a mean between the
        extreme limits but now stated, 2° 26′ and 1° 30′, the latitude will be
        about 1° 58′. Hook and Montenari agree that the tail
        of the comet was directed towards Spica ♍,
        declining a little from that star towards the south according to Hook,
        but towards the north according to Montenari; and, therefore,
        that declination was scarcely sensible; and the tail, lying nearly
        parallel to the equator, deviated a little from the opposition of the
        sun towards the north.
    

    
        Nov. 23, O. S. at 5h. morning, at Nuremberg
        (that is, at 4½h. at London), Mr. Zimmerman
        saw the comet in ♏ 8° 8′, with
        2° 31′ south lat. its place being collected by taking its distances from
        fixed stars.
    

    
        Nov. 24, before sun-rising, the comet was seen by Montenari
        in ♏ 12° 52′ on the north side
        of the right line through Cor Leonis and Spica
        ♍, and therefore its latitude was
        something less than 2° 38′; and since the latitude, as we said, by the
        concurring observations of Montenari, Ango, and Hook,
        was continually increasing, therefore, it was now, on the 24th,
        something greater than 1° 58′; and, taking the mean quantity, may be
        reckoned 2° 18′, without any considerable error. Ponthaeus and
        Galletius will have it that the latitude was now decreasing;
        and Cellius, and the observer in New England, that
        it continued the same, viz., of about 1°, or 1½°. The observations of Ponthaeus
        and Cellius are more rude, especially those which were made by
        taking the azimuths and altitudes; as are also the observations of Galletius.
        Those are better which were made by taking the position of the comet to
        the fixed stars by Montenari, Hook, Ango,
        and the observer in New England, and sometimes by Ponthaeus
        and Cellius. The same day, at 5h. morning, at Ballasore,
        the comet was observed in ♏ 11°
        45′; and, therefore, at 5h. morning at London, was
        in ♏ 13° nearly. And, by the
        theory, the comet was at that time in ♏
        13° 22′ 2″.
    

    
        Nov. 25, before sunrise, Montenari observed the
        comet in ♏ 17¾ nearly; and Cellius
        observed at the same time that the comet was in a right line between the
        bright star in the right thigh of Virgo and the southern scale of Libra;
        and this right line cuts the comet's way in ♏
        18° 36′. And, by the theory, the comet was in ♏
        18⅓° nearly.
    

    
        From all this it is plain that these observations agree with the
        theory, so far as they agree with one another; and by this agreement it
        is made clear that it was one and the same comet that appeared all the
        time from Nov. 4 to Mar. 9. The path of this comet
        did twice cut the plane of the ecliptic, and therefore was not a right
        line. It did cut the ecliptic not in opposite parts of the heavens, but
        in the end of Virgo and beginning of Capricorn, including an arc of
        about 98°; and therefore the way of the comet did very much deviate from
        the path of a great circle; for in the month of Nov. it
        declined at least 3° from the ecliptic towards the south; and in the
        month of Dec. following it declined 29° from the ecliptic towards the
        north; the two parts of the orbit in which the comet descended towards
        the sun, and ascended again from the sun, declining one from the other
        by an apparent angle of above 30°, as observed by Montenari.
        This comet travelled over 9 signs, to wit, from the last deg. of
        ♌ to the beginning of ♓,
        beside the sign of ♌, through which
        it passed before it began to be seen; and there is no other theory by
        which a comet can go over so great a part of the heavens with a regular
        motion. The motion of this comet was very unequable; for about the 20th
        of Nov. it described about 5° a day. Then its motion being
        retarded between Nov. 26 and Dec. 12, to wit, in the space of 15½ days,
        it described only 40°. But the motion thereof being afterwards
        accelerated, it described near 5° a day, till its motion began to be
        again retarded. And the theory which justly corresponds with a motion so
        unequable, and through so great a part of the heavens, which observes
        the same laws with the theory of the planets, and which accurately
        agrees with accurate astronomical observations, cannot be otherwise than
        true.
    

    
        And, thinking it would not be improper, I have given a true
        representation of the orbit which this comet described, and of the tail
        which it emitted in several places, in the annexed figure; protracted in
        the plane of the trajectory. In this scheme ABC represents the
        trajectory of the comet, D the sun DE the axis of the trajectory, DF the
        line of the nodes, GH the intersection of the sphere of the orbis
        magnus with the plane of the trajectory, I the place of the comet
        Nov. 4, Ann. 1680; K the place of the same Nov.
        11; L the place of the same Nov. 19; M its place Dec. 12; N
        
        [image: Mathematical Principles of Natural Philosophy figure: 484]
        its place Dec.
        21; O its place Dec. 29; P its place Jan. 5
        following; Q its place Jan. 25; R its place Feb. 5;
        S its place Feb. 25; T its place March 5; and V its
        place March 9. In determining the length of the tail, I made
        the following observations.
    

    
        Nov. 4 and 6, the tail did not appear; Nov. 11, the
        tail just begun to shew itself, but did not appear above ½ deg. long
        through a 10 feet telescope; Nov. 17, the tail was seen by Ponthaeus
        more than 15° long; Nov. 18, in New-England, the tail appeared
        30° long, and directly opposite to the sun, extending itself to the
        planet Mars, which was then in ♍,
        9° 54′: Nov. 19. in Maryland, the tail was found 15°
        or 20° long; Dec. 10 (by the
        observation of Mr. Flamsted), the tail passed through the
        middle of the distance intercepted between the tail of the Serpent of Ophiuchus
        and the star δ in the south wing of Aquila, and did
        terminate near the stars A, ω, b, in Bayer's tables.
        Therefore the end of the tail was in ♑
        19½°, with latitude about 34¼° north; Dec 11, it ascended to
        the head of Sagitta (Bayer's α, β), terminating in
        ♑ 26° 43′, with latitude 38° 34′
        north; Dec. 12, it passed through the middle of Sagitta,
        nor did it reach much farther; terminating in ♒
        4°, with latitude 42½° north nearly. But these things are to be
        understood of the length of the brighter part of the tail; for with a
        more faint light, observed, too, perhaps, in a serener sky, at Rome,
        Dec. 12, 5h.40′, by the observation of Ponthaeus,
        the tail arose to 10° above the rump of the Swan, and the side thereof
        towards the west and towards the north was 45′ distant from this star.
        But about that time the tail was 3° broad towards the upper end; and
        therefore the middle thereof was 2° 15 distant from that star towards
        the south, and the upper end was ♓
        in 22°, with latitude 61° north; and thence the tail was about 70° long;
        Dec. 21, it extended almost to Cassiopeia's chair,
        equally distant from β and from Schedir, so as its
        distance from either of the two was equal to the distance of the one
        from the other, and therefore did terminate in ♈
        24°, with latitude 47½°; Dec. 29, it reached to a contact with
        Scheat on its left, and exactly filled up the space between the
        two stars in the northern foot of Andromeda, being 54° in
        length; and therefore terminated in ♉
        19°, with 35° of latitude; Jan. 5, it touched the star π
        in the breast of Andromeda on its right side, and the star μ
        of the girdle on its left; and, according to our observations, was 40°
        long; but it was curved, and the convex side thereof lay to the south;
        and near the head of the comet it made an angle of 4° with the circle
        which passed through the sun and the comet's head; but towards the other
        end it was inclined to that circle in an angle of about 10° or 11°; and
        the chord of the tail contained with that circle an angle of 8°. Jan.
        13, the tail terminated between Alamech and Algol,
        with a light that was sensible enough: but with a faint light it ended
        over against the star κ in Perseus's side. The
        distance of the end of the tail from the circle passing through the sun
        and the comet was 3° 50′; and the inclination of the chord of the tail
        to that circle was 8½°. Jan. 25 and 26. it shone with a faint
        light to the length of 6° or 7°; and for a night or two after, when
        there was a very clear sky, it extended to the length of 12°, or
        something more, with a light that was very faint and very hardly to be
        seen; but the axis thereof was exactly directed to the bright star in
        the eastern shoulder of Auriga, and therefore deviated from
        the opposition of the sun towards the north by an angle of 10°. Lastly,
        Feb. 10, with a telescope I observed the tail 2° long; for that
        fainter light which I spoke of did not appear through the glasses. But Ponthaeus
        writes, that, on Feb. 7, he saw the tail 12° long. Feb.
        25, the comet was without a tail, and so continued till it disappeared.
    

    
        Now if one reflects upon the orbit described,
        and duly considers the other appearances of this comet, he will be
        easily satisfied that the bodies of comets are solid, compact, fixed,
        and durable, like the bodies of the planets; for if they were nothing
        else but the vapours or exhalations of the earth, of the sun, and other
        planets, this comet, in its passage by the neighbourhood of the sun,
        would have been immediately dissipated; for the heat of the sun is as
        the density of its rays, that is, reciprocally as the square of the
        distance of the places from the sun. Therefore, since on Dec.
        8, when the comet was in its perihelion, the distance thereof from the
        centre of the sun was to the distance of the earth from the same as
        about 6 to 1000, the sun's heat on the comet was at that time to the
        heat of the summer-sun with us as 1000000 to 36, or as 28000 to 1. But
        the heat of boiling water is about 3 times greater than the heat which
        dry earth acquires from the summer-sun, as I have tried; and the heat of
        red-hot iron (if my conjecture is right) is about three or four times
        greater than the heat of boiling water. And therefore the heat which dry
        earth on the comet, while in its perihelion, might have conceived from
        the rays of the sun, was about 2000 times greater than the heat of
        red-hot iron. But by so fierce a heat, vapours and exhalations, and
        every volatile matter, must have been immediately consumed and
        dissipated.
    

    
        This comet, therefore, must have conceived an immense heat from the
        sun, and retained that heat for an exceeding long time; for a globe of
        iron of an inch in diameter, exposed red-hot to the open air, will
        scarcely lose all its heat in an hour's time; but a greater globe would
        retain its heat longer in the proportion of its diameter, because the
        surface (in proportion to which it is cooled by the contact of the
        ambient air) is in that proportion less in respect of the quantity of
        the included hot matter; and therefore a globe of red hot iron equal to
        our earth, that is, about 40000000 feet in diameter, would scarcely cool
        in an equal number of days, or in above 50000 years. But I suspect that
        the duration of heat may, on account of some latent causes, increase in
        a yet less proportion than that of the diameter; and I should be glad
        that the true proportion was investigated by experiments.
    

    
        It is farther to be observed, that the comet in the month of December,
        just after it had been heated by the sun, did emit a much longer tail,
        and much more splendid, than in the month of November before,
        when it had not yet arrived at its perihelion; and, universally, the
        greatest and most fulgent tails always arise from comets immediately
        after their passing by the neighbourhood of the sun. Therefore the heat
        received by the comet conduces to the greatness of the tail: from
        whence, I think I may infer, that the tail is nothing else but a very
        fine vapour, which the head or nucleus of the comet emits by its heat.
    

    
        But we have had three several opinions about the tails of comets; for
        some will have it that they are nothing else but the
        beams of the sun's light transmitted through the comets heads, which
        they suppose to be transparent; others, that they proceed from the
        refraction which light suffers in passing from the comet's head to the
        earth; and, lastly, others, that they are a sort of clouds or vapour
        constantly rising from the comets heads, and tending towards the parts
        opposite to the sun. The first is the opinion of such as are yet
        unacquainted with optics; for the beams of the sun are seen in a
        darkened room only in consequence of the light that is reflected from
        them by the little particles of dust and smoke which are always flying
        about in the air; and, for that reason, in air impregnated with thick
        smoke, those beams appear with great brightness, and move the sense
        vigorously; in a yet finer air they appear more faint, and are less
        easily discerned; but in the heavens, where there is no matter to
        reflect the light they can never be seen at all. Light is not seen as it
        is in the beam, but as it is thence reflected to our eyes; for vision
        can be no other wise produced than by rays falling upon the eyes; and,
        therefore, there must be some reflecting matter in those parts where the
        tails of the comets are seen: for otherwise, since all the celestial
        spaces are equally illuminated by the sun's light, no part of the
        heavens could appear with more splendor than another. The second opinion
        is liable to many difficulties. The tails of comets are never seen
        variegated with those colours which commonly are inseparable from
        refraction; and the distinct transmission of the light of the fixed
        stars and planets to us is a demonstration that the aether or celestial
        medium is not endowed with any refractive power: for as to what is
        alleged, that the fixed stars have been sometimes seen by the Egyptians
        environed with a Coma or Capitlitium, because that
        has but rarely happened, it is rather to be ascribed to a casual
        refraction of clouds; and so the radiation and scintillation of the
        fixed stars to tin refractions both of the eyes and air; for upon laying
        a telescope to the eye, those radiations and scintillations immediately
        disappear. By the tremulous agitation of the air and ascending vapours,
        it happens that the rays of light are alternately turned aside from the
        narrow space of the pupil of the eye; but no such thing can have place
        in the much wider aperture of the object-glass of a telescope; and hence
        it is that a scintillation is occasioned in the former case, which
        ceases in the latter; and this cessation in the latter case is a
        demonstration of the regular transmission of light through the heavens,
        without any sensible refraction. But, to obviate an objection that may
        be made from the appearing of no tail in such comets as shine but with a
        faint light, as if the secondary rays were then too weak to affect the
        eyes, and for that reason it is that the tails of the fixed stars do not
        appear, we are to consider, that by the means of telescopes the light of
        the fixed stars may be augmented above an hundred fold, and yet no tails
        are seen; that the light of the planets is yet more copious without any
        tail; but that comets are seen sometimes with
        huge tails, when the light of their heads is but faint and dull. For so
        it happened in the comet of the year 1680, when in the month of December
        it was scarcely equal in light to the stars of the second magnitude, and
        yet emitted a notable tail, extending to the length of 40°, 50°, 60°, or
        70°, and upwards; and afterwards, on the 27th and 28th of January,
        when the head appeared but us a star of the 7th magnitude, yet the tail
        (as we said above), with a light that was sensible enough, though faint,
        was stretched out to 6 or 7 degrees in length, and with a languishing
        light that was more difficultly seen, even to 12°, and upwards. But on
        the 9th and 10th of February, when to the naked eye the head
        appeared no more, through a telescope I viewed the tail of 2° in length.
        But farther; if the tail was owing to the refraction of the celestial
        matter, and did deviate from the opposition of the sun, according to the
        figure of the heavens, that deviation in the same places of the heavens
        should be always directed towards the same parts. But the comet of the
        year 1680, December 28d.8½h. P. M. at London,
        was seen in ♓ 8° 41′, with
        latitude north 28° 6′; while the sun was in ♑
        18° 26′. And the comet of the year 1577, December 29d.
        was in ♓ 8° 41′, with latitude
        north 28° 40′, and the sun, as before, in about ♑
        18° 26′. In both cases the situation of the earth was the same, and the
        comet appeared in the same place of the heavens; yet in the former case
        the tail of the comet (as well by my observations as by the observations
        of others) deviated from the opposition of the sun towards the north by
        an angle of 4½ degrees; whereas in the latter there was (according to
        the observations of Tycho) a deviation of 21 degrees towards
        the south. The refraction, therefore, of the heavens being thus
        disproved, it remains that the phaenomena of the tails of
        comets must be derived from some reflecting matter.
    

    
        And that the tails of comets do arise from their heads, and tend
        towards the parts opposite to the sun, is farther confirmed from the
        laws which the tails observe. As that, lying in the planes of the comets
        orbits which pass through the sun, they constantly deviate from the
        opposition of the sun towards the parts which the comets heads in their
        progress along these orbits have left. That to a spectator, placed in
        those planes, they appear in the parts directly opposite to the sun;
        but, as the spectator recedes from those planes, their deviation begins
        to appear, and daily be comes greater. That the deviation, caeteris
        paribus, appears less when the tail is more oblique to the orbit
        of the comet, as well as when the head of the comet approaches nearer to
        the sun, especially if the angle of deviation is estimated near the head
        of the comet. That the tails which have no deviation appear straight,
        but the tails which deviate are like wise bended into a certain
        curvature. That this curvature is greater when the deviation is greater;
        and is more sensible when the tail, caeteris paribus, is
        longer; for in the shorter tails the curvature is hardly to be
        perceived. That the angle of deviation is less
        near the comet's head, but greater towards the other end of the tail;
        and that because the convex side of the tail regards the parts from
        which the deviation is made, and which lie in a right line drawn out
        infinitely from the sun through the comet's head. And that the tails
        that are long and broad, and shine with a stronger light, appear more
        resplendent and more exactly defined on the convex than on the concave
        side. Upon which accounts it is plain that the phaenomena of
        the tails of comets depend upon the motions of their heads, and by no
        means upon the places of the heavens in which their heads are seen; and
        that, therefore, the tails of comets do not proceed from the refraction
        of the heavens, but from their own heads, which furnish the matter that
        forms the tail. For, as in our air, the smoke of a heated body ascends
        either perpendicularly if the body is at rest, or obliquely if the body
        is moved obliquely, so in the heavens, where all bodies gravitate
        towards the sun, smoke and vapour must (as we have already said) ascend
        from the sun, and either rise perpendicularly if the smoking body is at
        rest, or obliquely if the body, in all the progress of its motion, is
        always leaving those places from which the upper or higher parts of the
        vapour had risen before; and that obliquity will be least where the
        vapour ascends with most velocity, to wit, near the smoking body, when
        that is near the sun. But, because the obliquity varies, the column of
        vapour will be incurvated; and because the vapour in the preceding sides
        is something more recent, that is, has ascended something more late from
        the body, it will therefore be something more dense on that side, and
        must on that account reflect more light, as well as be better defined. I
        add nothing concerning the sudden uncertain agitation of the tails of
        comets, and their irregular figures, which authors sometimes describe,
        because they may arise from the mutations of our air, and the motions of
        our clouds, in part obscuring those tails; or, perhaps, from parts of
        the Via Lactea, which might have been confounded with and
        mistaken for parts of the tails of the comets as they passed by.
    

    
        But that the atmospheres of comets may furnish a supply of vapour great
        enough to fill so immense spaces, we may easily understand from the
        rarity of our own air; for the air near the surface of our earth
        possesses a space 850 times greater than water of the same weight; and
        therefore a cylinder of air 850 feet high is of equal weight with a
        cylinder of water of the same breadth, and but one foot high. But a
        cylinder of air reaching to the top of the atmosphere is of equal weight
        with a cylinder of water about 33 feet high: and, therefore, if from the
        whole cylinder of air the lower part of 850 feet high is taken away, the
        remaining upper part will be of equal weight with a cylinder of water 32
        feet high: and from thence (and by the hypothesis, confirmed by many
        experiments, that the compression of air is as the weight of the
        incumbent atmosphere, and that the force of
        gravity is reciprocally as the square of the distance from the centre of
        the earth) raising a calculus, by Cor. Prop. XXII, Book II, I found,
        that, at the height of one semi-diameter of the earth, reckoned from the
        earth's surface, the air is more rare than with us in a far greater
        proportion than of the whole space within the orb of Saturn to a
        spherical space of one inch in diameter; and therefore if a sphere of
        our air of but one inch in thickness was equally rarefied with the air
        at the height of one semi-diameter of the earth from the earth's
        surface, it would fill all the regions of the planets to the orb of
        Saturn, and far beyond it. Wherefore since the air at greater distances
        is immensely rarefied, and the coma or atmosphere of comets is
        ordinarily about ten times higher, reckoning from their centres, than
        the surface of the nucleus, and the tails rise yet higher, they must
        therefore be exceedingly rare; and though, on account of the much
        thicker atmospheres of comets, and the great gravitation of their bodies
        towards the sun, as well as of the particles of their air and vapours
        mutually one towards another, it may happen that the air in the
        celestial spaces and in the tails of comets is not so vastly rarefied,
        yet from this computation it is plain that a very small quantity of air
        and vapour is abundantly sufficient to produce all the appearances of
        the tails of comets; for that they are, indeed, of a very notable rarity
        appears from the shining of the stars through them. The atmosphere of
        the earth, illuminated by the sun's light, though but of a few miles in
        thickness, quite obscures and extinguishes the light not only of all the
        stars, but even of the moon itself; whereas the smallest stars are seen
        to shine through the immense thickness of the tails of comets, likewise
        illuminated by the sun, without the least diminution of their splendor.
        Nor is the brightness of the tails of most comets ordinarily greater
        than that of our air, an inch or two in thickness, reflecting in a
        darkened room the light of the sun-beams let in by a hole of the
        window-shutter.
    

    
        And we may pretty nearly determine the time spent during the ascent of
        the vapour from the comet's head to the extremity of the tail, by
        drawing a right line from the extremity of the tail to the sun, and
        marking the place where that right line intersects the comet's orbit:
        for the vapour that is now in the extremity of the tail, if it has
        ascended in a right line from the sun, must have begun to rise from the
        head at the time when the head was in the point of intersection. It is
        true, the vapour does not rise in a right line from the sun, but,
        retaining the motion which it had from the comet before its ascent, and
        compounding that motion with its motion of ascent, arises obliquely;
        and, therefore, the solution of the Problem will be more exact, if we
        draw the line which intersects the orbit parallel to the length of the
        tail; or rather (because of the curvilinear motion of the comet)
        diverging a little from the line or length of the tail. And by means of
        this principle I found that the vapour which, January 25, was
        in the extremity of the tail, had begun to rise
        from the head before December 11, and therefore had spent in
        its whole ascent 45 days; but that the whole tail which appeared on December
        10 had finished its ascent in the space of the two days then elapsed
        from the time of the comet's being in its perihelion. The vapour,
        therefore, about the beginning and in the neighbourhood of the sun rose
        with the greatest velocity, and afterwards continued to ascend with a
        motion constantly retarded by its own gravity; and the higher it
        ascended, the more it added to the length of the tail; and while the
        tail continued to be seen, it was made up of almost all that vapour
        which had risen since the time of the comet's being in its perihelion;
        nor did that part of the vapour which had risen first, and which formed
        the extremity of the tail, cease to appear, till its too great distance,
        as well from the sun, from which it received its light, as from our
        eyes, rendered it invisible. Whence also it is that the tails of other
        comets which are short do not rise from their heads with a swift and
        continued motion, and soon after disappear, but are permanent and
        lasting columns of vapours and exhalations, which, ascending from the
        heads with a slow motion of many days, and partaking of the motion of
        the heads which they had from the beginning, continue to go along
        together with them through the heavens. From whence again we have
        another argument proving the celestial spaces to be free, and without
        resistance, since in them not only the solid bodies of the planets and
        comets, but also the extremely rare vapours of comets tails, maintain
        their rapid motions with great freedom, and for an exceeding long time.
    

    
        Kepler ascribes the ascent of the tails of the comets to the
        atmospheres of their heads; and their direction towards the parts
        opposite to the sun to the action of the rays of light carrying along
        with them the matter of the comets tails; and without any great
        incongruity we may suppose, that, in so free spaces, so fine a matter as
        that of the aether may yield to the action of the rays of the sun's
        light, though those rays are not able sensibly to move the gross
        substances in our parts, which are clogged with so palpable a
        resistance. Another author thinks that there may be a sort of particles
        of matter endowed with a principle of levity, as well as others are with
        a power of gravity; that the matter of the tails of comets may be of the
        former sort, and that its ascent from the sun may be owing to its
        levity; but, considering that the gravity of terrestrial bodies is as
        the matter of the bodies, and therefore can be neither more nor less in
        the same quantity of matter, I am inclined to believe that this ascent
        may rather proceed from the rarefaction of the matter of the comets
        tails. The ascent of smoke in a chimney is owing to the impulse of the
        air with which it is entangled. The air rarefied by heat ascends,
        because its specific gravity is diminished, and in its ascent carries
        along with it the smoke with which it is engaged; and why may not the
        tail of a comet rise from the sun after the same manner? For
        the sun's rays do not act upon the mediums which they pervade otherwise
        than by reflection and refraction; and those reflecting particles heated
        by this action, heat the matter of the aether which is involved with
        them. That matter is rarefied by the heat which it acquires, and be
        cause, by this rarefaction, the specific gravity with which it tended
        towards the sun before is diminished, it will ascend therefrom, and
        carry along with it the reflecting particles of which the tail of the
        comet is composed. But the ascent of the vapours is further promoted by
        their circumgyration about the sun, in consequence whereof they
        endeavour to recede from the sun, while the sun's atmosphere and the
        other matter of the heavens are either altogether quiescent, or are only
        moved with a slower circumgyration derived from the rotation of the sun.
        And these are the causes of the ascent of the tails of the comets in the
        neighbourhood of the sun, where their orbits are bent into a greater
        curvature, and the comets themselves are plunged into the denser and
        therefore heavier parts of the sun's atmosphere: upon which account they
        do then emit tails of an huge length; for the tails which then arise,
        retaining their own proper motion, and in the mean time gravitating
        towards the sun, must be revolved in ellipses about the sun in like
        manner as the heads are, and by that motion must always accompany the
        heads, and freely adhere to them. For the gravitation of the vapours
        towards the sun can no more force the tails to abandon the heads, and
        descend to the sun, than the gravitation of the heads can oblige them to
        fall from the tails. They must by their common gravity either fall
        together towards the sun, or be retarded together in their common ascent
        therefrom; and, therefore (whether from the causes already described, or
        from any others), the tails and heads of comets may easily acquire and
        freely retain any position one to the other, without disturbance or
        impediment from that common gravitation.
    

    
        The tails, therefore, that rise in the perihelion positions of the
        comets will go along with their heads into far remote parts, and
        together with the heads will either return again from thence to us,
        after a long course of years, or rather will be there rarefied, and by
        degrees quite vanish away; for afterwards, in the descent of the heads
        towards the sun, new short tails will be emitted from the heads with a
        slow motion; and those tails by degrees will be augmented immensely,
        especially in such comets as in their perihelion distances descend as
        low as the sun's atmosphere; for all vapour in those free spaces is in a
        perpetual state of rarefaction and dilatation; and from hence it is that
        the tails of all comets are broader at their upper extremity than near
        their heads. And it is not unlikely but that the vapour, thus
        perpetually rarefied and dilated, may be at last dissipated and
        scattered through the whole heavens, and by little and little be
        attracted towards the planets by its gravity, and mixed with their
        atmosphere; for as the seas are absolutely necessary to the constitution
        of our earth, that from them, the sun, by its
        heat, may exhale a sufficient quantity of vapours, which, being gathered
        together into clouds, may drop down in rain, for watering of the earth,
        and for the production and nourishment of vegetables; or, being
        condensed with cold on the tops of mountains (as some philosophers with
        reason judge), may run down in springs and rivers; so for the
        conservation of the seas, and fluids of the planets, comets seem to be
        required, that, from their exhalations and vapours condensed, the wastes
        of the planetary fluids spent upon vegetation and putrefaction, and
        converted into dry earth, may be continually supplied and made up; for
        all vegetables entirely derive their growths from fluids, and
        afterwards, in great measure, are turned into dry earth by putrefaction;
        and a sort of slime is always found to settle at the bottom of putrefied
        fluids; and hence it is that the bulk of the solid earth is continually
        increased; and the fluids, if they are not supplied from without, must
        be in a continual decrease, and quite fail at last. I suspect, moreover,
        that it is chiefly from the comets that spirit comes, which is indeed
        the smallest but the most subtle and useful part of our air, and so much
        required to sustain the life of all things with us.
    

    
        The atmospheres of comets, in their descent towards the sun, by running
        out into the tails, are spent and diminished, and become narrower, at
        least on that side which regards the sun; and in receding from the sun,
        when they less run out into the tails, they are again enlarged, if Hevelius
        has justly marked their appearances. But they are seen least of all just
        after they have been most heated by the sun, and on that account then
        emit the longest and most resplendent tails; and, perhaps, at the same
        time, the nuclei are environed with a denser and blacker smoke in the
        lowermost parts of their atmosphere; for smoke that is raised by a great
        and intense heat is commonly the denser and blacker. Thus the head of
        that comet which we have been describing, at equal distances both from
        the sun and from the earth, appeared darker after it had passed by its
        perihelion than it did before; for in the month of December it
        was commonly compared with the stars of the third magnitude, but in November
        with those of the first or second; and such as saw both appearances have
        described the first as of another and greater comet than the second.
        For, November 19, this comet appeared to a young man at Cambridge,
        though with a pale and dull light, yet equal to Spica Virginis;
        and at that time it shone with greater brightness than it did
        afterwards. And Montenari, November 20, st. vet.
        observed it larger than the stars of the first magnitude, its tail being
        then 2 degrees long. And Mr. Storer (by letters which have
        come into my hands) writes, that in the month of December,
        when the tail appeared of the greatest bulk and splendor, the head was
        but small, and far less than that which was seen in the month of November
        before sun-rising; and, conjecturing at the cause of the appearance, he
        judged it to proceed from there being a greater
        quantity of matter in the head at first, which was afterwards gradually
        spent.
    

    
        And, which farther makes for the same purpose, I find, that the heads
        of other comets, which did put forth tails of the greatest bulk and
        splendor, have appeared but obscure and small. For in Brazil, March
        5, 1668, 7h. P. M., St. N. P. Valentinus Estancius
        saw a comet near the horizon, and towards the south west, with a head so
        small as scarcely to be discerned, but with a tail above measure
        splendid, so that the reflection thereof from the sea was easily seen by
        those who stood upon the shore; and it looked like a fiery beam extended
        23° in length from the west to south, almost parallel to the horizon.
        But this excessive splendor continued only three days, decreasing apace
        afterwards; and while the splendor was decreasing, the bulk of the tail
        increased: whence in Portugal it is said to have taken up one
        quarter of the heavens, that is, 45 degrees, extending from west to east
        with a very notable splendor, though the whole tail was not seen in
        chose parts, because the head was always hid under the horizon: and from
        the increase of the bulk and decrease of the splendor of the tail, it
        appears that the head was then in its recess from the sun, and had been
        very near to it in its perihelion, as the comet of 1680 was. And we
        read, in the Saxon Chronicle, of a like comet appearing in the
        year 1106, the star whereof was small and obscure (as that of
        1680), but the splendour of its tail was very bright, and like a
        huge fiery beam stretched out in a direction between the east and
        north, as Hevelius has it also from Simeon,
        the monk of Durham. This comet appeared in the beginning of February,
        about the evening, and towards the south west part of heaven; from
        whence, and from the position of the tail, we infer that the head was
        near the sun. Matthew Paris says, It was distant from the
        sun by about a cubit, from, three of the clock (rather six) till
        nine, putting forth a long tail. Such also was that most
        resplendent comet described by Aristotle, lib. 1, Meteor.
        6. The head whereof could not be seen, because it had set before
        the sun, or at least was hid under the sun's rays; but next day it was
        seen as well as might be; for, having left the sun but a very little
        way, it set immediately after it. And the scattered light of the
        head,, obscured by the too great splendour (of the tail) did
        not yet appear. But afterwards (as Aristotle says) when
        the splendour (of the tail) was now diminished (the
        head of), the comet recovered its native brightness; and the
        splendour (of its tail) reached now to a third part of the
        heavens (that is, to 60°). This appearance was in the winter
        season (an. 4, Olymp. 101), and, rising to Orion's girdle,
        it there vanished away.
                 It is true that the comet of 1618, which
        came out directly from under the sun's rays with a very large tail,
        seemed to equal, if not to exceed, the stars of the first magnitude;
        but, then, abundance of other comets have appeared yet greater than
        this, that put forth shorter tails; some of which are said to
        have appeared as big as Jupiter, others as big as Venus, or even as the
        moon.
    

    
        We have said, that comets are a sort of planets revolved in very
        eccentric orbits about the sun; and as, in the planets which are without
        tails, those are commonly less which are revolved in lesser orbits, and
        nearer to the sun, so in comets it is probable that those which in their
        perihelion approach nearer to the sun ate generally of less magnitude,
        that they may not agitate the sun too much by their attractions. But as
        to the transverse diameters of their orbits, and the periodic times of
        their revolutions, I leave them to be determined by comparing comets
        together which after long intervals of time return again in the same
        orbit. In the mean time, the following Proposition may give some light
        in that inquiry.
    




    
        Proposition xlii. Problem xxii.

        To correct a comet's trajectory found as above.

    

    
        Operation 1. Assume that position of the plane
        of the trajectory which was determined according to the preceding
        proposition; and select three places of the comet, deduced from very
        accurate observations, and at great distances one from the other. Then
        suppose A to represent the time between the first observation and the
        second, and B the time between the second and the third; but it will be
        convenient that in one of those times the comet be in its perigeon, or
        at least not far from it. From those apparent places find, by
        trigonometric operations, the three true places of the comet in that
        assumed plane of the trajectory; then through the places found, and
        about the centre of the sun as the focus, describe a conic section by
        arithmetical operations, according to Prop. XXI., Book 1. Let the areas
        of this figure which are terminated by radii drawn from the sun to the
        places found be D and E; to wit, D the area between the first
        observation and the second, and E the area between the second and third;
        and let T represent the whole time in which the whole area D + E should
        be described with the velocity of the comet found by Prop. XVI., Book 1.
    

    
        Oper. 2. Retaining the inclination of the plane
        of the trajectory to the plane of the ecliptic, let the longitude of the
        nodes of the plane of the trajectory be increased by the addition of 20
        or 30 minutes, which call P. Then from the aforesaid three observed
        places of the comet let the three true places be found (as before) in
        this new plane; as also the orbit passing through those places, and the
        two areas of the same described between the two observations, which call
        d and e; and let t be the whole time in
        which the whole area d + e should be described.
    

    
        Oper. 3. Retaining the longitude of the nodes
        in the first operation, let the inclination of the plane of the
        trajectory to the plane of the ecliptic be increased by adding thereto
        20′ or 30′, which call Q. Then from the aforesaid
        three observed apparent places of the comet let the three true places be
        found in this new plane, as well as the orbit passing through them, and
        the two areas of the same described between the observation, which call
        δ and ε; and let τ be the whole time in
        which the whole area δ + ε should be described.
    

    
        Then taking C to 1 as A to B; and G to 1 as D to E; and g to
        1 as d to e; and γ to 1 as δ to
        ε; let S be the true time between the first observation and the
        third; and, observing well the signs + and −, let such numbers m
        and n be found out as will make 2G − 2C, =
        mG − mg + nG − nγ; and
        2T − 2S = mT − mt + nT − nτ.
        And if, in the first operation, I represents the inclination of the
        plane of the trajectory to the plane of the ecliptic, and K the
        longitude of either node, then I + nQ will be the true
        inclination of the plane of the trajectory to the plane of the ecliptic,
        and K + mP the true longitude of the node. And, lastly, if in
        the first, second, and third operations, the quantities R, r,
        and ρ, represent the parameters of the trajectory, and the
        quantities 1⁄L,
        1⁄l, 1⁄λ,
        the transverse diameters of the same, then R + mr
        − mR + nρ − nR will be the true
        parameter, and 1

        L + ml − mL + nλ − nL
        will be the true transverse diameter of the trajectory which the comet
        describes; and from the transverse diameter given the periodic time of
        the comet is also given.   Q.E.I.   But the periodic
        times of the revolutions of comets, and the transverse diameters of
        their orbits, cannot be accurately enough determined but by comparing
        comets together which appear at different times. If, after equal
        intervals of time, several comets are found to have described the same
        orbit, we may thence conclude that they are all but one and the same
        comet revolved in the same orbit; and then from the times of their
        revolutions the transverse diameters of their orbits will be given, and
        from those diameters the elliptic orbits themselves will be determined.
    

    
        To this purpose the trajectories of many comets ought to be computed,
        supposing those trajectories to be parabolic; for such trajectories will
        always nearly agree with the phaenomena, as appears not only
        from the parabolic trajectory of the comet of the year 1680, which I
        compared above with the observations, but likewise from that of the
        notable comet which appeared in the year 1664 and 1665, and was observed
        by Hevelius, who, from his own observations, calculated the
        longitudes and latitudes thereof, though with little accuracy. But from
        the same observations Dr. Halley did again compute its places;
        and from those new places determined its trajectory, finding its
        ascending node in ♊ 21° 13′ 55″;
        the inclination of the orbit to the plane of the ecliptic 21° 18′ 40″;
        the distance of its perihelion from the node, estimated in the comet's
        orbit, 49° 27′ 30°, its perihelion in ♌
        8° 40′ 30″, with heliocentric latitude south 16°
        01′ 45″; the comet to have been in its perihelion November 24d.1h.52′
        P.M. equal time at London, or 13h.8′ at Dantzick,
        O. S.; and that the latus rectum of the parabola was 410286
        such parts as the sun's mean distance from the earth is supposed to
        contain 100000. And how nearly the places of the comet computed in this
        orbit agree with the observations, will appear from the annexed table,
        calculated by Dr. Halley.
    

    
        
            
                	Appar. Time
at Dantzick.
                	The observed Distances of the Comet from
                	The observed Places.
                	The Places
computed in
the orb.
            

            
                	
                    December

                    d. h. ′

                    3.18.29½
                
                	
                    

                    The Lion's heart

                    The Virgin's spike
                
                	
                    °    ′    ″

                    46.24.20

                    22.52.10
                
                	
                    

                    Long. ♎

                    Lat. S.
                
                	
                    °    ′    ″

                    7.01.00

                    21.39.0
                
                	
                    ♎ 
                	
                    °    ′    ″

                    7.1.29

                    21.38.50
                
            

            
                	4.18.1½
                	The Lion's heart
The Virgin's spike
                	
                    46.2.45

                    23.52.40
                
                	
                    Long. ♎

                    Lat. S.
                
                	
                    6.15.0

                    22.24.0
                
                	♎ 
                	
                    6.16.5

                    22.24.0
                
            

            
                	
                    7.17.48
                	
                    The Lion's heart

                    The Virgin's spike
                
                	
                    44.48.0

                    27.53.40
                
                	
                    Long. ♎

                    Lat. S.
                
                	
                    3.6.0

                    25.22.0
                
                	
                    ♎ 
                	
                    3.7.33

                    25.21.40
                
            

            
                	7.17.48
                	
                    The Lion's heart

                    Orion's right shoulder
                
                	
                    53.15.15

                    45.43.30
                
                	
                    Long. ♌

                    Lat. S.
                
                	
                    2.56.0

                    49.25.0
                
                	
                    ♌ 
                	
                    2.56.0

                    49.25.0
                
            

            
                	19.9.25
                	
                    Procyon

                    Bright star of Whale's jaw
                
                	
                    35.13.50

                    52.56.0
                
                	
                    Long. ♊

                    Lat. S.
                
                	
                    28.40.30

                    45.48.0
                
                	♊ 
                	
                    28.43.0

                    45.46.0
                
            

            
                	20.9.53½
                	
                    Procyon

                    Bright star of Whale's jaw
                
                	
                    40.49.0

                    40.04.0
                
                	
                    Long. ♊

                    Lat. S.
                
                	
                    13.03.0

                    39.54.0
                
                	♊ 
                	
                    13.5.0

                    39.5.0
                
            

            
                	21.9.9½
                	
                    Orion's right shoulder

                    Bright star of Whale's jaw
                
                	
                    26.21.25

                    29.28.0
                
                	
                    Long. ♊

                    Lat. S.
                
                	
                    2.16.0

                    33.41.0
                
                	
                    ♊ 
                	
                    2.18.30

                    33.39.40
                
            

            
                	22.9.0
                	
                    Orion's right shoulder

                    Bright star of Whale's jaw
                
                	
                    29.47.0

                    20.29.30
                
                	
                    Long. ♉

                    Lat. S.
                
                	
                    24.24.0

                    27.45.0
                
                	♉ 
                	
                    24.27.0

                    27.46.0
                
            

            
                	26.7.58
                	
                    The bright star of Aries

                    Aldebaran
                
                	
                    20.20.0

                    26.44.0
                
                	
                    Long. ♉

                    Lat. S.
                
                	
                    9.0.0

                    12.36.0
                
                	♉ 
                	
                    9.2.28

                    12.34.13
                
            

            
                	27.6.45
                	
                    The bright star of Aries

                    Aldebaran
                
                	
                    20.45.0

                    28.10.0
                
                	
                    Long. ♉

                    Lat. S.
                
                	
                    7.5.40

                    10.23.0
                
                	♉ 
                	
                    7.8.45

                    10.23.13
                
            

            
                	28.7.39
                	
                    The bright star of Aries

                    Palilicium
                
                	
                    18.29.0

                    29.37.0
                
                	
                    Long. ♉

                    Lat. S.
                
                	
                    5.24.45

                    8.22.50
                
                	♉ 
                	
                    5.27.52

                    8.23.37
                
            

            
                	31.6.45
                	
                    Andromeda's girdle

                    Palilicium
                
                	
                    30.48.10

                    32.53.30
                
                	
                    Long. ♉

                    Lat. S.
                
                	
                    2.7.40

                    4.13.0
                
                	♉ 
                	
                    2.8.20

                    4.16.25
                
            

            
                	
                    Jan. 1665

                    7.7.37½
                
                	
                    Andromeda's girdle

                    Palilicium
                
                	
                    25.11.0

                    37.12.25
                
                	
                    Long. ♈

                    Lat. N.
                
                	
                    28.24.47

                    0.54.0
                
                	♈ 
                	
                    28.24.0

                    0.53.0
                
            

            
                	13.7.0
                	
                    Andromeda's head

                    Palilicium
                
                	
                    28.7.10

                    38.55.20
                
                	
                    Long. ♈

                    Lat. N.
                
                	
                    27.6.54

                    3.6.50
                
                	♈ 
                	
                    27.6.39

                    3.7.40
                
            

            
                	24.7.29
                	
                    Andromeda's girdle

                    Palilicium
                
                	
                    20.32.15

                    40.5.0
                
                	
                    Long. ♈

                    Lat. N.
                
                	
                    26.29.15

                    5.25.50
                
                	♈ 
                	
                    26.28.50

                    5.26.0
                
            

            
                	Feb.
7.8.37
                	 
 
                	 
 
                	Long. ♈
Lat. N.
                	27.4.46
7.3.29
                	♈ 
                	27.24.55
7.3.15
            

            
                	22.8.46
                	 
 
                	 
 
                	Long. ♈
Lat. N.
                	28.29.46
8.12.36
                	♈ 
                	28.29.58
8.10.25
            

            
                	March
1.8.16
                	 
 
                	 
 
                	Long. ♈
Lat. N.
                	29.18.15
8.36.26
                	♈ 
                	29.18.20
8.36.12
            

            
                	7.8.37
                	 
 
                	 
 
                	Long. ♉
Lat. N.
                	0.2.48
8.56.30
                	♉ 
                	0.2.42
8.56.56
            

        
    

    
        In February, the beginning of the year 1665, the first star
        of Aries, which I shall hereafter call γ, was in
        ♈ 28° 30′ 15″, with 7° 8′ 58″ north lat.;
        the second star of Aries was in ♈
        29° 17′ 18″, with 8° 28′ 16″ north lat.; and another star of the seventh
        magnitude, which I call A, was in ♈
        28° 24′ 45″, with 8° 28′ 33″ north lat. The comet Feb. 7d.7h.30′
        at Paris (that is, Feb. 7d.8h.30′
        at Dantzick) O. S. made a triangle with those stars γ and A,
        which was right-angled in γ; and the distance of the comet
        from the star γ was equal to the distance of the stars γ
        and A, that is, 1° 19′ 46″ of a great circle; and therefore in the
        parallel of the latitude of the star γ it was 1° 20′ 26″.
        Therefore if from the longitude of the star γ there be
        subducted the longitude 1° 20′ 26″, there will remain the longitude of
        the comet ♈ 27° 9′ 49″. M. Auzout,
        from this observation of his, placed the comet in ♈
        27° 0′, nearly; and, by the scheme in which Dr. Hooke
        delineated its motion, it was then in ♈
        26° 59′ 24″. I place it in ♈ 27°
        4′ 46″, taking the middle between the two extremes.
    

    
        From the same observations, M. Auzout made the latitude of
        the comet at that time 7° and 4′ or 5′ to the north; but he had done
        better to have made it 7° 3′ 29″, the difference of the latitudes of the
        comet and the star γ being equal to the difference of the
        longitude of the stars γ and A.
    

    
        February 22d.7h.30′ at London,
        that is, February 22d. 8h.46′ at Dantzick,
        the distance of the comet from the star A, according to Dr. Hooke's
        observation, as was delineated by himself in a scheme, and also by the
        observations of M. Auzout, delineated in like manner by M. Petit,
        was a fifth part of the distance between the star A and the first star
        of Aries, or 15′ 57″; and the distance of the comet from a right line
        joining the star A and the first of Aries was a fourth part of the same
        fifth part, that is, 4′; and therefore the comet was in ♈ 28° 29′ 46″, with 8° 12′ 36″ north lat.
    

    
        March 1, 7h at London, that is, March
        1, 8h.16′ at Dantzick. the comet was observed near
        the second star in Aries, the distance between them being to the
        distance between the first and second stars in Aries, that is, to 1°
        33′, as 4 to 45 according to Dr. Hooke, or as 2 to 23 according to M. Gottignies.
        And, therefore, the distance of the comet from the second star in Aries
        was 8′ 16″ according to Dr. Hooke, or 8′ 5″ according to M. Gottignies;
        or, taking a mean between both, 8′ 10″. But, according to M. Gottignies,
        the comet had gone beyond the second star of Aries about a fourth or a
        fifth part of the space that it commonly went over in a day, to wit,
        about 1′ 35″ (in which he agrees very well with M. Auzout);
        or, according to Dr. Hooke, not quite so much, as perhaps only
        1′. Wherefore if to the longitude of the first star in Aries we add 1′,
        and 8′ 10″ to its latitude, we shall have the longitude of the comet
        ♈ 29° 18′, with 8° 36′ 26″ north lat.
    

    
        March 7, 7h.30′ at Paris (that is, March
        7, 8h.37′ at Dantzick), from the observations of M.
        Auzout, the distance of the comet from the second star in Aries
        was equal to the distance of that star from the star A,
        that is, 52.′29″; and the difference of the longitude of the comet and
        the second star in Aries was 45′ or 46′, or, taking a mean quantity, 45′
        30″; and therefore the comet was in ♉
        0° 2′ 48″. From the scheme of the observations of M. Auzout,
        constructed by M. Petit, Hevelius collected the latitude of
        the comet 8° 54′. But the engraver did not rightly trace the curvature
        of the comet's way towards the end of the motion; and Hevelius,
        in the scheme of M. Auzout's observations which he constructed
        himself, corrected this irregular curvature, and so made the latitude of
        the comet 8° 55′ 30″. And, by farther correcting this irregularity, the
        latitude may become 8° 56, or 8° 57′.
    

    
        This comet was also seen March 9, and at that time its place
        must have been in ♉ 0° 18′, with
        9° 3½′ north lat. nearly.
    

    
        This comet appeared three months together, in which space of time it
        travelled over almost six signs, and in one of the days thereof
        described almost 20 deg. Its course did very much deviate from a great
        circle, bending towards the north, and its motion towards the end from
        retrograde became direct; and, notwithstanding its course was so
        uncommon, yet by the table it appears that the theory, from beginning to
        end, agrees with the observations no less accurately than the theories
        of the planets usually do with the observations of them: but we are to
        subduct about 2′ when the comet was swiftest, which we may effect by
        taking off 12″ from the angle between the ascending node and the
        perihelion, or by making that angle 49° 27′ 18″. The annual parallax of
        both these comets (this and the preceding) was very conspicuous, and by
        its quantity demonstrates the annual motion of the earth in the orbis
        magnus.
    

    
        This theory is likewise confirmed by the motion of that comet, which in
        the year 1683 appeared retrograde, in an orbit whose plane contained
        almost a right angle with the plane of the ecliptic, and whose ascending
        node (by the computation of Dr. Halley) was in
        ♍ 23° 23′; the inclination of its orbit to the
        ecliptic 83° 11′; its perihelion in ♊
        25° 29′ 30″; its perihelion distance from the sun 56020 of such parts as
        the radius of the orbis magnus contains 100000; and the time
        of its perihelion July 2d.3h.50′. And
        the places thereof, computed by Dr. Halley in this orbit, are
        compared with the places of the same observed by Mr. Flamsted,
        in the following table:— 
    

    
        
            
                	1683
Eq. time.
                	sun's place
                	Comet's
Long. com.
                	Lat. Nor.
comput.
                	Comet's
Long. obs'd
                	Lat.Nor.
observ'd
                	Diff.
Long.
                	Diff.
Lat.
            

            
                	
                    d.    h.    ′

                    
                    July 13.12.55

                    15.11.15

                    17.10.20

                    23.13.40

                    25.14.5

                    31.9.42

                    31.14.55

                    
                    Aug. 2.14.56

                    4.10.49

                    6.10.9

                    9.10.26

                    15.14.1

                    16.15.10

                    18.15.44

                    

                    22.14.44

                    23.15.52

                    26.16. 2
                
                	
                    °    ′    ″

                    ♌ 1.02.30

                    2.53.12

                    4.45.45

                    10.38.21

                    12.35.28

                    18.09.22

                    18.21.53

                    20.17.16

                    22.02.50

                    23.56.45

                    26.50.52

                    ♍ 2.47.13

                    3.48. 2

                    5.45.33

                    

                    9.35.49

                    10.36.48

                    13.31.10
                
                	
                    °    ′    ″

                    ♋ 13.05.42

                    11.37.48

                    10. 7. 6

                    5.10.27

                    3.27.53

                    ♊ 27.55. 3

                    27.41. 7

                    25.29.32

                    23.18.20

                    20.42.23

                    16 7.57

                    3.30.48

                    0.43. 7

                    ♉ 24.52.53

                    

                    11. 7.14

                    7. 2.18

                    ♈ 24.45.31
                
                	
                    °    ′    ″

                    29.28.13

                    29.34. 0

                    29.33.30

                    28.51.42

                    24.24.47

                    26.22.52

                    26.16.57

                    25.16.19

                    24.10.49

                    22.17. 5

                    20. 6.37

                    11.37.33

                    9.34.16

                    5.11.15

                    South.

                    5.16.58

                    8.17. 9

                    16.38. 0
                
                	
                    °    ′    ″

                    ♋ 13. 6.42

                    11.39.43

                    10. 8.40

                    5.11.30

                    3.27. 0

                    ♊ 27.54.24

                    27.41. 8

                    25.28.46

                    23.16.55

                    20.40.32

                    16. 5.55

                    3.26.18

                    0.41.55

                    ♉ 24.49. 5

                    

                    11.07.12

                    7. 1.17

                    ♈ 24.44.00
                
                	
                    °    ′    ″

                    29.28.20

                    29.34.50

                    29.34. 0

                    28.50.28

                    28.23.40

                    26.22.25

                    26.14.50

                    25.17.28

                    24.12.19

                    22.49. 5

                    20. 6.10

                    11.32. 1

                    9.34.13

                    5. 9.11

                    South

                    5.16.58

                    8.16.41

                    16.38.20
                
                	
                    ′    ″

                    + 1.00

                    + 1.55

                    + 1.34

                    + 1.03

                    - 0.53

                    - 0.39

                    + 0. 1

                    - 0.46

                    - 1.25

                    - 1.51

                    - 2. 2

                    - 4.30

                    - 1.12

                    - 3.48

                    

                    - 0. 2

                    - 1. 1

                    - 1.31
                
                	
                    ′    ″

                    + 0.07

                    + 0.50

                    + 0.30

                    - 1.14

                    -1. 7

                    - 0.27

                    - 2. 7

                    + 1. 9

                    + 1.30

                    + 2. 0

                    - 0.27

                    - 5.32

                    - 0. 3

                    - 2. 4

                    

                    -0. 3

                    - 0.28

                    + 0.20
                
            

        
    

    
        This theory is yet farther confirmed by the motion of that retrograde
        comet which appeared in the year 1682. The ascending node of this (by
        Dr. Halley's computation) was in ♉
        21° 16′ 30″; the inclination of its orbit to the plane of the ecliptic
        17° 56′ 00″; its perihelion in ♒
        2° 52′ 50″; its perihelion distance from the sun 58328 parts, of which
        the radius of the orbis magnus contains 100000; the equal time
        of the comet's being in its perihelion Sept. 4d.7h.39′.
        And its places, collected from Mr. Flamsted's observations,
        are compared with its places computed from our theory in the following
        table:—
    

    
        
            
                	1682
App. Time.
                	sun's place
                	Comet's
Long. comp.
                	Lat. Nor.
comp.
                	Com. Long.
observed.
                	Lat.Nor.
observ.
                	Diff.
Long.
                	Diff.
Lat.
            

            
                	
                    d.    h.    ′

                    
                    Aug. 19.16.38

                    20.15.38

                    21. 8.21

                    22. 8. 8

                    29.08.20

                    30. 7.45

                    
                    Sept. 1. 7.33

                    4. 7.22

                    5. 7.32

                    8. 7.16

                    9. 7.26
                
                	
                    °    ′    ″

                    ♍ 7. 0. 7

                    7.55 52

                    8.36.14

                    9.33.55

                    16.22.40

                    17.19.41

                    19.16. 9

                    22.11.28

                    23.10.29

                    26. 5.58

                    27. 5. 9
                
                	
                    °    ′    ″

                    ♌ 18.14 28

                    24.46.23

                    29.37.15

                    ♍ 6.29.53

                    ♎ 12.37.54

                    15 36. 1

                    20.30.53

                    25.42. 0

                    27. 0.46

                    29.58.44

                    ♏ 0.44.10
                
                	
                    °    ′    ″

                    25.50. 7

                    26.14.42

                    26.20. 3

                    26. 8.42

                    18.37.47

                    17.26.43

                    15.13. 0

                    12.23.48

                    11.33.08

                    9.26.46

                    8.49.10
                
                	
                    °    ′    ″

                    ♌ 18.14.40

                    24.46.22

                    29.38.02

                    ♍ 6.30. 3

                    ♎ 12.37.49

                    15.35.18

                    20.27. 4

                    25.40.58

                    26.59.24

                    29.58.45

                    ♏ 0.44. 4
                
                	
                    °    ′    ″

                    25.49.55

                    26.12.52

                    26.17.37

                    26. 7.12

                    18.34. 5

                    17.27.17

                    15. 9.49

                    12.22. 0

                    11.33.51

                    9.26.43

                    8.48.25
                
                	
                    ′    ″

                    - 0.12

                    + 0. 1

                    - 0.47

                    - 0.10

                    + 0. 5

                    + 0.43

                    + 3.49

                    + 1. 2

                    + 1.22

                    - 0.1

                    + 0. 6
                
                	
                    ′    ″

                    + 0.12

                    + 1.50

                    + 2.26

                    + 1.30

                    + 3.42

                    - 0.34

                    + 3.11

                    + 1.48

                    - 0.43

                    + 0. 3

                    + 0.45
                
            

        
    

    
        This theory is also confirmed by the retrograde motion of the comet
        that appeared in the year 1723. The ascending node of this comet
        (according to the computation of Mr. Bradley, Savilian
        Professor of Astronomy at Oxford) was in ♈
        14° 16′. The inclination of the orbit to the plane of the ecliptic 49°
        59′. Its perihelion was in ♉ 12°
        15′ 20″. Its perihelion distance from the sun 998651 parts, of which the
        radius of the orbis magnus contains 1000000, and the equal
        time of its perihelion September 16d 16h.10′.
        The places of this comet computed in this orbit by Mr. Bradley,
        and compared with the places observed by himself, his uncle Mr. Pound,
        and Dr. Halley, may be seen in the following table.
    

    
        
            
                	1723
Eq. Time.
                	Comet's
Long. obs.
                	Lat. Nor.
obs.
                	Comet's
Lon. com.
                	Lat.Nor.
comp.
                	Diff.
Lon.
                	Diff.
Lat.
            

            
                	
                    d.    h.    ′

                    
                    Oct. 9.8. 5

                    10.6.21

                    12.7.22

                    14.8.57

                    15.6.35

                    21.6.22

                    22. 6.24

                    24.8. 2

                    29.8.56

                    30.6.20

                    
                    Nov. 5.5.53

                    8.7. 6

                    14.6.20

                    20.7.45

                    
                    Dec. 7.6.45
                
                	
                    °    ′    ″

                    ♒ 7.22.15

                    6.41.12

                    5.39.58

                    4.59.49

                    4.47.41

                    4. 2.32

                    3.59. 2

                    3.55.29

                    3.56.17

                    3.58. 9

                    4.16.30

                    4.29.36

                    5. 2.16

                    5.42.20

                    8. 4.13
                
                	
                    °    ′    ″

                    5. 2. 0
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        From these examples it is abundantly evident that the motions of comets
        are no less accurately represented by our theory than the motions of the
        planets commonly are by the theories of them; and, therefore, by means
        of this theory, we may enumerate the orbits of comets, and so discover
        the periodic time of a comet's revolution in any orbit; whence, at last,
        we shall have the transverse diameters of their elliptic orbits and
        their aphelion distances.
    

    
        That retrograde comet which appeared in the year 1607 described an
        orbit whose ascending node (according to Dr. Halley's
        computation) was in ♉ 20° 21′;
        and the inclination of the plane of the orbit to the plane of the
        ecliptic 17° 2′; whose perihelion was in ♒
        2° 16′; and its perihelion distance from the sun 58680 of such parts as
        the radius of the orbis magnus contains 100000; and the comet
        was in its perihelion October 16d.3h.50′;
        which orbit agrees very nearly with the orbit of the comet which was
        seen in 1682. If these were not two different comets, but one and the
        same, that comet will finish one revolution in the space of 75 years;
        and the greater axis of its orbit will be to the greater axis of the orbis
        magnus as ∛752 to 1, or as
        1778 to 100, nearly. And the aphelion distance of this comet from the
        sun will be to the mean distance of the earth from the sun as about 35
        to 1; from which data it will be no hard matter to determine the
        elliptic orbit of this comet. But these things are to be supposed on
        condition, that, after the space of 75 years, the same comet shall
        return again in the same orbit. The other comets seem to ascend to
        greater heights, and to require a longer time to perform their
        revolutions.
    

    
        But, because of the great number of comets, of the great distance of
        their aphelions from the sun, and of the
        slowness of their motions in the aphelions, they will, by their mutual
        gravitations, disturb each other; so that their eccentricities and the
        times of their revolutions will be sometimes a little increased, and
        sometimes diminished. Therefore we are not to expect that the same comet
        will return exactly in the same orbit, and in the same periodic times:
        it will be sufficient if we find the changes no greater than may arise
        from the causes just spoken of.
    

    
        And hence a reason may be assigned why comets are not comprehended
        within the limits of a zodiac, as the planets are; but, being confined
        to no bounds, are with various motions dispersed all over the heavens;
        namely, to this purpose, that in their aphelions, where their motions
        are exceedingly slow, receding to greater distances one from another,
        they may suffer less disturbance from their mutual gravitations: and
        hence it is that the comets which descend the lowest, and therefore move
        the slowest in their aphelions, ought also to ascend the highest.
    

    
        The comet which appeared in the year 1680 was in its perihelion less
        distant from the sun than by a sixth part of the sun's diameter; and
        because of its extreme velocity in that proximity to the sun, and some
        density of the sun's atmosphere, it must have suffered some resistance
        and retardation; and therefore, being attracted something nearer to the
        sun in every revolution, will at last fall down upon the body of the
        sun. Nay, in its aphelion, where it moves the slowest, it may sometimes
        happen to be yet farther retarded by the attractions of other comets,
        and in consequence of this retardation descend to the sun. So fixed
        stars, that have been gradually wasted by the light and vapours emitted
        from them for a long time, may be recruited by comets that fall upon
        them; and from this fresh supply of new fuel those old stars, acquiring
        new splendor, may pass for new stars. Of this kind are such fixed stars
        as appear on a sudden, and shine with a wonderful brightness at first,
        and afterwards vanish by little and little. Such was that star which
        appeared in Cassiopeia's chair; which Cornelius Gemma
        did not see upon the 8th of November, 1572, though he was
        observing that part of the heavens upon that very night, and the sky was
        perfectly serene; but the next night (November 9) he saw it
        shining much brighter than any of the fixed stars, and scarcely inferior
        to Venus in splendor. Tycho Brahe saw it upon the
        11th of the same month, when it shone with the greatest lustre; and from
        that time he observed it to decay by little and little; and in 16
        months' time it entirely disappeared. In the month of November,
        when it first appeared, its light was equal to that of Venus.
        In the month of December its light was a little diminished,
        and was now become equal to that of Jupiter. In January 1573
        it was less than Jupiter, and greater than Sirius;
        and about the end of February and the beginning of March
        became equal to that star. In the months of April and May
        it was equal to a star of the second magnitude; in
        June, July, and August, to a star of the third
        magnitude; in September, October, and November, to
        those of the fourth magnitude; in December and January
        1574 to those of the fifth; in February to those of the sixth
        magnitude; and in March it entirely vanished. Its colour at
        the beginning was clear, bright, and inclining to white; afterwards it
        turned a little yellow; and in March 1573 it became ruddy,
        like Mars or Aldebaran: in May it turned
        to a kind of dusky whiteness, like that we observe in Saturn;
        and that colour it retained ever after, but growing always more and more
        obscure. Such also was the star in the right foot of Serpentarius,
        which Kepler's scholars first observed September 30,
        O.S. 1604, with a light exceeding that of Jupiter, though the
        night before it was not to be seen; and from that time it decreased by
        little and little, and in 15 or 16 months entirely disappeared. Such a
        new star appearing with an unusual splendor is said to have moved Hipparchus
        to observe, and make a catalogue of, the fixed stars. As to those fixed
        stars that appear and disappear by turns, and increase slowly and by
        degrees, and scarcely ever exceed the stars of the third magnitude, they
        seem to be of another kind, which revolve about their axes, and, having
        a light and a dark side, shew those two different sides by turns. The
        vapours which arise from the sun, the fixed stars, and the tails of the
        comets, may meet at last with, and fall into, the atmospheres of the
        planets by their gravity, and there be condensed and turned into water
        and humid spirits; and from thence, by a slow heat, pass gradually into
        the form of salts, and sulphurs, and tinctures, and mud, and clay, and
        sand, and stones, and coral, and other terrestrial substances.
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    General Scholium.


    
        The hypothesis of vortices is pressed with many difficulties. That
        every planet by a radius drawn to the sun may describe areas
        proportional to the times of description, the periodic times of the
        several parts of the vortices should observe the duplicate proportion of
        their distances from the sun; but that the periodic times of the planets
        may obtain the sesquiplicate proportion of their distances from the sun,
        the periodic times of the parts of the vortex ought to be in the
        sesquiplicate proportion of their distances. That the smaller vortices
        may maintain their lesser revolutions about Saturn, Jupiter,
        and other planets, and swim quietly and undisturbed in the greater
        vortex of the sun, the periodic times of the parts of the sun's vortex
        should be equal; but the rotation of the sun and planets about their
        axes, which ought to correspond with the motions of their vortices,
        recede far from all these proportions. The motions of the comets are
        exceedingly regular, are governed by the same laws with the motions of
        the planets, and can by no means be accounted for by the hypothesis of
        vortices; for comets are carried with very eccentric motions through all
        parts of the heavens indifferently, with a
        freedom that is incompatible with the notion of a vortex.
    

    
        Bodies projected in our air suffer no resistance but from the air.
        Withdraw the air, as is done in Mr. Boyle's vacuum, and the
        resistance ceases; for in this void a bit of line down and a piece of
        solid gold descend with equal velocity. And the parity of reason must
        take place in the celestial spaces above the earth's atmosphere; in
        which spaces, where there is no air to resist their motions, all bodies
        will move with the greatest freedom; and the planets and comets will
        constantly pursue their revolutions in orbits given in kind and
        position, according to the laws above explained; but though these bodies
        may, indeed, persevere in their orbits by the mere laws of gravity, yet
        they could by no means have at first derived the regular position of the
        orbits themselves from those laws.
    

    
        The six primary planets are revolved about the sun in circles
        concentric with the sun, and with motions directed towards the same
        parts, and almost in the same plane. Ten moons are revolved about the
        earth, Jupiter and Saturn, in circles concentric with them, with the
        same direction of motion, and nearly in the planes of the orbits of
        those planets; but it is not to be conceived that mere mechanical causes
        could give birth to so many regular motions, since the comets range over
        all parts of the heavens in very eccentric orbits; for by that kind of
        motion they pass easily through the orbs of the planets, and with great
        rapidity; and in their aphelions, where they move the slowest, and are
        detained the longest, they recede to the greatest distances from each
        other, and thence suffer the least disturbance from their mutual
        attractions. This most beautiful system of the sun, planets, and comets,
        could only proceed from the counsel and dominion of an intelligent and
        powerful Being. And if the fixed stars are the centres of other like
        systems, these, being formed by the like wise counsel, must be all
        subject to the dominion of One; especially since the light of the fixed
        stars is of the same nature with the light of the sun, and from every
        system light passes into all the other systems: and lest the systems of
        the fixed stars should, by their gravity, fall on each other mutually,
        he hath placed those systems at immense distances one from another.
    

    
        This Being governs all things, not as the soul of the world, but as
        Lord over all; and on account of his dominion he is wont to be called
        Lord God παντοκράτωρ, or Universal Ruler; for God
        is a relative word, and has a respect to servants; and Deity
        is the dominion of God not over his own body, as those imagine who fancy
        God to be the soul of the world, but over servants. The Supreme God is a
        Being eternal, infinite, absolutely perfect; but a being, however
        perfect, without dominion, cannot be said to be Lord God; for we say, my
        God, your God, the God of Israel, the God of Gods, and Lord of
        Lords; but we do not say, my Eternal, your Eternal, the Eternal of Israel,
        the Eternal of Gods; we do not say, my Infinite, or 
        my Perfect: these are titles which have no respect to servants.
        The word God
        [1] usually
        signifies Lord; but every lord is not a God. It is the
        dominion of a spiritual being which constitutes a God: a true, supreme,
        or imaginary dominion makes a true, supreme, or imaginary God. And from
        his true dominion it follows that the true God is a living, intelligent,
        and powerful Being; and, from his other perfections, that he is supreme,
        or most perfect. He is eternal and infinite, omnipotent and omniscient;
        that is, his duration reaches from eternity to eternity; his presence
        from infinity to infinity; he governs all things, and knows all things
        that are or can be done. He is not eternity or infinity, but eternal and
        infinite; he is not duration or space, but he endures and is present. He
        endures for ever, and is every where present; and by existing always and
        every where, he constitutes duration and space. Since every particle of
        space is always, and every indivisible moment of duration is every
        where, certainly the Maker and Lord of all things cannot be never
        and no where. Every soul that has perception is, though in
        different times and in different organs of sense and motion, still the
        same indivisible person. There are given successive parts in duration,
        co-existent parts in space, but neither the one nor the other in the
        person of a man, or his thinking principle; and much less can they be
        found in the thinking substance of God. Every man, so far as he is a
        thing that has perception, is one and the same man during his whole
        life, in all and each of his organs of sense. God is the same God,
        always and every where. He is omnipresent not virtually only,
        but also substantially; for virtue cannot subsist without
        substance. In him[2]
        are all things contained and moved; yet neither affects the other: God
        suffers nothing from the motion of bodies; bodies find no resistance
        from the omnipresence of God. It is allowed by all that the Supreme God
        exists necessarily; and by the same necessity he exists always
        and every where. Whence also he is all similar, all eye, all
        ear, all brain, all arm, all power to perceive, to understand, and to
        act; but in a manner not at all human, in a manner not at all corporeal,
        in a manner utterly unknown to us. As a blind mail has no idea of
        colours, so have we no idea of the manner by 
        which the all-wise God perceives and understands all things. He is utterly
        void of all body and bodily figure, and can therefore neither be seen,
        nor heard, nor touched; nor ought he to be worshipped under the
        representation of any corporeal thing. We have ideas of his attributes,
        but what the real substance of any thing is we know not. In bodies, we
        see only their figures and colours, we hear only the sounds, we touch
        only their outward surfaces, we smell only the smells, and taste the
        savours; but their inward substances are not to be known either by our
        senses, or by any reflex act of our minds: much less, then, have we any
        idea of the substance of God. We know him only by his most wise and
        excellent contrivances of things, and final causes: we admire him for
        his perfections; but we reverence and adore him on account of his
        dominion: for we adore him as his servants; and a god without dominion,
        providence, and final causes, is nothing else but Fate and Nature. Blind
        metaphysical necessity, which is certainly the same always and every
        where, could produce no variety of things. All that diversity of natural
        things which we find suited to different times and places could arise
        from nothing but the ideas and will of a Being necessarily existing.
        But, by way of allegory, God is said to see, to speak, to laugh, to
        love, to hate, to desire, to give, to receive, to rejoice, to be angry,
        to fight, to frame, to work, to build; for all our notions of God are
        taken from the ways of mankind by a certain similitude, which, though
        not perfect, has some likeness, however. And thus much concerning God;
        to discourse of whom from the appearances of things, does certainly
        belong to Natural Philosophy.
    

    
        Hitherto we have explained the phenomena of the heavens and of our sea
        by the power of gravity, but have not yet assigned the cause of this
        power. This is certain, that it must proceed from a cause that
        penetrates to the very centres of the sun and planets, without suffering
        the least diminution of its force; that operates not according to the
        quantity of the surfaces of the particles upon which it acts (as
        mechanical causes use to do), but according to the quantity of the solid
        matter which they contain, and propagates its virtue on all sides to
        immense distances, decreasing always in the duplicate proportion of the
        distances. Gravitation towards the sun is made up out of the
        gravitations towards the several particles of which the body of the sun
        is composed; and in receding from the sun decreases accurately in the
        duplicate proportion of the distances as far as the orb of Saturn, as
        evidently appears from the quiescence of the aphelions of the planets;
        nay, and even to the remotest aphelions of the comets, if those
        aphelions are also quiescent. But hitherto I have not been able to
        discover the cause of those properties of gravity from phaenomena, and I
        frame no hypotheses; for whatever is not deduced from the phaenomena is
        to be called an hypothesis; and hypotheses, whether metaphysical or
        physical, whether of occult qualities or mechanical, have no place in
        experimental philosophy. In this philosophy
        particular propositions are inferred from the phenomena, and afterwards
        rendered general by induction. Thus it was that the impenetrability, the
        mobility, and the impulsive force of bodies, and the laws of motion and
        of gravitation, were discovered. And to us it is enough that gravity
        does really exist, and act according to the laws which we have
        explained, and abundantly serves to account for all the motions of the
        celestial bodies, and of our sea.
    

    
        And now we might add something concerning a certain most subtle Spirit
        which pervades and lies hid in all gross bodies; by the force and action
        of which Spirit the particles of bodies mutually attract one another at
        near distances, and cohere, if contiguous; and electric bodies operate
        to greater distances, as well repelling as attracting the neighbouring
        corpuscles; and light is emitted, reflected, refracted, inflected, and
        heats bodies; and all sensation is excited, and the members of animal
        bodies move at the command of the will, namely, by the vibrations of
        this Spirit, mutually propagated along the solid filaments of the
        nerves, from the outward organs of sense to the brain, and from the
        brain into the muscles. But these are things that cannot be explained in
        few words, nor are we furnished with that sufficiency of experiments
        which is required to an accurate determination and demonstration of the
        laws by which this electric and elastic Spirit operates.
    

    end of the mathematical principles.

    



    
        1 Dr. Pocock derives
        the Latin word Deus from the Arabic du (in the
        oblique case di), which signifies Lord. And in this
        sense princes are called gods, Psal. lxxxii. ver. 6;
        and John x. ver. 35. And Moses is called a god
        to his brother Aaron, and a god to Pharaoh (Exod.
        iv. ver. 16; and vii. ver. 1). And in the same sense the souls of dead
        princes were formerly, by the Heathens, culled gods, but
        falsely, because of their want of dominion.
    

    
        2 This was the opinion of the
        Ancients. So Pythagoras, in Cicer. de Nat. Deor.
        lib. i Thales, Anaxagoros, Virgil, Georg.
        lib. iv. ver. 220; and AEneid, lib. vi. ver. 721. Philo Allegor,
        at the beginning of lib. i. Aratus, in his Phaenom. at the
        beginning. So also the sacred writers; as St. Paul, Acts,
        xvii. ver 27, 28. St. John's Gosp. chap. xiv. ver. 2. Moses.
        in Deut. iv. ver. 39; and x ver. 14. David, Psal.
        cxxxix. ver. 7, 8, 9. Solomon, 1 Kings, viii. ver.
        27. Job, xxii. ver. 12, 13, 14. Jeremiah, xxiii.
        ver. 23, 24. The Idolaters opposed the sun, moon, and stars, the souls
        of men, and other parts of the world, to be parts of the Supreme God,
        and therefore to be worshipped; but erroneously.
    





    Deus (Latin pronunciation: ['deːʊs]) is Latin for God or Deity.
    Latin deus and dīvus Divine, are descended from Proto-Indo-European *deiwos,
    Celestial or Shining,
    from the same root as *Dyēus, the reconstructed chief God of the Proto-Indo-European pantheon.



    Pythagoras of Samos was an Ionian Greek Philosopher and the eponymous founder of the Pythagoreanism movement.
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                        Earth,
                        its dimension by Norwood, by Picart, and by Cassini,
                        405
                    
                

                
                    	〃
                    	
                        its figure discovered, with the proportion of its diameters,
                        and the measure of the degrees upon the meridian,
                        405,
                        409
                    
                

                
                    	〃
                    	
                        the excess of its height at the equator above its height at the poles,
                        407,
                        412
                    
                

                
                    	〃
                    	
                        its greatest and least semi-diameter,
                        407
                    
                

                
                    	〃
                    	
                        its mean semi-diameter, 407
                    
                

                
                    	〃
                    	
                        the globe of the earth more dense than if it was entirely water,
                        400
                    
                

                
                    	〃
                    	
                        the nutation of its axis, 413
                    
                

                
                    	〃
                    	
                        the annual motion thereof in the orbis magnus demonstrated,
                        498
                    
                

                
                    	〃
                    	
                        the eccentricity thereof how much,
                        452
                    
                

                
                    	〃
                    	
                        the motion of its aphelion how much,
                        404
                    
                

                
                    	
                        Ellipses,
                        by what law of centripetal force tending to the centre of the figure it is described by a revolving body,
                        114
                    
                

                
                    	〃
                    	
                        by what law of centripetal force tending to the focus of the figure it is described by a revolving body,
                        116
                    
                

                
                    	
                        Fluid, the definition thereof,
                        108
                    
                

                
                    	
                        Fluids, the laws of their density and compression shewn,
                        293
                    
                

                
                    	〃
                    	
                        their motion in running out at a hole in a vessel determined,
                        331
                    
                

                
                    	
                        Forces, their composition and resolution,
                        84
                    
                

                
                    	〃
                    	
                        attractive forces of spherical bodies,
                        composed of particles attracting according to any law, determined,
                        218
                    
                

                
                    	〃
                    	
                        attractive forces of bodies not spherical, composed of particles attracting according to any law, determined,
                        233
                    
                

                
                    	〃
                    	
                        the invention of the centripetal forces,
                        when a body is revolved in a non-resisting space about an immoveable centre in any orbit,
                        103,
                        116
                    
                

                
                    	〃
                    	
                        the centripetal forces tending to any point by which any figure
                        may be described by a revolving body being given,
                        the centripetal forces tending to any other point by which the
                        same figure may be described in the same periodic time are also given,
                        113
                    
                

                
                    	〃
                    	
                        the centripetal forces by which any figure is described by a revolving body being given,
                        there are given the forces by which a new figure may be described,
                        if the ordinates are augmented or diminished in any given ratio,
                        or the angle of their inclination be any how changed,
                        the periodic time remaining the same,
                        116
                    
                

                
                    	〃
                    	
                        centripetal forces decreasing in the duplicate proportion of the distances,
                        what figures may be described by them,
                        120,
                        196
                    
                

                
                    	
                        Force, centripetal force defined,
                        74
                    
                

                
                    	〃
                    	
                        the absolute quantity of centripetal force defined,
                        75
                    
                

                
                    	〃
                    	
                        the accelerative quantity of the same defined,
                        76
                    
                

                
                    	〃
                    	
                        the motive quantity of the same defined,
                        76
                    
                

                
                    	〃
                    	
                        the proportion thereof to any known force how collected,
                        109
                    
                

                
                    	〃
                    	
                        a centripetal force that is reciprocally as the cube of the ordinate tending
                        to a vastly remote centre of force will cause a body to move in any given conic section,
                        114
                    
                

                
                    	〃
                    	
                        a centripetal force that is as the cube of the ordinate tending to a vastly
                        remote centre of force will cause a body to move in an hyperbola,
                        243
                    
                

                
                    	〃
                    	
                        centrifugal force of bodies on the earth's equator, how great,
                        405
                    
                

                
                    	
                        God, his nature,
                        506
                    
                

                
                    	
                        Gravity mutual between the earth and its parts,
                        94
                    
                

                
                    	〃
                    	
                        of a different nature from magnetical force,
                        397
                    
                

                
                    	〃
                    	
                        the cause of it not assigned, 507
                    
                

                
                    	〃
                    	
                        tends towards all the planets, 393
                    
                

                
                    	〃
                    	
                        from the surfaces of the planets upwards decreases in the duplicate
                        ratio of the distances from the centre,
                        400
                    
                

                
                    	〃
                    	
                        from the same downwards decreases nearly in the simple ratio of the same,
                        400
                    
                

                
                    	〃
                    	
                        tends towards all bodies, and is proportional to the quantity of matter in each,
                        397
                    
                

                
                    	〃
                    	
                        is the force by which the moon is retained in its orbit,
                        391
                    
                

                
                    	〃
                    	
                        the same proved by an accurate calculus,
                        453
                    
                

                
                    	〃
                    	
                        is the force by which the primary planets and
                        the satellites of Jupiter and Saturn are retained in their orbits,
                        393
                    
                

                
                    	
                        Heat, an iron rod increases in length by heat,
                        412
                    
                

                
                    	〃
                    	
                        of the sun, how great at different distances from the sun,
                        486
                    
                

                
                    	〃
                    	
                        how great in Mercury, 400
                    
                

                
                    	〃
                    	
                        how great in the comet of 1680, when in its perihelion,
                        486
                    
                

                
                    	
                        Heavens are void of any sensible resistance,
                        401, 445, 492; and, therefore, of almost any corporeal fluid whatever,
                        355,
                        356
                    
                

                
                    	〃
                    	
                        suffer light to pass through them without any refraction,
                        485
                    
                

                
                    	
                        Hydrostatics, the principles thereof delivered,
                        293
                    
                

                
                    	
                        Hyperbola,
                        by what law of centrifugal force tending from the centre of the figure it is described by a revolving body,
                        116
                    
                

                
                    	〃
                    	
                        by what law of centrifugal force tending from the focus of the figure it is described by a revolving body,
                        117
                    
                

                
                    	〃
                    	
                        by what law of centripetal force tending to the focus of the figure it is described by a revolving body,
                        118
                    
                

                
                    	
                        Hypotheses of what kind soever rejected from this philosophy,
                        508
                    
                

                
                    	
                        Jupiter, its periodic time,
                        388
                    
                

                
                    	〃
                    	
                        its distance from the sun, 388
                    
                

                
                    	〃
                    	
                        its apparent diameter, 386
                    
                

                
                    	〃
                    	
                        its true diameter, 399
                    
                

                
                    	〃
                    	
                        its attractive force, how great, 398
                    
                

                
                    	〃
                    	
                        the weights of bodies on its surface,
                        399
                    
                

                
                    	〃
                    	
                        its density, 399
                    
                

                
                    	〃
                    	
                        its quantity of matter, 399
                    
                

                
                    	〃
                    	
                        its perturbation by Saturn, how much,
                        403
                    
                

                
                    	〃
                    	
                        the proportion of its diameters exhibited by computation,
                        409
                    
                

                
                    	〃
                    	
                        and compared with observations, 409
                    
                

                
                    	〃
                    	
                        its rotation about its axis, in what time performed,
                        409
                    
                

                
                    	〃
                    	
                        the cause of its belts hinted at,
                        445
                    
                

                
                    	
                        Light, its propagation not instantaneous,
                        246
                    
                

                
                    	〃
                    	
                        its velocity different in different mediums,
                        245
                    
                

                
                    	〃
                    	
                        a certain reflection it sometimes suffers explained,
                        245
                    
                

                
                    	〃
                    	
                        its refraction explained, 243
                    
                

                
                    	〃
                    	
                        refraction is not made in the single point of incidence,
                        247
                    
                

                
                    	〃
                    	
                        an incurvation of light about the extremities of bodies observed by experiments,
                        246
                    
                

                
                    	〃
                    	
                        not caused by the agitation of any ethereal medium,
                        368
                    
                

                
                    	
                        Magnetic force,
                        94,
                        304,
                        397,
                        454
                    
                

                
                    	
                        Mars, its periodic time,
                        388
                    
                

                
                    	〃
                    	
                        its distance from the sun, 389
                    
                

                
                    	〃
                    	
                        the motion of its aphelion, 405
                    
                

                
                    	
                        Matter, its quantity of matter defined,
                        73
                    
                

                
                    	〃
                    	
                        its vis insita defined,
                        74
                    
                

                
                    	〃
                    	
                        its impressed force defined, 74
                    
                

                
                    	〃
                    	
                        its extension, hardness, impenetrability, mobility, vis inertiae, gravity, how discovered,
                        385
                    
                

                
                    	〃
                    	
                        subtle matter of Descartes inquired into,
                        320
                    
                

                
                    	
                        Mechanical Powers explained and demonstrated,
                        94
                    
                

                
                    	
                        Mercury, its periodic time,
                        388
                    
                

                
                    	〃
                    	
                        its distance from the sun, 389
                    
                

                
                    	〃
                    	
                        the motion of its aphelion, 405
                    
                

                
                    	
                        Method of first and last ratios,
                        95
                    
                

                
                    	〃
                    	
                        of transforming figures into others of the same analytical order,
                        141
                    
                

                
                    	〃
                    	of fluxions, 261
                

                
                    	〃
                    	differential, 447
                

                
                    	〃
                    	
                        of finding the quadratures of all curves very nearly true,
                        448
                    
                

                
                    	〃
                    	
                        of converging series applied to the solution of difficult problems,
                        271,
                        436
                    
                

                
                    	
                        Moon,
                        the inclination of its orbit to the ecliptic greatest in the syzygies of the node with the sun,
                        and least in the quadratures,
                        208
                    
                

                
                    	〃
                    	the figure of its body collected by calculation, 454
                

                
                    	〃
                    	its librations explained, 405
                

                
                    	〃
                    	its mean apparent diameter, 453
                

                
                    	〃
                    	its true diameter, 453
                

                
                    	〃
                    	weight of bodies on its surface, 453
                

                
                    	〃
                    	its density, 453
                

                
                    	〃
                    	its quantity of matter, 453
                

                
                    	〃
                    	
                        its mean distance from the earth,
                        how many greatest semi-diameters of the earth contained therein,
                        453
                    
                

                
                    	〃
                    	how many mean semi-diameters, 454
                

                
                    	〃
                    	its force to move the sea how great, 449
                

                
                    	〃
                    	
                        not perceptible in experiments of pendulums, or any statical or hydrostatical observations,
                        452
                    
                

                
                    	〃
                    	its periodic time, 454
                

                
                    	〃
                    	the time of its synodical revolution, 422
                

                
                    	〃
                    	
                        its motions, and the inequalities of the same derived from their causes,
                        
                            413,
                            144
                        
                    
                

                
                    	〃
                    	
                        revolves more slowly, in a dilated orbit,
                        when the earth is in its perihelion; and more swiftly in the aphelion the same,
                        its orbit being contracted,
                        413,
                        444,
                        445
                    
                

                
                    	〃
                    	
                        revolves more slowly, in a dilated orbit,
                        when the apogaeon is in the syzygies with the sun; and more swiftly,
                        in a contracted orbit, when the apogaeon is in the quadratures, 445
                    
                

                
                    	〃
                    	
                        revolves more slowly, in a dilated orbit,
                        when the node is in the syzygies with the sun;
                        and more swiftly, in a contracted orbit,
                        when the node is in the quadratures,
                        446
                    
                

                
                    	〃
                    	
                        moves slower in its quadratures with the sun, swifter in the syzygies;
                        and by a radius drawn to the earth describes an area,
                        in the first case less in proportion to the time, in the last case greater,
                        413
                    
                

                
                    	〃
                    	
                        the inequality of those areas computed,
                        420
                    
                

                
                    	〃
                    	
                        its orbit is more curve, and goes farther from the earth in the first case;
                        in the last case its orbit is less curve, and comes nearer to the earth,
                        415
                    
                

                
                    	〃
                    	
                        the figure of this orbit, and the proportion of its diameters collected by computation,
                        423
                    
                

                
                    	〃
                    	
                        a method of finding the moon's distance from the earth by its horary motion,
                        423
                    
                

                
                    	〃
                    	
                        its apogaeon moves more slowly when the earth is in its aphelion,
                        more swiftly in the perihelion,
                        414,
                        445
                    
                

                
                    	〃
                    	
                        its apogaeon goes forward most swiftly when in the syzygies with the sun;
                        and goes backward in the quadratures,
                        414,
                        446
                    
                

                
                    	〃
                    	
                        its eccentricity greatest when the apogaeon is in the syzygies with the sun;
                        least when the same is in the quadratures,
                        414,
                        446
                    
                

                
                    	〃
                    	
                        its nodes move more slowly when the earth is in its aphelion,
                        and more swiftly in the perihelion,
                        414,
                        445
                    
                

                
                    	〃
                    	
                        its nodes are at rest in their syzygies with the sun,
                        and go back most swiftly in the quadratures
                        414
                    
                

                
                    	
                        Moon the motions of the nodes and
                        the inequalities of its motions computed from the theory of gravity,
                        427,
                        430,
                        434,
                        436
                    
                

                
                    	〃
                    	
                        the same from a different principle,
                        437
                    
                

                
                    	〃
                    	
                        the variations of the inclination computed from the theory of gravity,
                        441,
                        443
                    
                

                
                    	〃
                    	
                        the equations of the moon's motions for astronomical uses,
                        445
                    
                

                
                    	〃
                    	the annual equation of the moon's mean motion,
                    445
                

                
                    	〃
                    	the first semi-annual equation of the same,
                    443
                

                
                    	〃
                    	the second semi-annual equation of the same,
                    447
                

                
                    	〃
                    	the first equation of the moon's centre,
                    447
                

                
                    	〃
                    	the second equation of the moon's centre,
                    448
                

                
                    	Moon's first variation,
                    425
                

                
                    	〃
                    	the annual equation of the mean motion of its apogee,
                    445
                

                
                    	〃
                    	the semi-annual equation of the same,
                    447
                

                
                    	〃
                    	the semi-annual equation of its eccentricity,
                    447
                

                
                    	〃
                    	the annual equation of the mean motion of its nodes,
                    445
                

                
                    	〃
                    	the semi-annual equation of the same,
                    437
                

                
                    	〃
                    	
                        the semi-annual equation of the inclination of the orbit to the ecliptic,
                        444
                    
                

                
                    	〃
                    	
                        the method of fixing the theory of the lunar motions from observations,
                        464
                    
                

                
                    	
                        Motion, its quantity defined,
                        73
                    
                

                
                    	〃
                    	absolute and relative, 78
                

                
                    	〃
                    	
                        absolute and relative, the separation of one from the other possible, demonstrated by an example
                        82
                    
                

                
                    	〃
                    	laws thereof, 83
                

                
                    	〃
                    	
                        of concurring bodies after their reflection, by what experiments collected,
                        91
                    
                

                
                    	〃
                    	of bodies in eccentric sections,
                    116
                

                
                    	〃
                    	in moveable orbits,
                    172
                

                
                    	〃
                    	
                        in given superficies, and of the reciprocal motion of pendulums,
                        183
                    
                

                
                    	〃
                    	of bodies tending to each other with centripetal forces,
                    194
                

                
                    	〃
                    	
                        of very small bodies agitated by centripetal forces tending to each part of some very great body,
                        233
                    
                

                
                    	〃
                    	of bodies resisted in the ratio of the velocities,
                    251
                

                
                    	〃
                    	in the duplicate ratio of the velocity,
                    258
                

                
                    	〃
                    	
                        partly in the simple and partly in the duplicate ratio of the same,
                        280
                    
                

                
                    	〃
                    	
                        of bodies proceeding by their vis insita alone in resisting mediums,
                        
                            251,
                            258,
                            259,
                            280,
                            281,
                            330
                        
                    
                

                
                    	〃
                    	
                        of bodies ascending or descending in right lines in resisting mediums,
                        and acted on by an uniform force of gravity,
                        
                            252,
                            265,
                            281,
                            283
                        
                    
                

                
                    	〃
                    	
                        of bodies projected in resisting mediums, and acted on by an uniform force of gravity,
                        
                            255,
                            268
                        
                    
                

                
                    	〃
                    	of bodies revolving in resisting mediums,
                    287
                

                
                    	〃
                    	of funependulous bodies in resisting mediums,
                    304
                

                
                    	〃
                    	and resistance of fluids,
                    323
                

                
                    	〃
                    	propagated through fluids,
                    356
                

                
                    	〃
                    	of fluids after the manner of a vortex, or circular,
                    370
                

                
                    	Motions,
                    composition and resolution of them,
                    84
                    
                

                
                    	
                        Ovals for optic uses,
                        the method of finding them which Cartesius concealed,
                        246
                    
                

                
                    	〃
                    	
                        a general solution of Cartesius's problem,
                        247,
                        248
                    
                

                
                    	
                        Orbits,
                        the invention of those which are described by bodies going off from a
                        given place with a given velocity according to a given right line,
                        when the centripetal force is reciprocally as the square of the distance,
                        and the absolute quantity of that force is known,
                        123
                    
                

                
                    	〃
                    	
                        of those which are described by bodies when the centripetal force is reciprocally as the cube of the distance,
                        114,
                        171,
                        176
                    
                

                
                    	〃
                    	
                        of those which are described by bodies agitated by any centripetal forces whatever,
                        168
                    
                

                
                    	
                        Parabola,
                        by what law of centripetal force tending to the focus of the figure the same may be described,
                        120
                    
                

                
                    	
                        Pendulums, their properties explained,
                        186,
                        190,
                        304
                    
                

                
                    	〃
                    	
                        the diverse lengths of isochronous pendulums in different latitudes compared among themselves,
                        both by observations and by the theory of gravity,
                        409 to
                        413
                    
                

                
                    	
                        Place defined,
                        and distinguished into absolute and relative,
                        78
                    
                

                
                    	
                        Places of bodies moving in conic sections found to any assigned time,
                        153
                    
                

                
                    	
                        Planets not carried about by corporeal vortices,
                        378
                    
                

                
                    	
                        Planets, their periodic times,
                        388
                    
                

                
                    	〃
                    	
                        their distances from the sun,
                        389
                    
                

                
                    	〃
                    	the aphelia and nodes of their orbits do almost rest,
                    405
                

                
                    	〃
                    	their orbits determined,
                    406
                

                
                    	〃
                    	
                        the way of finding their places in their orbits,
                        347 to
                        350
                    
                

                
                    	〃
                    	their density suited to the heat they receive from the sun,
                    400
                

                
                    	〃
                    	their diurnal revolutions equable.
                    406
                

                
                    	〃
                    	
                        their axes less than the diameters that stand upon them at right angles,
                        406
                    
                

                
                    	
                        Planets, Primary, surround the sun,
                        387
                    
                

                
                    	〃
                    	move in ellipses whose focus is in the sun's centre,
                    403
                

                
                    	〃
                    	
                        by radii drawn to the sun describe areas proportional to the times,
                        388,
                        403
                    
                

                
                    	〃
                    	
                        revolve in periodic times that are in the sesquiplicate proportion of the distances from the sun,
                        387
                    
                

                
                    	〃
                    	
                        are retained in their orbits by a force of gravity which respects the sun,
                        and is reciprocally as the square of the distance from the sun's centre,
                        389,
                        393
                    
                

                
                    	
                        Planets, Secondary,
                        move in ellipses having their focus in the centre of the primary,
                        413
                
                

                
                    	〃
                    	
                        by radii drawn to their primary describe areas proportional to the times,
                        386,
                        387,
                        390
                    
                

                
                    	〃
                    	
                        revolve in periodic times that are in the sesquiplicate proportion of their distances from the primary,
                        386,
                        387
                    
                

                
                    	
                        Problem Keplerian, solved by the trochoid and by approximations,
                        157 to
                        160
                    
                

                
                    	〃
                    	
                        of the ancients, of four lines, related by Pappus, and attempted by Cartesius,
                        by an algebraic calculus solved by a geometrical composition,
                        135
                    
                

                
                    	
                        Projectiles move in parabolas when the resistance of the medium is taken away,
                        91,
                        115,
                        243,
                        273
                    
                

                
                    	〃
                    	
                        their motions in resisting mediums,
                        
                            255,
                            268
                        
                    
                

                
                    	
                        Pulses of the air, by which sounds are propagated,
                        their intervals or breadths determined,
                        368,
                        370
                    
                

                
                    	〃
                    	
                        these intervals in sounds made by open pipes probably equal to twice the length of the pipes,
                        370
                    
                

                
                    	
                        Quadratures general of oval figures not to be obtained by finite terms,
                        153
                    
                

                
                    	
                        Qualities of bodies how discovered, and when to be supposed universal,
                        384
                    
                

                
                    	
                    Resistance, the quantity thereof in mediums not continued,
                        329
                    
                

                
                    	〃
                    	in continued mediums, 409
                

                
                    	〃
                    	in mediums of any kind whatever, 331
                

                
                    	〃
                    	
                        of mediums is as their density, caeteris paribus,
                        
                            320,
                            321,
                            324,
                            329,
                            344,
                            355
                        
                    
                

                
                    	〃
                    	
                        is in the duplicate proportion of the velocity of the bodies resisted,
                        caeteris paribus,
                        
                            258,
                            314,
                            374,
                            329,
                            344,
                            351
                        
                    
                

                
                    	〃
                    	
                        is in the duplicate proportion of the diameters of spherical bodies resisted,
                        caeteris paribus,
                        317,
                        318,
                        329,
                        344
                    
                

                
                    	〃
                    	
                        of fluids threefold, arises either from the inactivity of the fluid matter,
                        or the tenacity of its parts, or friction,
                        286
                    
                

                
                    	〃
                    	the resistance found in fluids, almost all of the first kind,
                    
                        321,
                        354
                    
                

                
                    	〃
                    	cannot be diminished by the subtilty of the parts of the fluid, if the density remain,
                    355
                

                
                    	〃
                    	
                        of a globe, what proportion it bears to that of a cylinder, in mediums not continued,
                        327
                    
                

                
                    	〃
                    	in compressed mediums, 343
                

                
                    	〃
                    	of a globe in mediums not continued, 329
                

                
                    	〃
                    	in compressed mediums, 344
                

                
                    	〃
                    	how found by experiments,
                    345 to
                    355
                

                
                    	〃
                    	to a frustum of a cone, how made the least possible,
                    328
                

                
                    	〃
                    	what kind of solid it is that meets with the least,
                    329
                

                
                    	
                        Resistances,
                        the theory thereof confirmed by experiments of pendulums,
                        
                            313 to
                            321
                        
                    
                

                
                    	〃
                    	by experiments of falling bodies,
                    345 to
                    356
                

                
                    	Rest, true and relative,
                    78
                

                
                    	Rules of philosophy,
                    384
                

                
                    	
                        Satellites,
                        the greatest heliocentric elongation of Jupiter's satellites,
                        387
                    
                

                
                    	〃
                    	the greatest heliocentric elongation of the Huygenian satellite from Saturn's centre,
                    398
                

                
                    	〃
                    	the periodic times of Jupiter's satellites, and their distances from his centre,
                    386,
                    387
                

                
                    	〃
                    	the periodic times of Saturn's satellites, and their distances from his centre,
                    387,
                    388
                

                
                    	〃
                    	the inequalities of the motions of the satellites of Jupiter and Saturn derived from the motions of the moon,
                    413
                
                

                
                    	Sesquiplicate proportion defined,
                    101
                

                
                    	Saturn, its periodic time,
                    388
                

                
                    	〃
                    	its distance from the sun,
                    388
                

                
                    	〃
                    	its apparent diameter, 388
                

                
                    	〃
                    	its true diameter, 399
                

                
                    	〃
                    	its attractive force, how great, 398
                

                
                    	〃
                    	the weight of bodies on its surface, 399
                

                
                    	〃
                    	its density, 399
                

                
                    	〃
                    	its quantity of matter, 399
                

                
                    	〃
                    	its perturbation by the approach of Jupiter how great,
                    403
                

                
                    	〃
                    	the apparent diameter of its ring, 
                    388
                

                
                    	
                        Shadow of the earth to be augmented in lunar eclipses,
                        because of the refraction of the atmosphere,
                        447
                    
                

                
                    	
                        Sounds, their nature explained,
                        
                            360,
                            363,
                            365,
                            366,
                            367,
                            368,
                            369
                        
                   
                

                
                    	〃
                    	not propagated in directum, 359
                

                
                    	〃
                    	caused by the agitation of the air, 368
                

                
                    	〃
                    	their velocity computed,
                    368,
                    369
                

                
                    	〃
                    	somewhat swifter by the theory in summer than in winter,
                    370
                

                
                    	〃
                    	
                        cease immediately, when the motion of the sonorous body ceases,
                        365
                    
                

                
                    	〃
                    	how augmented in speaking trumpets,
                    370
                

                
                    	
                        Space, absolute and relative,
                        78,
                        79
                    
                

                
                    	〃
                    	not equally full, 396
                

                
                    	
                        Spheroid,
                            the attraction of the same when the forces of its particles are
                            reciprocally as the squares of the distances,
                        239
                    
                

                
                    	
                        Spiral cutting all its radii in a given angle,
                        by what law of centripetal force tending to the centre thereof it may be described by a revolving body,
                        
                            107,
                            287,
                            291
                        
                    
                

                
                    	
                        Spirit pervading all bodies,
                        and concealed within them, hinted at, as required to solve a great many phenomena of Nature,
                        508
                    
                

                
                    	
                        Stars, the fixed stars demonstrated to be at rest,
                        404
                    
                

                
                    	〃
                    	their twinkling what to be ascribed to,
                    487
                

                
                    	〃
                    	new stars, whence they may arise, 502
                

                
                    	
                        Substances of all things unknown,
                        507
                    
                

                
                    	
                        Sun, moves round the common centre of gravity of all the planeta,
                        401
                    
                

                
                    	〃
                    	the periodic time of its revolution about its axis,
                    405
                

                
                    	〃
                    	its mean apparent diameter,
                    453
                

                
                    	〃
                    	its true diameter, 398
                

                
                    	〃
                    	its horizontal parallax,
                    398
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.9




    
        Section ix.


        Of the motion of bodies in moveable orbits; and of the motion of the apsides.



    

    
        Proposition xliii. Problem xxx.


            
                
                    It is required to make a body move in a trajectory that
                    revolves about the centre of force in the same manner as another
                    body in the same trajectory at rest.
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            In the orbit VPK, given by position, let the body P revolve,
            proceeding from V towards K. From the centre C let there be
            continually drawn Cp, equal to CP, making the angle VCp
            proportional to the angle VCP; and the area which the line Cp
            describes will be to the area VCP, which the line CP describes at the
            same time, as the velocity of the describing line Cp to the
            velocity of the describing line CP; that is, as the angle VCp
            to the angle VCP, therefore in a given ratio, and therefore
            proportional to the time. Since, then, the area described by the line
            Cp in an immovable plane is proportional to the time, it is
            manifest that a body, being acted upon by a just quantity of
            centripetal force may revolve with the point
            p in the curve line which the same point p, by the
            method just now explained, may be made to describe an immovable plane.
            Make the angle VCu equal to the angle PCp, and the
            line Cu equal to CV, and the figure uCp
            equal to the figure VCP, and the body being always in the point p,
            will move in the perimeter of the revolving figure uCp,
            and will describe its (revolving) arc up in the same time
            that the other body P describes the similar and equal arc VP in the
            quiescent figure VPK. Find, then, by Cor. 5, Prop. VI., the
            centripetal force by which the body may be made to revolve in the
            curve line which the point p describes in an immovable
            plane, and the Problem will be solved.   Q.E.F.
        


    

    
        Proposition xliv. Theorem xiv.


            
                
                    The difference of the forces, by which two bodies may be made
                    to move equally, one in a quiescent, the other in the same orbit
                    revolving, is in a triplicate ratio of their common altitudes inversely.
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            Let the parts of the quiescent orbit VP, PK be similar and equal to
            the parts of the revolving orbit up, pk; and let the
            distance of the points P and K be supposed of the utmost smallness.
            Let fall a perpendicular kr from the point k to
            the right line pC, and produce it to m, so that mr
            may be to kr as the angle VCp to the angle VCP.
            Because the altitudes of the bodies PC and pC, KC and kC,
            are always equal, it is manifest that the increments or decrements of
            the lines PC and pC are always equal; and therefore if each
            of the several motions of the bodies in the places P and p
            be resolved into two (by Cor. 2 of the Laws of Motion), one of which
            is directed towards the centre, or according to the lines PC, pC,
            and the other, transverse to the former, hath a direction
            perpendicular to the lines PC and pC; the motions towards
            the centre will be equal, and the transverse motion of the body p
            will be to the transverse motion of the body P as the angular motion
            of the line pC to the angular motion of the line PC; that
            is, as the angle VCp to the angle VCP. Therefore, at the same
            time that the body P, by both its motions, comes to the point K, the
            body p, having an equal motion towards the centre, will be
            equally moved from p towards C; and therefore that time
            being expired, it will be found somewhere in the line mkr,
            which, passing through the point k, is perpendicular to the
            line pC; and by its transverse motion will acquire a
            distance from the line pC, that will
            be to the distance which the other body P acquires from the line PC as
            the transverse motion of the body p to the transverse motion
            of the other body P. Therefore since kr is equal to the
            distance which the body P acquires from the line PC, and mr
            is to kr as the angle VCp to the angle VCP, that
            is, as the transverse motion of the body p to the transverse
            motion of the body P, it is manifest that the body p, at the
            expiration of that time, will be found in the place m. These
            things will be so, if the bodies p and P are equally moved
            in the directions of the lines pC and PC, and are therefore
            urged with equal forces in those directions, but if we take an angle pCn
            that is to the angle pCk as the angle VCp
            to the angle VCP, and nC be equal to kC, in that
            case the body p at the expiration of the time will really be
            in n; and is therefore urged with a greater force than the
            body P, if the angle nCp is greater than the angle
            kCp, that is, if the orbit upk, move
            either in consequentia or in antecedentia, with a
            celerity greater than the double of that with which the line CP moves
            in consequentia; and with a less force if the orbit moves
            slower in antecedentia. And the difference of the forces
            will be as the interval mn of the places through which the
            body would be carried by the action of that difference in that given
            space of time. About the centre C with the interval Cn or Ck
            suppose a circle described cutting the lines mr, mn produced
            in s and t, and the rectangle mn x mt
            will be equal to the rectangle mk x ms, and therefore mn
            will be equal to mk x ms

            mt. But since the triangles pCk,
            pCn, in a given time, are of a given magnitude, kr
            and mr, and their difference mk, and their sum ms,
            are reciprocally as the altitude pC, and therefore the
            rectangle mk x ms is reciprocally as the square of the
            altitude pC. But, moreover, mt is directly as ½mt,
            that is, as the altitude pC. These are the first ratios of
            the nascent lines: and hence mk x
            ms

            mt, that is, the nascent lineola mn,
            and the difference of the forces proportional thereto, are
            reciprocally as the cube of the altitude pC.
              Q.E.D.
        


        
            Cor. 1. Hence the difference of the forces in
            the places P and p, or K and k, is to the force
            with which a body may revolve with a circular motion from R to K, in
            the same time that the body P in an immovable orb describes the arc
            PK, as the nascent line mn to the versed sine of the nascent
            arc RK, that is, as mk x ms

            mt to rk2

            2kC, or as mk x ms to the
            square of rk; that is, if we take given quantities F and G
            in the same ratio to one another as the angle VCP bears to the angle
            VCp, as GG − FF to FF. And, therefore, if from the centre C,
            with any distance CP or Cp, there be described a circular
            sector equal to the whole area VPC, which the body revolving
            in an immovable orbit has by a radius drawn to the centre described in
            any certain time, the difference of the forces, with which the body P
            revolves in an immovable orbit, and the body p in a movable
            orbit, will be to the centripetal force, with which another body by a
            radius drawn to the centre can uniformly describe that sector in the
            same time as the area VPC is described, as GG − FF to FF. For that
            sector and the area pCk are to one another as the
            times in which they are described.
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            Cor. 2. If the orbit VPK be an ellipsis,
            having its focus C, and its highest apsis V, and we suppose the the
            ellipsis upk similar and equal to it, so that pC
            may be always equal to PC, and the angle VCp be to the angle
            VCP in the given ratio of G to F; and for the altitude PC or pC
            we put A, and 2R for the latus rectum of the ellipsis, the force with
            which a body may be made to revolve in a movable ellipsis will be as
            FF

            AA+RGG − RFF

            A3, and vice versa.
            Let the force with which a body may revolve in an immovable ellipsis
            be expressed by the quantity FF

            AA, and the force in V will be 
            FF

            CV2. But the force with
            which a body may revolve in a circle at the distance CV, with the same
            velocity as a body revolving in an ellipsis has in V, is to the force
            with which a body revolving in an ellipsis is acted upon in the apsis
            V, as half the latus rectum of the ellipsis to the semi-diameter CV of
            the circle, and therefore is as RFF

            CV3; and the force which is
            to this, as GG − FF to FF, is as RGG
            − RFF

            CV3 : and this force (by
            Cor. 1 of this Prop.) is the difference of the forces in V, with which
            the body P revolves in the immovable ellipsis VPK, and the body p
            in the movable ellipsis upk. Therefore since by this Prop,
            that difference at any other altitude A is to itself at the altitude
            CV as 1

            A3 to 
            1

            CV3, the same difference
            in every altitude A will be as RGG
            − RFF

            A3. Therefore to the force
            FF

            AA, by which the body may revolve in an
            immovable ellipsis VPK add the excess
            RGG − RFF

            A3, and the sum will be the
            whole force FF

            AA+RGG − RFF

            A3 by which a body may
            revolve in the same time in the movable ellipsis upk.
        


        
            Cor. 3. In the same manner it will be found,
            that, if the immovable orbit VPK be an ellipsis having its centre in
            the centre of the forces C, and there be supposed a movable ellipsis upk,
            similar, equal, and concentrical to it; and 2R be the principal latus
            rectum of that ellipsis, and 2T the latus transversum, or greater
            axis; and the angle VCp be continually to the angle VCP as G
            to F; the forces with which bodies may revolve in the immovable and
            movable ellipsis, in equal times, will be as 
            FFA

            T3 and 
            FFA

            T3+RGG − RFF

            A3 respectively.
        


        
            Cor. 4. And universally, if the greatest
            altitude CV of the body be called T, and the radius of the curvature
            which the orbit VPK has in V, that is, the radius of a circle equally
            curve, be called R, and the centripetal force with which a body may
            revolve in any immovable trajectory VPK at the place V be called
            VFF

            TT, and in other places P be
            indefinitely styled X; and the altitude CP be called A, and G be taken
            to F in the given ratio of the angle VCp to the angle VCP;
            the centripetal force with which the same body will perform the same
            motions in the same time, in the same trajectory upk
            revolving with a circular motion, will be as the sum of the forces
            X+VRGG − VRFF

            A3.
        


        
            Cor. 5. Therefore the motion of a body in an
            immovable orbit being given, its angular motion round the centre of
            the forces may be increased or diminished in a given ratio; and thence
            new immovable orbits may be found in which bodies may revolve with new
            centripetal forces.
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            Cor. 6. Therefore if there be erected the
            line VP of an indeterminate length, perpendicular to the line CV given
            by position, and CP be drawn, and Cp equal to it, making the
            angle VCp having a given ratio to the angle VCP, the force
            with which a body may revolve in the curve line Vpk, which
            the point p is continually describing, will be reciprocally
            as the cube of the altitude Cp. For the body P, by its vis
            inertiae alone, no other force impelling it, will proceed
            uniformly in the right line VP. Add, then, a force tending to the
            centre C reciprocally as the cube of the altitude CP or Cp,
            and (by what was just demonstrated) the body
            will deflect from the rectilinear motion into the curve line Vpk.
            But this curve Vpk is the same with the curve VPQ found in
            Cor. 3, Prop XLI, in which, I said, bodies attracted with such forces
            would ascend obliquely.
        


    

    
        Proposition xlv. Problem xxxi.


            To find the motion of the apsides in orbits approaching very near to circles.


        

        
            This problem is solved arithmetically by reducing the orbit, which a
            body revolving in a movable ellipsis (as in Cor. 2 and 3 of the above
            Prop.) describes in an immovable plane, to the figure of the orbit
            whose apsides are required; and then seeking the apsides of the orbit
            which that body describes in an immovable plane. But orbits acquire
            the same figure. if the centripetal forces with which they are
            described, compared between themselves, are made proportional at equal
            altitudes. Let the point V be the highest apsis, and write T for the
            greatest altitude CV, A for any other altitude CP or Cp, and
            X for the difference of the altitudes CV − CP; and the force with
            which a body moves in an ellipsis revolving about its focus C (as in
            Cor. 2), and which in Cor. 2 was as
            FF

            AA + 
            RGG − RFF

            A3, that is as,
            FFA + RGG − RFF

            A3,
            by substituting T − X for A, will become as 
            RGG − RFF + TFF − FFX

            A3. In like manner any other
            centripetal force is to be reduced to a fraction whose denominator is
            A³, and the numerators are to be made analogous by collating together
            the homologous terms. This will be made plainer by Examples.
        


        
            Example 1. Let us suppose the centripetal
            force to be uniform, and therefore as
            A3

            A3 or, writing T − X for A
            in the numerator, as T3
            − 3TTX+3TXX − X3

            A3. Then collating together
            the correspondent terms of the numerators, that is, those that consist
            of given quantities, with those of given quantities, and those of
            quantities not given with those of quantities not given, it will
            become RGG − RFF + TFF to T³ as − FFX to 3TTX + 3TXX − X³, or as −FF
            to −3TT + 3TX − XX. Now since the orbit is supposed extremely near to
            a circle, let it coincide with a circle; and because in that case R
            and T become equal, and X is infinitely diminished, the last ratios
            will be, as RGG to T², so −FF to −3TT, or as GG to TT, so FF to 3TT;
            and again, as GG to FF, so TT to 3TT, that is, as 1 to 3; and
            therefore G is to F, that is, the angle VCp to the angle VCP,
            as 1 to √3. Therefore since the body, in an immovable 
            ellipsis, in descending from the upper to the lower apsis, describes an angle,
            if I may so speak, of 180 deg., the other body in a movable ellipsis,
            and therefore in the immovable orbit we are treating of, will in its
            descent from the upper to the lower apsis, describe an angle VCp
            of 180

            √3 deg. And this comes to pass by reason of the likeness of
            this orbit which a body acted upon by an uniform centripetal force
            describes, and of that orbit which a body performing its circuits in a
            revolving ellipsis will describe in a quiescent plane. By this
            collation of the terms, these orbits are made similar; not
            universally, indeed, but then only when they approach very near to a
            circular figure. A body, therefore revolving with an uniform
            centripetal force in an orbit nearly circular, will always describe an
            angle of 180

            √3 deg., or 103 deg., 55 m., 23 sec., at the centre; moving
            from the upper apsis to the lower apsis when it has once described
            that angle, and thence returning to the upper apsis when it has
            described that angle again; and so on in infinitum.
        


        
            Exam. 2. Suppose the centripetal force to be
            as any power of the altitude A, as, for example, An−3, or
            An

            A3; where n − 3 and n signify
            any indices of powers whatever, whether integers or fractions,
            rational or surd, affirmative or negative. That numerator An
            or (T − X)n being reduced to an indeterminate series by my
            method of converging series, will become Tn
            − nXTn−1 + nn − n

            2XXTn−2, &c. And conferring these
            terms with the terms of the other numerator RGG − RFF + TFF − FFX, it
            becomes as RGG − RFF + TFF to Tn, so − FF to −nTn−1
            + nn − n

            2XTn−2, &c. And taking the last
            ratios where the orbits approach to circles, it becomes as RGG to Tn,
            so − FF to −nTn−1, or as GG to Tn−1, so
            FF to nTn−; and again, GG to FF, so Tn−1
            to nTn−1, that is, as 1 to n; and
            therefore G is to F, that is the angle VCp to the angle VCP,
            as 1 to √n. Therefore since the angle VCP, described in the descent of
            the body from the upper apsis to the lower apsis in an ellipsis, is of
            180 deg., the angle VCp, described in the descent of the body
            from the upper apsis to the lower apsis in an orbit nearly circular
            which a body describes with a centripetal force proportional to the
            power An−3, will be equal to an angle of 
            180

            √n deg., and this angle being repeated, the body will return
            from the lower to the upper apsis, and so on in infinitum.
            As if the centripetal force be as the distance of the body from the
            centre, that is, as A, or A4

            A3, n will be
            equal to 4, and √n equal to 2; and therefore the angle between
            the upper and the lower apsis will be equal to 
            180

            2 deg., or 90 deg. Therefore the body having performed a
            fourth part of one revolution, will arrive at the lower apsis, and
            having performed another fourth part, will arrive at the upper apsis,
            and so on by turns in infinitum. This appears also from
            Prop. X. For a body acted on by this centripetal force will revolve in
            an immovable ellipsis, whose centre is the centre of force. If the
            centripetal force is reciprocally as the distance, that is, directly
            as 1

            A or A2

            A3, n will be equal to 2; and therefore
            the angle between the upper and lower apsis will be 
            180

            √2 deg., or 127 deg., 16 min., 45 sec.; and therefore a body
            revolving with such a force, will by a perpetual repetition of this
            angle, move alternately from the upper to the lower and from the lower
            to the upper apsis for ever. So, also, if the centripetal force be
            reciprocally as the biquadrate root of the eleventh power of the
            altitude, that is, reciprocally as A11/4 , and, therefore,
            directly as 1

            A11/4 or as 
            A1/4

            A3, n will be equal to ¼, and 
            180

            √n deg. will be equal to 360 deg.; and therefore the body
            parting from the upper apsis, and from thence perpetually descending,
            will arrive at the lower apsis when it has completed one entire
            revolution; and thence ascending perpetually, when it has completed
            another entire revolution, it will arrive again at the upper apsis;
            and so alternately for ever.
        


        
            Exam. 3. Taking m and n
            for any indices of the powers of the altitude, and b and c
            for any given numbers, suppose the centripetal force to be as 
            bAm − can

            A3, that is, as b
            into (T − X)m + c into (T − X)n

            A3 or (by the method of converging series
            above-mentioned) as

            bTm+cTn
            − mbXTm−1ncXTn−1 + 
            mm − m

            2bXXTm−2 + nn
            − n

            2cXXTn−2

            A3 &c.

            and comparing the terms of the numerators, there will arise RGG
            − RFF + TFF to bTm + cTn as −FF
            to −mbTm−1 − ncTn
            + mm − m

            2bXTm−2 + nn
            − n

            2cXTn−2, &c. And taking the last
            ratios that arise when the orbits come to a circular form, there will
            come forth GG to bTm−1 + cTn−1
            as FF to mbTm−1 + ncTn−1;
            and again, GG to FF as bTm−1 +
            cTn−1 to mbTn−1
            + ncTn−1. This proportion, by expressing
            the greatest altitude CV or T arithmetically by unity, becomes, GG to
            FF as b + c to mb + nc, and therefore as 1
            to mb + nc

            b + c. Whence G becomes to F, that is, the angle VCp
            to the angle VCP, as 1 to √
            mb + nc

            b + c. And therefore since
            the angle VCP between the upper and the lower apsis, in an immovable
            ellipsis, is of 180 deg., the angle VCp between the same
            apsides in an orbit which a body describes with a centripetal force,
            that is, as bAm + cAn

            A3, will be equal to an angle of 180
            √b + c

            mb + nc deg. And by the same
            reasoning, if the centripetal force be as bAm
            − cAn

            A3, the angle between the apsides will be found
            equal to 180√
            b − c

            mb − nc. After the same
            manner the Problem is solved in more difficult cases. The quantity to
            which the centripetal force is proportional must always be resolved
            into a converging series whose denominator is A³. Then the given part
            of the numerator arising from that operation is to be supposed in the
            same ratio to that part of it which is not given, as the given part of
            this numerator RGG − RFF + TFF − FFX is to
            that part of the same numerator which is not given. And taking away
            the superfluous quantities, and writing unity for T, the proportion of
            G to F is obtained.
        


        
            Cor. 1 . Hence if the centripetal force be as
            any power of the altitude, that power may be found from the motion of
            the apsides; and so contrariwise. That is, if the whole angular
            motion, with which the body returns to the same apsis, be to the
            angular motion of one revolution, or 360 deg., as any number as m
            to another as n, and the altitude called A; the force will
            be as the power Ann

            mm−3 of the altitude
            A; the index of which power is nn

            mm−3. This appears by the
            second example. Hence it is plain that the force in its recess from
            the centre cannot decrease in a greater than a triplicate ratio of the
            altitude. A body revolving with such a force and parting from the
            apsis, if it once begins to descend, can never arrive at the lower
            apsis or least altitude, but will descend to the centre, describing
            the curve line treated of in Cor. 3, Prop. XLI. But if it should, at
            its parting from the lower apsis, begin to ascend never so little, it
            will ascend in infinitum, and never come to the upper apsis;
            but will describe the curve line spoken of in the same Cor., and Cor.
            6; Prop. XLIV. So that where the force in its recess from the centre
            decreases in a greater than a triplicate ratio of the altitude, the
            body at its parting from the apsis, will either descend to the centre,
            or ascend in infinitum, according as it descends or ascends at the
            beginning of its motion. But if the force in its recess from the
            centre either decreases in a less than a triplicate ratio of the
            altitude, or increases in any ratio of the altitude whatsoever, the
            body will never descend to the centre, but will at some time arrive at
            the lower apsis; and, on the contrary, if the body alternately
            ascending and descending from one apsis to another never comes to the
            centre, then either the force increases in the recess from the centre,
            or it decreases in a less than a triplicate ratio of the altitude; and
            the sooner the body returns from one apsis to another, the farther is
            the ratio of the forces from the triplicate ratio. As if the body
            should return to and from the upper apsis by an alternate descent and
            ascent in 8 revolutions, or in 4, or 2, or 1½; that is, if m
            should be to n as 8, or 4, or 2, or 1½ to 1, and therefore
            nn

            mm−3, be 1/64
            − 3, or 1/16 − 3, or
            1/4 − 3,
            or 4/9
            − 3; then the force will be as A1/64−3;
            or A1/16−3;
            or A1/4−3;
            or A4/9−3;
            that is, it will be reciprocally as A3−1/64,
            or A3−1/16,
            or A3−1/4,
            or A3−4/9.
            If the body after each revolution returns to the same apsis, and the
            apsis remains unmoved, then m will be to n as 1 to
            1, and therefore Ann/mm−3
            will be equal to A−2, or 1/AA;
            and therefore the decrease of the forces will be in a duplicate ratio
            of the altitude; as was demonstrated above. If the body in three
            fourth parts, or two thirds, or one third, or one fourth part of an
            entire revolution, return to the same apsis; m will be to n
            as ¾ or ⅔ or ⅓ or ¼ to 1, and therefore Ann/mm−3
            is equal to A16/9−3,
            or A9/4−3,
            or A9−3, or A16−3;
            and therefore the force is either reciprocally as A11/9,
            or directly as A6 or A13. Lastly if the body in
            its progress from the upper apsis to the same upper apsis again, goes
            over one entire revolution and three deg. more, and therefore that
            apsis in each revolution of the body moves three deg. in
            consequentia; then m will be to n as 363
            deg. to 360 deg. or as 121 to 120, and therefore Ann/mm−3
            will be equal to A−29523/14641,
            and therefore the centripetal force will be reciprocally as A29523/14641,
            or reciprocally as A24/2 4 3
            very nearly. Therefore the centripetal force decreases in a ratio
            something greater than the duplicate; but approaching 59¾ times nearer
            to the duplicate than the triplicate.
        


        
            Cor. 2. Hence also if a body, urged by a
            centripetal force which is reciprocally as the square of the altitude,
            revolves in an ellipsis whose focus is in the centre of the forces;
            and a new and foreign force should be added to or subducted from this
            centripetal force, the motion of the apsides arising from that foreign
            force may (by the third Example) be known; and so on the contrary. As
            if the force with which the body revolves in the ellipsis be
            as 1

            AA; and the foreign force subducted
            as cA, and therefore the remaining force as 
            A − cA4

            A3; then (by the third
            Example) b will be equal to 1. m equal to 1, and n
            equal to 4; and therefore the angle of revolution between the apsides
            is equal to 180√(1
            − c

            1 − 4c) deg. Suppose that
            foreign force to be 357.45 parts less than the other force with which
            the body revolves in the ellipsis; that is, c to be 
            100

            35745; A or T being equal to 1; and
            then 180√(1 − c

            1 − 4c) will be 180√(
            35645

            35345) or 180.7623, that is,
            180 deg., 45 min., 44 sec. Therefore the body, parting from the upper
            apsis, will arrive at the lower apsis with an angular motion of 180
            deg., 45 min., 44 sec, and this angular motion being repeated, will
            return to the upper apsis; and therefore the upper apsis in each
            revolution will go forward 1 deg., 31 min., 28 sec. The apsis of the
            moon is about twice as swift.
        


        
            So much for the motion of bodies in orbits whose planes pass through
            the centre of force. It now remains to determine those motions in
            eccentrical planes. For those authors who treat of the motion of heavy
            bodies used to consider the ascent and descent of such bodies, not
            only in a perpendicular direction, but at all degrees of obliquity
            upon any given planes; and for the same reason we are to consider in
            this place the motions of bodies tending to centres by means of any
            forces whatsoever, when those bodies move in eccentrical planes. These
            planes are supposed to be perfectly smooth and polished, so as not to
            retard the motion of the bodies in the least. Moreover, in these
            demonstrations, instead of the planes upon which those bodies roll or
            slide, and which are therefore tangent planes to the bodies, I shall
            use planes parallel to them, in which the centres of the bodies move,
            and by that motion describe orbits. And by the same method I
            afterwards determine the motions of bodies performed in curve
            superficies.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 3.1




    Rules of Reasoning in Philosophy.



    
        Rule I.


            
                
                    We are to admit no more causes of natural things than such as
                    are both time and sufficient to explain their appearances.
                
            


        

        
            To this purpose the philosophers say that Nature does nothing in
            vain, and more is in vain when less will serve; for Nature is pleased
            with simplicity, and affects not the pomp of superfluous causes.
        


    

    
        Rule ii.


            
                
                    Therefore to the same natural effects we must, as far as
                    possible, assign the same causes.
                
            


        

        
            As to respiration in a man and in a beast; the descent of stones in Europe
            and in America; the light of our culinary fire and of the
            sun; the reflection of light in the earth, and in the planets.
        


    

    
        Rule iii.


            
                
                    The qualities of bodies, which admit neither intension nor
                    remission of degrees, and which are found to belong to all bodies
                    within the reach of our experiments, are to be esteemed the
                    universal qualities of all bodies whatsoever.
                
            


        

        
            For since the qualities of bodies are only known to us by
            experiments, we are to hold for universal all such as universally
            agree with experiments; and such as are not liable to diminution can
            never be quite taken away. We are certainly not to relinquish the
            evidence of experiments for the sake of dreams and vain fictions of
            our own devising; nor are we to recede from the analogy of Nature,
            which uses to be simple, and always consonant to itself. We no other
            way know the extension of bodies than by our senses, nor do these
            reach it in all bodies; but because we perceive extension in all that
            are sensible, therefore we ascribe it universally to all others also.
            That abundance of bodies are hard, we learn by experience; and because
            the hardness of the whole arises from the hardness of the parts, we
            therefore justly infer the hardness of the undivided particles not
            only of the bodies we feel but of all others. That all bodies are
            impenetrable, we gather not from reason, but from sensation. The
            bodies which we handle we find impenetrable, and thence conclude
            impenetrability to be an universal property of all bodies whatsoever.
            That all bodies are moveable, and endowed with certain powers (which
            we call the vires inertiae) of persevering in their motion,
            or in their rest, we only infer from the like properties observed in
            the bodies which we have seen. The extension,
            hardness, impenetrability, mobility, and vis inertiae of the
            whole, result from the extension, hardness, impenetrability, mobility,
            and vires inertiae of the parts; and thence we conclude the
            least particles of all bodies to be also all extended, and hard and
            impenetrable, and moveable, and endowed with their proper vires
            inertia. And this is the foundation of all philosophy.
            Moreover, that the divided but contiguous particles of bodies may be
            separated from one another, is matter of observation; and, in the
            particles that remain undivided, our minds are able to distinguish yet
            lesser parts, as is mathematically demonstrated. But whether the parts
            so distinguished, and not yet divided, may, by the powers of Nature,
            be actually divided and separated from one an other, we cannot
            certainly determine. Yet, had we the proof of but one experiment that
            any undivided particle, in breaking a hard and solid body, suffered a
            division, we might by virtue of this rule conclude that the undivided
            as well as the divided particles may be divided and actually separated
            to infinity.
        


        
            Lastly, if it universally appears, by experiments and astronomical
            observations, that all bodies about the earth gravitate towards the
            earth, and that in proportion to the quantity of matter which they
            severally contain; that the moon likewise, according to the quantity
            of its matter, gravitates towards the earth; that, on the other hand,
            our sea gravitates towards the moon; and all the planets mutually one
            towards another; and the comets in like manner towards the sun; we
            must, in consequence of this rule, universally allow that all bodies
            whatsoever are endowed with a principle of mutual gravitation. For the
            argument from the appearances concludes with more force for the
            universal gravitation of all bodies than for their impenetrability; of
            which, among those in the celestial regions, we have no experiments,
            nor any manner of observation. Not that I affirm gravity to be
            essential to bodies: by their vis insita I mean nothing but
            their vis inertiae. This is immutable. Their gravity is
            diminished as they recede from the earth.
        


    

    
        Rule iv.


            
                
                    In experimental philosophy we are to look upon propositions
                    collected by general induction from phaenomena as accurately or
                    very nearly true, notwithstanding any contrary hypotheses that may
                    be imagined, till such time as other phaenomena occur, by which
                    they may either be made more accurate, or liable to exceptions.
                
            


        

        This rule we must follow, that the argument of induction may not be evaded by hypotheses.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.8




    
        
        Section viii.


        Of the invention of orbits wherein bodies will revolve, being acted upon by any sort of centripetal force.


    

    
        Proposition xl. Theorem xiii.


            
                
                    If a body, acted upon by any centripetal force, is any how
                    moved, and another body ascends or descends in a right line, and
                    their velocities be equal in any one case of equal altitudes,
                    their velocities will be also equal at all equal altitudes.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 168]

        
            Let a body descend from A through D and E, to the centre C; and let
            another body move from V in the curve line VIKk. From the
            centre C, with any distances, describe the concentric circles DI, EK,
            meeting the right line AC in D and E, and the curve VIK in I and K.
            Draw IC meeting KE in N, and on IK let fall the perpendicular NT; and
            let the interval DE or IN between the circumferences of the circles be
            very small; and imagine the bodies in D and I to have equal
            velocities. Then because the distances CD and CI are equal, the
            centripetal forces in D and I will be also equal. Let those forces be
            expressed by the equal lineolae DE and IN; and let the force IN (by
            Cor. 2 of the Laws of Motion) be resolved into two others, NT and IT.
            Then the force NT acting in the direction of the line NT perpendicular
            to the path ITK of the body will not at all affect or change the
            velocity of the body in that path, but only draw it aside from a
            rectilinear course, and make it deflect perpetually from the tangent
            of the orbit, and proceed in the curvilinear path ITKk. That
            whole force, therefore, will be spent in producing this effect; but
            the other force IT, acting in the direction of the course of the body,
            will be all employed in accelerating it, and in the least given time
            will produce an acceleration proportional to itself. Therefore the
            accelerations of the bodies in D and I, produced in equal times, are
            as the lines DE, IT (if we take the first ratios of the nascent lines
            DE, IN, IK, IT, NT); and in unequal times as those lines and the times
            conjunctly. But the times in which DE and IK are described, are, by
            reason of the equal velocities (in D and I) as the spaces described DE
            and IK, and therefore the accelerations in the course of the bodies
            through the lines DE and IK are as DE and IT, and DE and IK
            conjunctly; that is, as the square of DE to the rectangle IT into IK.
            But the rectangle IT x IK is equal to the square of IN, that is, equal
            to the square of DE; and therefore the accelerations generated in the
            passage of the bodies from D and I to E and K are equal. Therefore the
            velocities of the bodies in E and K are also equal, and by the same
            reasoning they will always be found equal in any subsequent equal
            distances.   Q.E.D.
        


        
            By the same reasoning, bodies of equal
            velocities and equal distances from the centre will he equally
            retarded in their ascent to equal distances.   Q.E.D.
        


        
            Cor. 1. Therefore if a body either oscillates
            by hanging to a string, or by any polished and perfectly smooth
            impediment is forced to move in a curve line; and another body ascends
            or descends in a right line, and their velocities be equal at any one
            equal altitude, their velocities will be also equal at all other equal
            altitudes. For by the string of the pendulous body, or by the
            impediment of a vessel perfectly smooth, the same thing will be
            effected as by the transverse force NT. The body is neither
            accelerated nor retarded by it, but only is obliged to leave its
            rectilinear course.
        


        
            Cor. 2. Suppose the quantity P to be the
            greatest distance from the centre to which a body can ascend, whether
            it be oscillating, or revolving in a trajectory, and so the same
            projected upwards from any point of a trajectory with the velocity it
            has in that point. Let the quantity A be the distance of the body from
            the centre in any other point of the orbit; and let the centripetal
            force be always as the power An−1, of the quantity A, the
            index of which power n−1 is any number n
            diminished by unity. Then the velocity in every altitude A will be as
            √(Pa − An) and
            therefore will be given. For by Prop. XXXIX, the velocity of a body
            ascending and descending in a right line is in that very ratio.
        


    

    
        Proposition xli. Problem xxviii.


            
                
                    Supposing a centripetal force of any kind, and granting the
                    quadratures of curvilinear figures, it is required to find as well
                    the trajectories in which bodies will move, as the times of their
                    motions in the trajectories found.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 169]

        
            Let any centripetal force tend to the centre C, and let it be
            required to find the trajectory VIKk. Let there be given the
            circle VR, described from the centre C with any interval CV; and from
            the same centre describe any other circles ID, KE cutting the
            trajectory in I and K, and the right line CV in D and E. Then draw the
            right line CNIX cutting the circles KE, VR in N and X, and the right
            line CKY meeting the circle VR in Y. Let the points I and K be
            indefinitely near; and let the body go on from V through I and K to k;
            and let the point A be the place from whence another body is to fall,
            so as in the place D to acquire a velocity equal to the velocity of
            the first body in I. And things remaining as in Prop. XXXIX, the
            lineola IK, described in the least given time will
            be as the velocity, and therefore as the right line whose square is
            equal to the area ABFD, and the triangle ICK proportional to the time
            will be given, and therefore KN will be reciprocally as the altitude
            IC; that is (if there be given any quantity Q, and the altitude IC be
            called A), as Q

            A. This quantity 
            Q

            A call Z, and suppose the magnitude of
            Q to be such that in some case √(ABFD) may
            be to Z as IK to KN, and then in all cases √(ABFD)
            will be to Z as IK to KN, and ABFD to ZZ as IK² to KN², and by
            division ABFD − ZZ to ZZ as IN² to KN², and therefore √(ABFD
            − ZZ) to Z; or Q

            A as IN to KN; and therefore A x KN
            will be equal to Q x IN

            √(ABFD − ZZ). Therefore since YX x XC
            is to A x KN as CX², to AA, the rectangle XY x XC will be equal to
            Q x IN x CX2

            AA√(ABFD − ZZ). Therefore in the
            perpendicular DF let there be taken continually Db, Dc
            equal to Q

            2√(ABFD − ZZ), 
            Q x CX2

            2AA√(ABFD − ZZ) respectively, and let
            the curve lines ab, ac, the foci of the points b
            and c, be described: and from the point V let the
            perpendicular Va be erected to the line AC, cutting off the
            curvilinear areas VDba, VDca, and let the ordinates
            Ez, Ex, be erected also. Then because the rectangle
            Db x IN or DbzE is equal to half the rectangle A x
            KN, or to the triangle ICK; and the rectangle Dc x IN or DcxE
            is equal to half the rectangle YX x XC, or to the triangle XCY; that
            is, because the nascent particles DbzE, ICK of the areas VDba,
            VIC are always equal; and the nascent particles DcxE, XCY of
            the areas VDca, VCX are always equal: therefore the generated
            area VDba will be equal to the generated area VIC, and
            therefore proportional to the time; and the generated area VDca
            is equal to the generated sector VCX. If, therefore, any time be given
            during which the body has been moving from V, there will be also given
            the area proportional to it VDba; and thence will be given
            the altitude of the body CD or CI; and the area VDca, and the
            sector VCX equal thereto, together with its angle VCI. But the angle
            VCI, and the altitude CI being given, there is also given the place I,
            in which the body will be found at the end of that time.
              Q.E.I.
        


        
            Cor. 1. Hence the greatest and least
            altitudes of the bodies, that is, the apsides of the trajectories, may
            be found very readily. For the apsides are those points in which a
            right line IC drawn through the centre falls perpendicularly upon the
            trajectory VIK; which comes to pass when the right lines IK and NK
            become equal; that is, when the area ABFD is equal to ZZ.
        


        
            Cor. 2. So also the
            angle KIN, in which the trajectory at any place cuts the line IC, may
            be readily found by the given altitude IC of the body: to wit, by
            making the sine of that angle to radius as KN to IK that is, as Z to
            the square root of the area ABFD.
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            Cor. 3. If to the centre C, and the principal
            vertex V, there be described a conic section VRS; and from any point
            thereof, as R, there be drawn the tangent RT meeting the axis CV
            indefinitely produced in the point T; and then joining CR there be
            drawn the right line CP, equal to the abscissa CT, making an angle VCP
            proportional to the sector VCR; and if a centripetal force,
            reciprocally proportional to the cubes of the distances of the places
            from the centre, tends to the centre C; and from the place V there
            sets out a body with a just velocity in the direction of a line
            perpendicular to the right line CV; that body will proceed in a
            trajectory VPQ, which the point P will always touch; and therefore if
            the conic section VRS be an hyberbola, the body will descend to the
            centre; but if it be an ellipsis, it will ascend perpetually, and go
            farther and farther off in infinitum. And, on the contrary,
            if a body endued with any velocity goes off from the place V, and
            according as it begins either to descend obliquely to the centre, or
            ascends obliquely from it, the figure VRS be either an hyperbola or an
            ellipsis, the trajectory may be found by increasing or diminishing the
            angle VCP in a given ratio. And the centripetal force becoming
            centrifugal, the body will ascend obliquely in the trajectory VPQ,
            which is found by taking the angle VCP proportional to the elliptic
            sector VRC, and the length CP equal to the length CT, as before. All
            these things follow from the foregoing Proposition, by the quadrature
            of a certain curve, the invention of which, as being easy enough, for
            brevity's sake I omit.
        


    

    
        Proposition xlii. Problem xxix.


            
                
                    The law of centripetal force being given, it is required to
                    find the motion of a body setting out from a given place, with a
                    given velocity, in the direction of a given right line.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 171b]

        
            Suppose the same things as in the three preceding propositions; and
            let the body go off from the place I in the direction of the little
            line, IK, with the same velocity as another body, by falling with an
            uniform centripetal force from the place P, may acquire in D; and let
            this uniform force be to the force with which the body is
            at first urged in I, as DR to DF. Let the body go on towards k;
            and about the centre C, with the interval Ck, describe the
            circle ke, meeting the right line PD in e, and let
            there be erected the lines eg, ev, ew, ordinately applied to
            the curves BFg, abv, acw. From the given rectangle
            PDRQ and the given law of centripetal force, by which the first body
            is acted on, the curve line BFg is also given, by the
            construction of Prop. XXVII, and its Cor. 1. Then from the given angle
            CIK is given the proportion of the nascent lines IK, KN; and thence,
            by the construction of Prob. XXVIII, there is given the quantity Q,
            with the curve lines abv, acw; and therefore, at the end of
            any time Dbve, there is given both the altitude of the body Ce
            or Ck, and the area Dcwe, with the sector equal to
            it XCy, the angle ICk, and the place k, in
            which the body will then be found.   Q.E.I.
        


        
            We suppose in these Propositions the centripetal force to vary in its
            recess from the centre according to some law, which any one may
            imagine at pleasure; but at equal distances from the centre to be
            everywhere the same.
        


        
            I have hitherto considered the motions of bodies in immovable orbits.
            It remains now to add something concerning their motions in orbits
            which revolve round the centres of force.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 3.0




    
        
        Book iii.


    

    
        In the preceding Books I have laid down the
        principles of philosophy, principles not philosophical, but
        mathematical: such, to wit, as we may build our reasonings upon in
        philosophical inquiries. These principles are the laws and conditions of
        certain motions, and powers or forces, which chiefly have respect to
        philosophy: but, lest they should have appeared of themselves dry and
        barren, I have illustrated them here and there with some philosophical
        scholiums, giving an account of such things as are of more general
        nature, and which philosophy seems chiefly to be founded on; such as the
        density and the resistance of bodies, spaces void of all bodies, and the
        motion of light and sounds. It remains that, from the same principles, I
        now demonstrate the frame of the System of the World. Upon this subject
        I had, indeed, composed the third Book in a popular method, that it
        might be read by many; but afterward, considering that such as had not
        sufficiently entered into the principles could not easily discern the
        strength of the consequences, nor lay aside the prejudices to which they
        had been many years accustomed, therefore, to prevent the disputes which
        might be raised upon such accounts, I chose to reduce the substance of
        this Book into the form of Propositions (in the mathematical way), which
        should be read by those only who had first made themselves masters of
        the principles established in the preceding Books: not that I would
        advise any one to the previous study of every Proposition of those
        Books; for they abound with such as might cost too much time, even to
        readers of good mathematical learning. It is enough if one carefully
        reads the Definitions, the Laws of Motion, and the first three Sections
        of the first Book. He may then pass on to this Book, and consult such of
        the remaining Propositions of the first two Books, as the references in
        this, and his occasions, shall require.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 3.3




    
        
        Propositions


    




    
        Proposition i. Theorem I.


        
            That the forces by which the circumjovial planets are continually
            drawn off from rectilinear motions, and retained in their proper
            orbits, tend to Jupiter's centre; and are reciprocally as the
            squares of the distances of the places of those planets from that centre.
        


    

    
        The former part of this Proposition appears from Phaen. I, and Prop. II
        or III, Book I; the latter from Phaen. I, and Cor. 6, Prop. IV, of the same Book.
    


    
        The same thing we are to understand of the planets which encompass
        Saturn, by Phaen. II.
    





    
        Proposition ii. Theorem ii.


        
            
                That the forces by which the primary planets are continually
                drawn off from rectilinear motions, and retained in their proper
                orbits, tend to the sun; and are reciprocally as the squares of the
                distances of the places of those planets from the suits centre.
            
        


    

    
        The former part of the Proposition is manifest from Phaen. V, and Prop.
        II, Book I; the latter from Phaen. IV, and Cor. 6, Prop. IV,
        of the same Book. But this part of the Proposition is, with great
        accuracy, demonstrable from the quiescence of the aphelion points; for a
        very small aberration from the reciprocal duplicate proportion
        would (by Cor. 1, Prop. XLV, Book I) produce a motion of the apsides
        sensible enough in every single revolution, and in many of them
        enormously great.
    





    
        Proposition iii. Theorem iii.


        
            
                That the force by which the moon is retained in its orbit tends
                to the earth; and is reciprocally as the square of the distance of
                its place from the earth's centre.
            
        


    

    
        The former part of the Proposition is evident from Phaen. VI, and Prop.
        II or III, Book I; the latter from the very slow motion of the moon's
        apogee; which in every single revolution amounting but to 3° 3′ in
        consequentia, may be neglected. For (by Cor. 1. Prop. XLV, Book
        I) it appears, that, if the distance of the moon from the earth's centre
        is to the semi-diameter of the earth as D to 1, the force, from which
        such a motion will result, is reciprocally as D²
        4/243,
        i. e., reciprocally as the power of D,
        whose exponent is 24/243;
        that is to say, in the proportion of the distance something greater than
        reciprocally duplicate, but which comes 59¾ times nearer to the
        duplicate than to the triplicate proportion. But in regard that this
        motion is owing to the action of the sun (as we shall afterwards
        shew), it is here to be neglected. The action of the
        sun, attracting the moon from the earth, is nearly as the moon's
        distance from the earth; and therefore (by what we have shewed in Cor.
        2, Prop. XLV, Book I) is to the centripetal force of the moon as 2 to
        357,45, or nearly so; that is,
        as 1 to 17829/40.
        And if we neglect so inconsiderable a force of the sun, the remaining
        force, by which the moon is retained in its orb, will be reciprocally as
        D². This will yet more fully appear from comparing this force with the
        force of gravity, as is done in the next Proposition.
    


    
        Cor. If we augment the mean centripetal force
        by which the moon is retained in its orb, first in the proportion of 177
        29/40 to
        17829/40,
        and then in the duplicate proportion of the semi-diameter of the earth
        to the mean distance of the centres of the moon and earth, we shall have
        the centripetal force of the moon at the surface of the earth; supposing
        this force, in descending to the earth's surface, continually to
        increase in the reciprocal duplicate proportion of the height.
    





    
        Proposition iv. Theorem iv.


        
            
                That the moon gravitates towards the earth, and by the force of
                gravity is continually drawn off from a rectilinear motion, and
                retained in its orbit.
            
        


    

    
        The mean distance of the moon from the earth in the syzygies in
        semi-diameters of the earth, is, according to Ptolemy and most
        astronomers, 59; according to Vendelin and Huygens,
        60; to Copernicus, 60⅓; to Street,
        602/5;
        and to Tycho, 56½. But Tycho, and all that follow
        his tables of refraction, making the refractions of the sun and moon
        (altogether against the nature of light) to exceed the refractions of
        the fixed stars, and that by four or five minutes near the horizon,
        did thereby increase the moon's horizontal parallax by a like
        number of minutes, that is, by a twelfth or fifteenth part of the whole
        parallax. Correct this error, and the distance will become about 60½
        semi-diameters of the earth, near to what others have assigned. Let us
        assume the mean distance of 60 diameters in the syzygies; and suppose
        one revolution of the moon, in respect of the fixed stars, to be
        completed in 27d.7h.43′, as astronomers have
        determined; and the circumference of the earth to amount to 123249600 Paris
        feet, as the French have found by mensuration. And now if we imagine the
        moon, deprived of all motion, to be let go, so as to descend towards the
        earth with the impulse of all that force by which (by Cor. Prop. III) it
        is retained in its orb, it will in the space of one minute of time,
        describe in its fall 151/12
        Paris feet. This we gather by a calculus, founded either upon
        Prop. XXXVI, Book I, or (which comes to the same thing) upon Cor. 9,
        Prop. IV, of the same Book. For the versed sine of that arc, which the
        moon, in the space of one minute of time,
        would by its mean motion
        describe at the distance of 60 semi-diameters of the earth, is nearly 15
        1/12 Paris feet,
        or more accurately 15 feet, 1 inch,
        and 1 line 4/9.
        Where fore, since that force, in approaching to the earth, increases in
        the reciprocal duplicate proportion of the distance, and, upon that
        account, at the surface of the earth, is 60 x 60 times greater than at
        the moon, a body in our regions, falling with that force, ought in the
        space of one minute of time,
        to describe 60 x 60 x 151/12
        Paris feet; and, in the space of one second of time, to
        describe 151/12 of those
        feet; or more accurately 15 feet, 1 inch,
        and 1 line 4/9.
        And with this very force we actually find that bodies here upon earth do
        really descend; for a pendulum oscillating seconds in the latitude of
        Paris will be 3 Paris feet, and 8 lines ½ in length, as Mr. Huygens
        has observed. And the space which a heavy body describes by falling in
        one second of time is to half the length of this pendulum in the
        duplicate ratio of the circumference of a circle to its diameter (as Mr.
        Huygens has also shewn), and is therefore 15 Paris
        feet, 1 inch, 1 line 7/9.
        And therefore the force by which the moon is retained in its orbit
        becomes, at the very surface of the earth, equal to the force of gravity
        which we observe in heavy bodies there. And therefore (by Rule I and II)
        the force by which the moon is retained in its orbit is that very same
        force which we commonly call gravity; for, were gravity another force
        different from that, then bodies descending to the earth with the joint
        impulse of both forces would fall with a double velocity, and in the
        space of one second of time would describe 301/6
        Paris feet; altogether against experience.
    


    
        This calculus is founded on the hypothesis of the earth's standing
        still; for if both earth and moon move about the sun, and at the same
        time about their common centre of gravity, the distance of the centres
        of the moon and earth from one another will be 60½ semi-diameters of the
        earth; as may be found by a computation from Prop. LX, Book I.
    





    
        Scholium.


    

    
        The demonstration of this Proposition may be more diffusely explained
        after the following manner. Suppose several moons to revolve about the
        earth, as in the system of Jupiter or Saturn: the periodic times of
        these moons (by the argument of induction) would observe the same law
        which Kepler found to obtain among the planets; and therefore
        their centripetal forces would be reciprocally as the squares of the
        distances from the centre of the earth, by Prop. I, of this Book. Now if
        the lowest of these were very small, and were so near the earth as
        almost to touch the tops of the highest mountains, the centripetal force
        thereof, retaining it in its orb, would be very nearly equal to the
        weights of any terrestrial bodies that should be found upon
        the tops of those mountains, as may be known by the foregoing
        computation. Therefore if the same little moon should be deserted by its
        centrifugal force that carries it through its orb;
        and so be disabled
        from going onward therein, it would descend to the earth; and that with
        the same velocity as heavy bodies do actually fall with upon the tops of
        those very mountains; because of the equality of the forces that oblige
        them both to descend. And if the force by which that lowest moon would
        descend were different from gravity, and if that moon were to gravitate
        towards the earth, as we find terrestrial bodies do upon the tops of
        mountains, it would then descend with twice the velocity, as being impel
        led by both these forces conspiring together. Therefore since both these
        forces, that is, the gravity of heavy bodies, and the centripetal forces
        of the moons, respect the centre of the earth, and are similar and equal
        between themselves, they will (by Rule I and II) have one and the same
        cause. And therefore the force which retains the moon in its orbit is
        that very force which we commonly call gravity; because otherwise this
        little moon at the top of a mountain must either be without gravity, or
        fall twice as swiftly as heavy bodies are wont to do.
    





    
        Proposition v. Theorem V.


        
            
                That the circumjovial planets gravitate towards Jupiter; the
                circumsaturnal towards Saturn; the circumsolar towards the sun; and
                by the forces of their gravity are drawn off from rectilinear
                motions, and retained in curvilinear orbits.
            
        


    

    
        For the revolutions of the circumjovial planets about Jupiter, of the
        circumsaturnal about Saturn, and of Mercury and Venus, and the other
        circumsolar planets, about the sun, are appearances of the same sort
        with the revolution of the moon about the earth; and therefore, by Rule
        II, must be owing to the same sort of causes; especially since it has
        been demonstrated, that the forces upon which those revolutions depend
        tend to the centres of Jupiter, of Saturn, and of the sun; and that
        those forces, in receding from Jupiter, from Saturn, and from the sun,
        decrease in the same proportion, and according to the same law, as the
        force of gravity does in receding from the earth.
    


    
        Cor. 1. There is, therefore, a power of gravity
        tending to all the planets; for, doubtless, Venus, Mercury, and the
        rest, are bodies of the same sort with Jupiter and Saturn. And since all
        attraction (by Law III) is mutual, Jupiter will therefore gravitate
        towards all his own satellites, Saturn towards his, the earth towards
        the moon, and the sun towards all the primary planets.
    


    
        Cor. 2. The force of gravity which tends to any
        one planet is reciprocally as the square of the distance of places from
        that planet's centre.
    


    
        Cor. 3. All the planets do mutually gravitate
        towards one another, by Cor. 1 and 2. And hence it is that Jupiter and
        Saturn, when near their conjunction; by their
        mutual attractions sensibly disturb each other's motions. So the sun
        disturbs the motions of the moon; and both sun and moon disturb our sea,
        as we shall hereafter explain.
    





    
        Scholium.


    

    
        The force which retains the celestial bodies in their orbits has been
        hitherto called centripetal force; but it being now made plain that it
        can be no other than a gravitating force, we shall hereafter call it
        gravity. For the cause of that centripetal force which retains the moon
        in its orbit will extend itself to all the planets, by Rule I, II, and
        IV.
    





    
        Proposition vi. Theorem vi.


        
            
                That all bodies gravitate towards every planet; and that the
                weights of bodies towards any the same planet, at equal distances
                from the centre of the planet, are proportional to the quantities of
                matter which they severally contain.
            
        


    

    
        It has been, now of a long time, observed by others, that all sorts of
        heavy bodies (allowance being made for the inequality of retardation
        which they suffer from a small power of resistance in the air) descend
        to the earth from equal heights in equal times; and that
        equality of times we may distinguish to a great accuracy, by the help of
        pendulums. I tried the thing in gold, silver, lead, glass, sand, common
        salt, wood, water, and wheat. I provided two wooden boxes, round and
        equal: I filled the one with wood, and suspended an equal weight of gold
        (as exactly as I could) in the centre of oscillation of the other. The
        boxes hanging by equal threads of 11 feet made a couple of pendulums
        perfectly equal in weight and figure, and equally receiving the
        resistance of the air. And, placing the one by the other, I observed
        them to play together forward and backward, for a long time, with equal
        vibrations. And therefore the quantity of matter in the gold (by Cor. 1
        and 6, Prop. XXIV, Book II) was to the quantity of matter in the wood as
        the action of the motive force (or vis motrix) upon all the
        gold to the action of the same upon all the wood: that is, as the weight
        of the one to the weight of the other: and the like happened in the
        other bodies. By these experiments, in bodies of the same weight, I
        could manifestly have discovered a difference of matter less than the
        thousandth part of the whole, had any such been. But, without all doubt,
        the nature of gravity towards the planets is the same as towards the
        earth. For, should we imagine our terrestrial bodies removed to the orb
        of the moon, and there, together with the moon, deprived of all motion,
        to be let go, so as to fall together towards the earth, it is certain,
        from what we have demonstrated before, that, in equal times, they would
        describe equal spaces with the moon, and of consequence are to the moon,
        in quantity of matter, as their weights to its weight. Moreover, since
        the satellites of Jupiter perform their
        revolutions in times which observe the sesquiplicate proportion of their
        distances from Jupiter's centre, their accelerative gravities towards
        Jupiter will be reciprocally as the squares of their distances from
        Jupiter's centre; that is, equal, at equal distances. And, therefore,
        these satellites, if supposed to fall towards Jupiter from
        equal heights, would describe equal spaces in equal times, in like
        manner as heavy bodies do on our earth. And, by the same argument, if
        the circumsolar planets were supposed to be let fall at equal distances
        from the sun, they would, in their descent towards the sun, describe
        equal spaces in equal times. But forces which equally accelerate unequal
        bodies must be as those bodies: that is to say, the weights of the
        planets towards the sun, must be as their quantities of
        matter. Further, that the weights of Jupiter and of his satellites
        towards the sun are proportional to the several quantities of their
        matter, appears from the exceedingly regular motions of the satellites
        (by Cor. 3, Prop. LXV, Book 1). For if some of those bodies were more
        strongly attracted to the sun in proportion to their quantity of matter
        than others, the motions of the satellites would be disturbed by that
        inequality of attraction (by Cor. 2, Prop. LXV, Book I). If, at equal
        distances from the sun, any satellite, in proportion to the quantity of
        its matter, did gravitate towards the sun with a force greater than
        Jupiter in proportion to his, according to any given proportion, suppose
        of d to e; then the distance between the centres of
        the sun and of the satellite's orbit would be always greater than the
        distance between the centres of the sun and of Jupiter nearly in the
        subduplicate of that proportion: as by some computations I have found.
        And if the satellite did gravitate towards the sun with a force, lesser
        in the proportion of e to d, the distance of the
        centre of the satellite's orb from the sun would be less than the
        distance of the centre of Jupiter from the sun in the subduplicate of
        the same proportion. Therefore if, at equal distances from the sun, the
        accelerative gravity of any satellite towards the sun were greater or
        less than the accelerative gravity of Jupiter towards the sun but by one
        1/1000 part of the whole
        gravity, the distance of the centre of the satellite's orbit from the
        sun would be greater or less than the distance of Jupiter from the sun
        by one 1/2000 part of
        the whole distance; that is, by a fifth part of the distance of the
        utmost satellite from the centre of Jupiter; an eccentricity of the
        orbit which would be very sensible. But the orbits of the satellites are
        concentric to Jupiter, and therefore the accelerative gravities of
        Jupiter, and of all its satellites towards the sun, are equal among
        themselves. And by the same argument, the weights of Saturn and of his
        satellites towards the sun, at equal distances from the sun, are as
        their several quantities of matter; and the weights of the moon and of
        the earth towards the sun are either none, or accurately proportional to
        the masses of matter which they contain. But some they are, by Cor. 1
        and 3, Prop. V.
    


    
        But further; the weights of all the parts of every planet towards any
        other planet are one to another as the matter
        in the several parts; for if some parts did gravitate more, others less,
        than for the quantity of their matter, then the whole planet, according
        to the sort of parts with which it most abounds, would gravitate more or
        less than in proportion to the quantity of matter in the whole. Nor is
        it of any moment whether these parts are external or internal; for if,
        for example, we should imagine the terrestrial bodies with us to be
        raised up to the orb of the moon, to be there compared with its body: if
        the weights of such bodies were to the weights of the external parts of
        the moon as the quantities of matter in the one and in the other
        respectively; but to the weights of the internal parts in a greater or
        less proportion, then likewise the weights of those bodies would be to
        the weight of the whole moon in a greater or less proportion; against
        what we have shewed above.
    


    
        Cor. 1. Hence the weights of bodies do not
        depend upon their forms and textures; for if the weights could be
        altered with the forms, they would be greater or less, according to the
        variety of forms, in equal matter; altogether against experience.
    


    
        Cor. 2. Universally, all bodies about the earth
        gravitate towards the earth; and the weights of all, at equal distances
        from the earth's centre, are as the quantities of matter which they
        severally contain. This is the quality of all bodies within the reach of
        our experiments; and therefore (by Rule III) to be affirmed of all
        bodies whatsoever. If the aether, or any other body, were
        either altogether void of gravity, or were to gravitate less in
        proportion to its quantity of matter, then, because (according to Aristotle,
        Des Cartes, and others) there is no diiference betwixt that and
        other bodies but in mere form of matter, by a successive
        change from form to form, it might be changed at last into a body of the
        same condition with those which gravitate most in proportion to their
        quantity of matter; and, on the other hand, the heaviest bodies,
        acquiring the first form of that body, might by degrees quite lose their
        gravity. And therefore the weights would depend upon the forms of
        bodies, and with those forms might be changed: contrary to what was
        proved in the preceding Corollary.
    


    
        Cor. 3. All spaces are not equally full; for if
        all spaces were equally full, then the specific gravity of the fluid
        which fills the region of the air, on account of the extreme density of
        the matter, would fall nothing short of the specific gravity of
        quicksilver, or gold, or any other the most dense body; and, therefore,
        neither gold, nor any other body, could descend in air; for bodies do
        not descend in fluids, unless they are specifically heavier than the
        fluids. And if the quantity of matter in a given space can, by any
        rarefaction, be diminished, what should hinder a diminution to infinity?
    


    
        Cor. 4. If all the solid particles of all
        bodies are of the same density, nor can be rarefied without pores, a
        void, space, or vacuum must be granted. By
        bodies of the same density, I mean those whose vires inertiae,
        are in the proportion of their bulks.
    


    
        Cor. 5. The power of gravity is of a different
        nature from the power of magnetism; for the magnetic attraction is not
        as the matter attracted. Some bodies are attracted more by the magnet;
        others less; most bodies not at all. The power of magnetism in one and
        the same body may be increased and diminished; and is sometimes far
        stronger, for the quantity of matter, than the power of gravity; and in
        receding from the magnet decreases not in the duplicate but almost in
        the triplicate proportion of the distance, as nearly as I could judge
        from some rude observations.
    





    
        Proposition vii. Theorem vii.


        
            
                That there is a power of gravity tending to all bodies,
                proportional to the several quantities of matter which they contain.
            
        


    

    
        That all the planets mutually gravitate one towards another, we have
        proved before; as well as that the force of gravity towards every one of
        them, considered apart, is reciprocally as the square of the distance of
        places from the centre of the planet. And thence (by Prop. LXIX, Book I,
        and its Corollaries) it follows, that the gravity tending towards all
        the planets is proportional to the matter which they contain.
    


    
        Moreover, since all the parts of any planet A gravitate towards any
        other planet B; and the gravity of every part is to the gravity of the
        whole as the matter of the part to the matter of the whole; and (by Law
        III) to every action corresponds an equal re-action; therefore the
        planet B will, on the other hand, gravitate towards all the parts of the
        planet A; and its gravity towards any one part will be to the gravity
        towards the whole as the matter of the part to the matter of the whole.
          Q.E.D.
    


    
        Cor. 1. Therefore the force of gravity towards
        any whole planet arises from, and is compounded of, the forces of
        gravity towards all its parts. Magnetic and electric attractions afford
        us examples of this; for all attraction towards the whole arises from
        the attractions towards the several parts. The thing may be easily
        understood in gravity, if we consider a greater planet, as formed of a
        number of lesser planets, meeting together in one globe; for hence
        it would appear that the force of the whole must arise from the
        forces of the component parts. If it is objected, that, according to
        this law, all bodies with us must mutually gravitate one towards
        another, whereas no such gravitation any where appears, I answer, that
        since the gravitation towards these bodies is to the gravitation towards
        the whole earth as these bodies are to the whole earth, the gravitation
        towards them must be far less than to fall under the observation of our
        senses.
    


    
        Cor. 2. The force of gravity towards the
        several equal particles of any body is reciprocally as the square of the
        distance of places from the particles; as appears from Cor. 3, Prop.
        LXXIV, Book I.
    


      





    
        Proposition viii. Theorem viii.


        
            
                In two spheres mutually gravitating each towards the other, if
                the matter in places on all sides round about and equi-distant from
                the centres is similar, the weight of either sphere towards the
                other will be reciprocally as the square of the distance between their centres.
            
        


    

    
        After I had found that the force of gravity towards a whole planet did
        arise from and was compounded of the forces of gravity towards all its
        parts, and towards every one part was in the reciprocal proportion of
        the squares of the distances from the part, I was yet in doubt whether
        that reciprocal duplicate proportion did accurately hold, or but nearly
        so, in the total force compounded of so many partial ones; for it might
        be that the proportion which accurately enough took place in greater
        distances should be wide of the truth near the surface of the planet,
        where the distances of the particles are unequal, and their situation
        dissimilar. But by the help of Prop. LXXV and LXXVI, Book I, and their
        Corollaries, I was at last satisfied of the truth of the Proposition, as
        it now lies before us.
    


    
        Cor. 1. Hence we may find and compare together
        the weights of bodies towards different planets; for the weights of
        bodies revolving in circles about planets are (by Cor. 2, Prop. IV, Book
        I) as the diameters of the circles directly, and the squares of their
        periodic times reciprocally; and their weights at the surfaces of the
        planets, or at any other distances from their centres, are (by this
        Prop.) greater or less in the reciprocal duplicate proportion of the
        distances. Thus from the periodic times of Venus, revolving about the
        sun, in 224d.16¾h, of the utmost circumjovial
        satellite revolving about Jupiter, in 16d.168/15h.;
        of the Huygenian satellite about Saturn in 15d.22⅔h.;
        and of the moon about the earth in 27d.7h.43′;
        compared with the mean distance of Venus from the sun, and with the
        greatest heliocentric elongations of the outmost circumjovial satellite
        from Jupiter's centre, 8′ 16″; of the Huygenian satellite from the
        centre of Saturn, 3′4″; and of the moon from the earth, 10′33″: by
        computation I found that the weight of equal bodies, at equal distances
        from the centres of the sun, of Jupiter, of Saturn, and of the earth,
        towards the sun, Jupiter, Saturn, and the earth, were one to another, as
        1, 1/1067, 1/3021,
        and 1/169282
        respectively. Then because as the distances are increased or diminished,
        the weights are diminished or increased in a duplicate ratio, the
        weights of equal bodies towards the sun, Jupiter, Saturn, and the earth,
        at the distances 10000, 997, 791, and 109 from their centres, that is,
        at their very superficies, will be as 10000, 943, 529, and 435
        respectively. How much the weights of bodies are at the superficies of
        the moon, will be shewn hereafter.
    


    
        Cor. 2. Hence likewise we discover the quantity
        of matter in the several planets; for their
        quantities of matter are as the forces of gravity at equal distances
        from their centres; that is, in the sun, Jupiter, Saturn, and the earth,
        as 1, 1/1067, 1/3021
        and 1/169282
        respectively. If the parallax of the sun be taken greater or less than
        10″ 30‴, the quantity of matter in the earth must be augmented or
        diminished in the triplicate of that proportion.
    


    
        Cor. 3. Hence also we find the densities of the
        planets; for (by Prop. LXXII, Book I) the weights of equal and similar
        bodies towards similar spheres are, at the surfaces of those spheres, as
        the diameters of the spheres and therefore the densities of dissimilar
        spheres are as those weights applied to the diameters of the spheres.
        But the true diameters of the Sun, Jupiter, Saturn, and the earth, were
        one to another as 10000, 997, 791, and 109; and the weights towards the
        same as 10000, 943, 529, and 435 respectively; and therefore their
        densities are as 100, 94½, 67, and 400. The density of the earth, which
        comes out by this computation, does not depend upon the parallax of the
        sun, but is determined by the parallax of the moon, and therefore is
        here truly defined. The sun, therefore, is a little denser than Jupiter,
        and Jupiter than Saturn, and the earth four times denser than the sun;
        for the sun, by its great heat, is kept in a sort of a rarefied state.
        The moon is denser than the earth, as shall appear afterward.
    


    
        Cor. 4. The smaller the planets are, they are,
        caeteris paribus, of so much the greater density; for so the
        powers of gravity on their several surfaces come nearer to equality.
        They are likewise, caeteris paribus, of the greater density,
        as they are nearer to the sun. So Jupiter is more dense than Saturn, and
        the earth than Jupiter; for the planets were to be placed at different
        distances from the sun, that, according to their degrees of density,
        they might enjoy a greater or less proportion to the sun's heat. Our
        water, if it were removed as far as the orb of Saturn, would be
        converted into ice, and in the orb of Mercury would quickly fly away in
        vapour; for the light of the sun, to which its heat is proportional, is
        seven times denser in the orb of Mercury than with us: and by the
        thermometer I have found that a sevenfold heat of our summer sun will
        make water boil. Nor are we to doubt that the matter of Mercury is
        adapted to its heat, and is therefore more dense than the matter of our
        earth; since, in a denser matter, the operations of Nature require a
        stronger heat.
    





    
        Proposition ix. Theorem ix.


        
            
                That the force of gravity, considered downward from the surface
                of the planets, decreases nearly in the proportion of the distances from their centres.
            
        


    

    
        If the matter of the planet were of an uniform density, this
        Proposition would be accurately true (by Prop. LXXIII. Book I). The
        error, therefore, can be no greater than what
        may arise from the inequality of the density.
    





    
        Proposition x. Theorem X.


        That the motions of the planets in the heavens may subsist an exceedingly long time.


    

    
        In the Scholium of Prop. XL, Book II, I have shewed that a globe of
        water frozen into ice, and moving freely in our air, in the time that it
        would describe the length of its semi-diameter, would lose by the
        resistance of the air 1/4586
        part of its motion; and the same proportion holds nearly in all globes,
        how great soever, and moved with whatever velocity. But that our globe
        of earth is of greater density than it would be if the whole consisted
        of water only, I thus make out. If the whole consisted of water only,
        whatever was of less density than water, because of its less specific
        gravity, would emerge and float above. And upon this account, if a globe
        of terrestrial matter, covered on all sides with water, was less dense
        than water, it would emerge somewhere; and, the subsiding water falling
        back, would be gathered to the opposite side. And such is the condition
        of our earth, which in a great measure is covered with seas. The earth,
        if it was not for its greater density, would emerge from the seas, and,
        according to its degree of levity, would be raised more or less above
        their surface, the water of the seas flowing backward to the opposite
        side. By the same argument, the spots of the sun, which float upon the
        lucid matter thereof, are lighter than that matter; and, however the
        planets have been formed while they were yet in fluid masses, all the
        heavier matter subsided to the centre. Since, therefore, the common
        matter of our earth on the surface thereof is about twice as heavy as
        water, and a little lower, in mines, is found about three, or four, or
        even five times more heavy, it is probable that the quantity of the
        whole matter of the earth may be five or six times greater than if it
        consisted all of water; especially since I have before shewed that the
        earth is about four times more dense than Jupiter. If, therefore,
        Jupiter is a little more dense than water, in the space of thirty days,
        in which that planet describes the length of 459 of its semi-diameters,
        it would, in a medium of the same density with our air, lose almost a
        tenth part of its motion. But since the resistance of mediums decreases
        in proportion to their weight or density, so that water, which is 13
        3/5 times lighter than
        quicksilver, resists less in that proportion; and air, which is 860
        times lighter than water, resists less in the same proportion; therefore
        in the heavens, where the weight of the medium in which the planets move
        is immensely diminished, the resistance will almost vanish.
    


    
        It is shewn in the Scholium of Prop. XXII, Book II, that at the height
        of 200 miles above the earth the air is more rare than it is at the
        superficies of the earth in the ratio of 30 to 0,0000000000003998, or as
        75000000000000 to 1 nearly. And hence the planet
        Jupiter, revolving in a medium of the same density with that superior
        air, would not lose by the resistance of the medium the 1000000th part
        of its motion in 1000000 years. In the spaces near the earth the
        resistance is produced only by the air, exhalations, and vapours. When
        these are carefully exhausted by the air-pump from under the receiver,
        heavy bodies fall within the receiver with perfect freedom, and without
        the least sensible resistance: gold itself, and the lightest down, let
        fall together, will descend with equal velocity; and though they fall
        through a space of four, six, and eight feet, they will come to the
        bottom at the same time; as appears from experiments. And therefore the
        celestial regions being perfectly void of air and exhalations, the
        planets and comets meeting no sensible resistance in those spaces will
        continue their motions through them for an immense tract of time.
    





    
        Hypothesis I.


        That the centre of the system of the world is immovable. 


    

    
        This is acknowledged by all, while some contend that the earth, others
        that the sun, is fixed in that centre. Let us see what may from hence follow.
    





    
        Proposition xi. Theorem xi.


        That the common centre of gravity of the earth, the sun, and all the planets, is immovable.


    

    
        For (by Cor. 4 of the Laws) that centre either is at rest, or moves
        uniformly forward in a right line; but if that centre moved, the centre
        of the world would move also, against the Hypothesis.
    





    
        Proposition xii. Theorem xii.


        
            
                That the sun is agitated by a perpetual motion, but never recedes
                far from the common centre of gravity of all the planets.
            
        


    

    
        For since (by Cor. 2, Prop. VIII) the quantity of matter in the sun is
        to the quantity of matter in Jupiter as 1067 to 1; and the distance of
        Jupiter from the sun is to the semi-diameter of the sun in a proportion
        but a small matter greater, the common centre of gravity of Jupiter and
        the sun will fall upon a point a little without the surface of the sun.
        By the same argument, since the quantity of matter in the sun is to the
        quantity of matter in Saturn as 3021 to 1, and the distance of Saturn
        from the sun is to the semi-diameter of the sun in a proportion but a
        small matter less, the common centre of gravity of Saturn and the sun
        will fall upon a point a little within the surface of the sun. And,
        pursuing the principles of this computation, we should find that though
        the earth and all the planets were placed on one side of the sun, the
        distance of the common centre of gravity of all from the centre of the
        sun would scarcely amount to one diameter of the
        sun. In other cases, the distances of those centres are always less; and
        therefore, since that centre of gravity is in perpetual rest, the sun,
        according to the various positions of the planets, must perpetually be
        moved every way, but will never recede far from that centre.
    


    
        Cor. Hence the common centre of gravity of the
        earth, the sun, and all the planets, is to be esteemed the centre of the
        world; for since the earth, the sun, and all the planets, mutually
        gravitate one towards another, and are therefore, according to their
        powers of gravity, in perpetual agitation, as the Laws of Motion
        require, it is plain that their moveable centres can not be taken for
        the immovable centre of the world. If that body were to be placed in the
        centre, towards which other bodies gravitate most (according to common
        opinion), that privilege ought to be allowed to the sun; but since the
        sun itself is moved, a fixed point is to be chosen from which the centre
        of the sun recedes least, and from which it would recede yet less if the
        body of the sun were denser and greater, and therefore less apt to be
        moved.
    





    
        Proposition xiii. Theorem xiii.


        
            
                The planets move in ellipses which have their common focus in the
                centre of the sun; and, by radii drawn to that centre, they describe
                areas proportional to the times of description.
            
        


    

    
        We have discoursed above of these motions from the Phaenomena. Now that
        we know the principles on which they depend, from those principles we
        deduce the motions of the heavens à priori. Because the
        weights of the planets towards the sun are reciprocally as the squares
        of their distances from the sun's centre, if the sun was at rest, and
        the other planets did not mutually act one upon another, their orbits
        would be ellipses, having the sun in their common focus; and they would
        describe areas proportional to the times of description, by
        Prop, I and XI, and Cor. 1, Prop. XIII, Book I. But the mutual actions
        of the planets one upon another are so very small, that they may be
        neglected; and by Prop. LXVI, Book I, they less disturb the motions of
        the planets around the sun in motion than if those motions were
        performed about the sun at rest.
    


    
        It is true, that the action of Jupiter upon Saturn is not to be
        neglected; for the force of gravity towards Jupiter is to the force of
        gravity towards the sun (at equal distances, Cor. 2, Prop. VIII) as 1 to
        1067; and therefore in the conjunction of Jupiter and Saturn, because
        the distance of Saturn from Jupiter is to the distance of Saturn from
        the sun almost as 4 to 9, the gravity of Saturn towards Jupiter will be
        to the gravity of Saturn towards the sun as 81 to 16 x 1067; or, as 1 to
        about 211. And hence arises a perturbation of the orb of Saturn in every
        conjunction of this planet with Jupiter, so sensible, that astronomers
        are puzzled with it. As the planet is
        differently situated in these conjunctions, its eccentricity is
        sometimes augmented, sometimes diminished; its aphelion is sometimes
        carried forward, sometimes backward, and its mean motion is by turns
        accelerated and retarded; yet the whole error in its motion about the
        sun, though arising from so great a force, may be almost avoided (except
        in the mean motion) by placing the lower focus of its orbit in the
        common centre of gravity of Jupiter and the sun (according to Prop.
        LXVII, Book I), and therefore that error, when it is greatest, scarcely
        exceeds two minutes; and the greatest error in the mean motion scarcely
        exceeds two minutes yearly. But in the conjunction of Jupiter and
        Saturn, the accelerative forces of gravity of the sun towards Saturn, of
        Jupiter towards Saturn, and of Jupiter towards the sun, are almost as
        16,81, and 16 x 81 x 3021

        25; or 156609: and therefore the
        difference of the forces of gravity of the sun towards Saturn, and of
        Jupiter towards Saturn, is to the force of gravity of Jupiter towards
        the sun as 65 to 156609, or as 1 to 2409. But the greatest power of
        Saturn to disturb the motion of Jupiter is proportional to this
        difference; and therefore the perturbation of the orbit of Jupiter is
        much less than that of Saturn's. The perturbations of the other orbits
        are yet far less, except that the orbit of the earth is sensibly
        disturbed by the moon. The common centre of gravity of the earth and
        moon moves in an ellipsis about the sun in the focus thereof, and, by a
        radius drawn to the sun, describes areas proportional to the times of
        description. But the earth in the mean time by a menstrual motion is
        revolved about this common centre.
    





    
        Proposition xiv. Theorem xiv.


        The aphelions and nodes of the orbits of the planets are fixed.


    

    
        The aphelions are immovable by Prop. XI, Book I; and so are the planes
        of the orbits, by Prop. I of the same Book. And if the planes are fixed,
        the nodes must be so too. It is true, that some inequalities may arise
        from the mutual actions of the planets and comets in their revolutions;
        but these will be so small, that they may be here passed by.
    


    
        Cor. 1. The fixed stars are immovable, seeing
        they keep the same position to the aphelions and nodes of the planets.
    


    
        Cor. 2. And since these stars are liable to no
        sensible parallax from the annual motion of the earth, they can have no
        force, because of their immense distance, to produce any sensible effect
        in our system. Not to mention that the fixed stars, every where
        promiscuously dispersed in the heavens, by their contrary attractions
        destroy their mutual actions, by Prop. LXX, Book I.
    





    
        Scholium.


    

    
        Since the planets near the sun (viz. Mercury, Venus, the Earth, and
        Mars) are so small that they can act with but little
        force upon each other, therefore their aphelions and nodes must be
        fixed, excepting in so far as they are disturbed by the actions of
        Jupiter and Saturn, and other higher bodies. And hence we may find, by
        the theory of gravity, that their aphelions move a little in
        consequentia, in respect of the fixed stars, and that in the
        sesquiplicate proportion of their several distances from the sun. So
        that if the aphelion of Mars, in the space of a hundred years, is
        carried 33′ 20″ in consequentia, in respect of the fixed
        stars; the aphelions of the Earth, of Venus, and of Mercury, will in a
        hundred years be carried forwards 17′ 40″, 10′ 53″, and 4′ 16″,
        respectively. But these motions are so inconsiderable, that we have
        neglected them in this Proposition,
    





    
        Proposition xv. Problem I.


        To find the principal diameters of the orbits of the planets.


    

    
        They are to be taken in the sub-sesquiplicate proportion of the
        periodic times, by Prop. XV, Book I, and then to be severally augmented
        in the proportion of the sum of the masses of matter in the sun and each
        planet to the first of two mean proportionals betwixt that sum and the
        quantity of matter in the sun, by Prop. LX, Book I.
    





    
        Proposition xvi. Problem ii.


        To find the eccentricities and aphelions of the planets.  


    


    This Problem is resolved by Prop. XVIII, Book I.





    
        Proposition xvii. Theorem xv.


        
            
                That the diurnal motions of the planets are uniform, and that the
                libration of the moon arises from its diurnal motion.
            
        


    

    
        The Proposition is proved from the first Law of Motion, and Cor. 22,
        Prop. LXVI, Book I. Jupiter, with respect to the fixed stars, revolves
        in 9h.56′; Mars in 24h.39′; Venus in about 23h.;
        the Earth in 23h.56′; the Sun in 25½ days, and the moon in 27
        days, 7 hours, 43′. These things appear by the Phaenomena. The spots in
        the sun's body return to the same situation on the sun's disk, with
        respect to the earth, in 27½ days; and therefore with respect to the
        fixed stars the sun revolves in about 25½ days. But because the lunar
        day, arising from its uniform revolution about its axis, is menstrual, that
        is, equal to the time of its periodic revolution in its orb,
        therefore the same face of the moon will be always nearly turned to the
        upper focus of its orb; but, as the situation of that focus requires,
        will deviate a little to one side and to the other from the earth in the
        lower focus; and this is the libration in longitude; for the libration
        in latitude arises from the moon's latitude, and the inclination of its
        axis to the plane of the ecliptic. This theory of the libration of the
        moon, Mr. N. Mercator in his
        Astronomy, published at the beginning of the year 1676, explained more
        fully out of the letters I sent him. The utmost satellite of Saturn
        seems to revolve about its axis with a motion like this of the moon,
        respecting Saturn continually with the same face; for in its revolution
        round Saturn, as often as it comes to the eastern part of its orbit, it
        is scarcely visible, and generally quite disappears; which is like to be
        occasioned by some spots in that part of its body, which is then turned
        towards the earth, as M. Cassini has observed. So also the
        utmost satellite of Jupiter seems to revolve about its axis with a like
        motion, because in that part of its body which is turned from Jupiter it
        has a spot, which always appears as if it were in Jupiter's own body,
        whenever the satellite passes between Jupiter and our eye.
    





    
        Proposition xviii. Theorem xvi.


        
            
                That the axes of the planets are less than the diameters drawn
                perpendicular to the axes.
            
        


    

    
        The equal gravitation of the parts on all sides would give a spherical
        figure to the planets, if it was not for their diurnal revolution in a
        circle. By that circular motion it comes to pass that the parts receding
        from the axis endeavour to ascend about the equator; and therefore if
        the matter is in a fluid state, by its ascent towards the equator it
        will enlarge the diameters there, and by its descent towards the poles
        it will shorten the axis. So the diameter of Jupiter (by the concurring
        observations of astronomers) is found shorter betwixt pole and pole than
        from east to west. And, by the same argument, if our earth was not
        higher about the equator than at the poles, the seas would subside about
        the poles, and, rising towards the equator, would lay all things there
        under water.
    





    
        Proposition xix. Problem iii.


        
            
                To find the proportion of the axis of a planet to the diameter,
                perpendicular thereto.
            
        


    

    
        Our countryman, Mr. Norwood, measuring a distance of 905751
        feet of London measure between London and York,
        in 1635, and observing the difference of latitudes to be 2° 28′,
        determined the measure of one degree to be 367196 feet of London
        measure, that is 57300 Paris toises. M. Picart,
        measuring an arc of one degree, and 22′ 55″ of the meridian between Amiens
        and Malvoisine, found an arc of one degree to be 57060 Paris
        toises. M. Cassini, the father, measured the distance upon the
        meridian from the town of Collioure in Roussillon to
        the Observatory of Paris; and his son added the distance from
        the Observatory to the Citadel of Dunkirk. The whole distance
        was 486156½ toises and the difference of the latitudes of Collioure
        and Dunkirk was 8 degrees, and 31′ 11
        5/6″. Hence an arc of one
        degree appears to be 57061 Paris toises. And from these
        measures we conclude that the circumference of the earth is 123249600,
        and its semi-diameter 19615800 Paris feet, upon the
        supposition that the earth is of a spherical figure.
    


    
        In the latitude of Paris a heavy body falling in a second of
        time describes 15 Paris feet, 1 inch, 17/9
        line, as above, that is, 2173 lines 7/9.
        The weight of the body is diminished by the weight of the ambient air.
        Let us suppose the weight lost thereby to be 1/11000
        part of the whole weight; then that heavy body falling in vacua
        will describe a height of 2174 lines in one second of time.
    


    
        A body in every sidereal day of 23h.56′4″ uniformly
        revolving in a circle at the distance of 19615800 feet from the centre,
        in one second of time describes an arc of 1433,46 feet; the versed sine
        of which is 0,05236561 feet, or 7,54064 lines. And therefore the force
        with which bodies descend in the latitude of Paris is to the
        centrifugal force of bodies in the equator arising from the diurnal
        motion of the earth as 2174 to 7,54064.
    


    
        The centrifugal force of bodies in the equator is to the centrifugal
        force with which bodies recede directly from the earth in the latitude
        of Paris 48° 50′ 10″ in the duplicate proportion of the radius
        to the cosine of the latitude, that is, as 7,54064 to 3,267. Add this
        force to the force with which bodies descend by their weight in the
        latitude of Paris, and a body, in the latitude of Paris,
        falling by its whole undiminished force of gravity, in the time of one
        second, will describe 2177,267 lines, or 15 Paris feet, 1
        inch, and 5,267 lines. And the total force of gravity in that latitude
        will be to the centrifugal force of bodies in the equator of the earth
        as 2177,267 to 7,54064, or as 289 to 1.
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        Wherefore if APBQ represent the figure of the earth, now no longer
        spherical, but generated by the rotation of an ellipsis about its lesser
        axis PQ; and ACQqca a canal full of water, reaching from the
        pole Qq to the centre Cc, and thence rising to the
        equator Aa; the weight of the water in the leg of the canal ACca
        will be to the weight of water in the other leg QCcq as 289 to
        288, because the centrifugal force arising from the circular motion
        sustains and takes off one of the 289 parts of the weight (in the one
        leg), and the weight of 288 in the other sustains the rest. But by
        computation (from Cor. 2, Prop. XCI, Book I) I find, that, if the matter
        of the earth was all uniform, and without any motion, and its axis PQ
        were to the diameter AB as 100 to 101, the force of gravity in the place
        Q towards the earth would be to the force of gravity in the same place Q
        towards a sphere described about the centre C with the radius PC, or QC,
        as 126 to 125. And, by the same argument, the force of gravity in the
        place A towards the spheroid generated by the rotation of the
        ellipsis APBQ about the axis AB is to the force of gravity in the same
        place A, towards the sphere described about the centre C with the radius
        AC, as 125 to 126. But the force of gravity in the place A towards the
        earth is a mean proportional betwixt the forces of gravity towards the
        spheroid and this sphere; because the sphere, by having its diameter PQ
        diminished in the proportion of 101 to 100, is transformed into the
        figure of the earth; and this figure, by having a third diameter
        perpendicular to the two diameters AB and PQ diminished in the same
        proportion, is converted into the said spheroid; and the force of
        gravity in A, in either case, is diminished nearly in the same
        proportion. Therefore the force of gravity in A towards the sphere
        described about the centre C with the radius AC, is to the force of
        gravity in A towards the earth as 126 to 125½. And the force of gravity
        in the place Q towards the sphere described about the centre C with the
        radius QC, is to the force of gravity in the place A towards the sphere
        described about the centre C, with the radius AC, in the proportion of
        the diameters (by Prop. LXXII, Book I), that is, as 100 to 101. If,
        therefore, we compound those three proportions 126 to 125, 126 to 125½,
        and 100 to 101, into one, the force of gravity in the place Q towards
        the earth will be to the force of gravity in the place A towards the
        earth as 126 x 126 x 100 to 125 x 125½ x 101; or as 501 to 500.
    


    
        Now since (by Cor. 3, Prop. XCI, Book I) the force of gravity in either
        leg of the canal ACca, or QCcq, is as the distance of
        the places from the centre of the earth, if those legs are conceived to
        be divided by transverse, parallel, and equidistant surfaces, into parts
        proportional to the wholes, the weights of any number of parts in the
        one leg ACca will be to the weights of the same number of parts
        in the other leg as their magnitudes and the accelerative forces of
        their gravity conjunctly, that is, as 101 to 100, and 500 to 501, or as
        505 to 501. And therefore if the centrifugal force of every part in the
        leg ACca, arising from the diurnal motion, was to the weight of
        the same part as 4 to 505, so that from the weight of every part,
        conceived to be divided into 505 parts, the centrifugal force might take
        off four of those parts, the weights would remain equal in each leg, and
        therefore the fluid would rest in an equilibrium. But the centrifugal
        force of every part is to the weight of the same part as 1 to 289; that
        is, the centrifugal force, which should be 4/505
        parts of the weight, is only 1/289
        part thereof. And, therefore, I say, by the rule of proportion, that if
        the centrifugal force 4/505
        make the height of the water in the leg ACca to exceed the
        height of the water in the leg QCcq by one 1/100
        part of its whole height, the centrifugal force 1/289
        will make the excess of the height in the leg ACca only
        1/289 part of the height of
        the water in the other leg QCcq; and therefore the diameter of
        the earth at the equator, is to its diameter from pole to pole as 230 to
        229. And since the mean semi-diameter of the
        earth, according to Picart's mensuration, is 19615800 Paris
        feet, or 3923,16 miles (reckoning 5000 feet to a mile), the earth will
        be higher at the equator than at the poles by 85472 feet, or 171/10
        miles. And its height at the equator will be about 19658600 feet, and at
        the poles 19573000 feet.
    


    
        If, the density and periodic time of the diurnal revolution remaining
        the same, the planet was greater or less than the earth, the proportion
        of the centrifugal force to that of gravity, and therefore also of the
        diameter betwixt the poles to the diameter at the equator, would
        likewise remain the same. But if the diurnal motion was accelerated or
        retarded in any proportion, the centrifugal force would be augmented or
        diminished nearly in the same duplicate proportion; and therefore the
        difference of the diameters will be increased or diminished in the same
        duplicate ratio very nearly. And if the density of the planet was
        augmented or diminished in any proportion, the force of gravity tending
        towards it would also be augmented or diminished in the same proportion:
        and the difference of the diameters contrariwise would be diminished in
        proportion as the force of gravity is augmented, and augmented in
        proportion as the force of gravity is diminished. Wherefore, since the
        earth, in respect of the fixed stars, revolves in 23h.56′,
        but Jupiter in 9h.56′, and the squares of their periodic
        times are as 29 to 5, and their densities as 400 to 94½, the difference
        of the diameters of Jupiter will be to its lesser diameter as 
        29

        5 x 400

        941/2 x 1

        229 to 1, or as 1 to 9⅓, nearly.
        Therefore the diameter of Jupiter from east to west is to its diameter
        from pole to pole nearly as 10⅓ to 9⅓. Therefore since its greatest
        diameter is 37″, its lesser diameter lying between the poles will be 33″
        25‴. Add thereto about 3″ for the irregular refraction of light, and the
        apparent diameters of this planet will become 40″ and 36″ 25‴; which are
        to each other as 111/6
        to 101/6, very nearly.
        These things are so upon the supposition that the body of Jupiter is
        uniformly dense. But now if its body be denser towards the plane of the
        equator than towards the poles, its diameters may be to each other as 12
        to 11, or 13 to 12, or perhaps as 14 to 13.
    


    
        And Cassini observed in the year 1691, that the diameter of
        Jupiter reaching from east to west is greater by about a fifteenth part
        than the other diameter. Mr. Pound with his 123 feet
        telescope, and an excellent micrometer, measured the diameters of
        Jupiter in the year 1719, and found them as follow.
    


    
        
            
                		The Times.
                		Greatest diam.
                		Lesser diam.
                		The diam. to each other.
            


            
                		
                    

                    January

                    March

                    March

                    April
                
                		
                    Day.

                    28

                    6

                    9

                    9
                
                		
                    Hours

                    6

                    7

                    7

                    9
                
                		
                    Parts

                    13,40

                    13,12

                    13,12

                    12,32
                
                		
                    Parts

                    12,28

                    12,20

                    12,08

                    11,48
                
                		
                    

                    As

                    As

                    As

                    As
                
                		
                    

                    12

                    13¾

                    12⅔

                    14½
                
                		
                    

                    to

                    to

                    to

                    to
                
                		
                    

                    11

                    12¾

                    11⅔

                    13½
                
            


        
    


    
        So that the theory agrees with the phaenomena;
        for the planets are more heated by the sun's rays towards their
        equators, and therefore are a little more condensed by that heat than
        towards their poles.
    


    
        Moreover, that there is a diminution of gravity occasioned by the
        diurnal rotation of the earth, and therefore the earth rises higher
        there than it does at the poles (supposing that its matter is uniformly
        dense), will appear by the experiments of pendulums related under the
        following Proposition.
    





    
        Proposition xx. Problem iv.


        
            
                To find and compare together the weights of bodies in the
                different regions of our earth.
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        Because the weights of the unequal legs of the canal of water ACQqca
        are equal; and the weights of the parts proportional to the whole legs,
        and alike situated in them, are one to another as the weights of the
        wholes, and therefore equal betwixt themselves; the weights of equal
        parts, and alike situated in the legs, will be reciprocally as the legs,
        that is, reciprocally as 230 to 229. And the case is the same in all
        homogeneous equal bodies alike situated in the legs of the canal. Their
        weights are reciprocally as the legs, that is, reciprocally as the
        distances of the bodies from the centre of the earth. Therefore if the
        bodies are situated in the uppermost parts of the canals, or on the
        surface of the earth, their weights will be one to another reciprocally
        as their distances from the centre. And, by the same argument, the
        weights in all other places round the whole surface of the earth are
        reciprocally as the distances of the places from the centre; and,
        therefore, in the hypothesis of the earth's being a spheroid are given
        in proportion.
    


    
        Whence arises this Theorem, that the increase of weight in passing from
        the equator to the poles is nearly as the versed sine of double the
        latitude; or, which comes to the same thing, as the square of the right
        sine of the latitude; and the arcs of the degrees of latitude in the
        meridian increase nearly in the same proportion. And, therefore, since
        the latitude of Paris is 48° 50′, that of places under the
        equator 00° 00′, and that of places under the poles 90°; and the versed
        sines of double those arcs are 11334,00000 and 20000, the radius being
        10000; and the force of gravity at the pole is to the force of gravity
        at the equator as 230 to 229; and the excess of the force of gravity at
        the pole to the force of gravity at the equator as 1 to 229; the excess
        of the force of gravity in the latitude of Paris will be to the force of
        gravity at the equator as 1 x 11334/20000
        to 229, or as 5667 to 2290000. And therefore the whole forces of gravity
        in those places will be one to the other as 2295667 to 2290000.
        Wherefore since the lengths of pendulums vibrating in equal times are as
        the forces of gravity, and in the latitude of Paris,
        the length of a pendulum vibrating seconds is 3 Paris feet,
        and 8½ lines, or rather because of the weight of the air, 85/9
        lines, the length of a pendulum vibrating in the same time under the
        equator will be shorter by 1,087 lines. And by a like calculus the
        following table is made.
    


    
        
            
                		Latitude of
the place.
                		Length of the
pendulum
                		Measure of one degree
in the meridian.
            


            
                		
                    Deg.

                    0

                    5

                    10

                    15

                    20

                    25

                    30

                    35

                    40

                    1

                    2

                    3

                    4

                    45

                    6

                    7

                    8

                    9

                    50

                    55

                    60

                    65

                    70

                    75

                    80

                    85

                    90
                
                		
                    Feet     Lines     

                    3     .    7,468

                    3     .    7,482

                    3     .    7,526

                    3     .    7,596

                    3     .    7,692

                    3     .    7,812

                    3     .    7,948

                    3     .    8,099

                    3     .    8,261

                    3     .    8,294

                    3     .    8,327

                    3     .    8,361

                    3     .    8,394

                    3     .    8,428

                    3     .    8,461

                    3     .    8,494

                    3     .    8,528

                    3     .    8,561

                    3     .    8,594

                    3     .    8,756

                    3     .    8,907

                    3     .    9,044

                    3     .    9,162

                    3     .    9,258

                    3     .    9,329

                    3     .    9,372

                    3     .    9,387
                
                		
                    Toises.

                    56637

                    56642

                    56659

                    56687

                    56724

                    56769

                    56823

                    56882

                    56945

                    56958

                    56971

                    56984

                    56997

                    57010

                    57022

                    57035

                    57048

                    57061

                    57074

                    57137

                    57196

                    57250

                    57295

                    57332

                    57360

                    57377

                    57382
                
            


        
    


    
        By this table, therefore, it appears that the inequality of degrees is
        so small, that the figure of the earth, in geographical matters, may be
        considered as spherical; especially if the earth be a little denser
        towards the plane of the equator than towards the poles.
    


    
        Now several astronomers, sent into remote countries to make
        astronomical observations, have found that pendulum clocks do
        accordingly move slower near the equator than in our climates. And,
        first of all, in the year 1672, M. Richer took notice of it in
        the island of Cayenne; for when, in the month of August,
        he was observing the transits of the fixed stars over the meridian, he
        found his clock to go slower than it ought in respect of the mean motion
        of the sun at the rate of 2′ 28″ a day. Therefore, fitting up a simple
        pendulum to vibrate in seconds, which were measured by an excellent
        clock, he observed the length of that simple pendulum; and this he did
        over and over every week for ten months together. And upon his re turn
        to France, comparing the length of that pendulum with the
        length of the pendulum at Paris
        (which was 3 Paris feet and 83/5
        lines), he found it shorter by 1¼ line.
    


    
        Afterwards, our friend Dr. Halley, about the year 1677,
        arriving at the island of St. Helena, found his pendulum clock
        to go slower there than at London without marking the
        difference. But he shortened the rod of his clock by more than the
        1/8 of an inch, or 1½ line;
        and to effect this, be cause the length of the screw at the lower end of
        the rod was not sufficient, he interposed a wooden ring betwixt the nut
        and the ball.
    


    
        Then, in the year 1682, M. Varin and M. des Hayes
        found the length of a simple pendulum vibrating in seconds at the Royal
        Observatory of Paris to be 3 feet and 85/9
        lines. And by the same method in the island of Goree, they
        found the length of an isochronal pendulum to be 3 feet and 65/9
        lines, differing from the former by two lines. And in the same year,
        going to the islands of Guadaloupe and Martinico,
        they found that the length of an isochronal pendulum in those islands
        was 3 feet and 6½ lines.
    


    
        After this, M. Couplet, the son, in the month of July
        1697, at the Royal Observatory of Paris, so fitted his
        pendulum clock to the mean motion of the sun, that for a considerable
        time together the clock agreed with the motion of the sun. In November
        following, upon his arrival at Lisbon, he found his clock to
        go slower than before at the rate of 2′ 13″ in 24 hours. And next March
        coming to Paraiba, he found his clock to go slower than at Paris,
        and at the rate 4′ 12″ in 24 hours; and he affirms, that the pendulum
        vibrating in seconds was shorter at Lisbon by 2½ lines, and at Paraiba,
        by 3⅔ lines, than at Paris. He had done better to have
        reckoned those differences 1⅓ and 25/9:
        for these differences correspond to the differences of the times 2′ 13″
        and 4′ 12″. But this gentleman's observations are so gross, that we
        cannot confide in them.
    


    
        In the following years, 1699, and 1700, M. des Hayes, making
        another voyage to America, determined that in the island of Cayenne
        and Granada the length of the pendulum vibrating in seconds
        was a small matter less than 3 feet and 6½ lines; that in the island of
        St. Christophers it was 3 feet and 6¾ lines; and in the island
        of St. Domingo 3 feet and 7 lines.
    


    
        And in the year 1704, P. Feuillé, at Puerto Bello
        in America, found that the length of the pendulum vibrating in
        seconds was 3 Paris feet, and only 57/12
        lines, that is, almost 3 lines shorter than at Paris; but the
        observation was faulty. For afterward, going to the island of Martinico,
        he found the length of the isochronal pendulum there 3 Paris
        feet and 510/12 lines.
    


    
        Now the latitude of Paraiba is 6° 38′ south; that of Puerto
        Bello 9° 33′ north; and the latitudes of the islands Cayenne,
        Goree, Gaudaloupe, Martinico, Granada, St. Christophers, and St.
        Domingo, are respectively 4° 55′, 14° 40″, 15° 00′, 14° 44′, 12°
        06′, 17° 19′, and 19° 48′, north. And the
        excesses of the length of the pendulum at Paris above the
        lengths of the isochronal pendulums observed in those latitudes are a
        little greater than by the table of the lengths of the pendulum before
        computed. And therefore the earth is a little higher under the equator
        than by the preceding calculus, and a little denser at the centre than
        in mines near the su face, unless, perhaps, the heats of the torrid zone
        have a little extended the length of the pendulums.
    


    
        For M. Picart has observed, that a rod of iron, which in
        frosty weather in the winter season was one foot long, when heated by
        fire, was lengthened into one foot and ¼ line. Afterward M. de la
        Hire found that a rod of iron, which in the like winter season
        was 6 feet long, when exposed to the heat of the summer sun, was
        extended into 6 feet and ⅔ line. In the former case the heat was greater
        than in the latter; but in the latter it was greater than the heat of
        the external parts of a human body; for metals exposed to the summer sun
        acquire a very considerable degree of heat. But the rod of a pendulum
        clock is never exposed to the heat of the summer sun, nor ever acquires
        a heat equal to that of the external parts of a human body; and,
        therefore, though the 3 feet rod of a pendulum clock will indeed be a
        little longer in the summer than in the winter season, yet the
        difference will scarcely amount to ¼ line. Therefore the total
        difference of the lengths of isochronal pendulums in different climates
        cannot be ascribed to the difference of heat; nor indeed to the mistakes
        of the French astronomers. For although there is not a perfect
        agreement betwixt their observations, yet the errors are so small that
        they may be neglected; and in this they all agree, that isochronal
        pendulums are shorter under the equator than at the Royal Observatory of
        Paris, by a difference not less than 1¼ line, nor greater than
        2⅔ lines. By the observations of M. Richer, in the island of Cayenne,
        the difference was 1¼ line. That difference being corrected by those of
        M. des Hayes, becomes 1½ line or 1¾ line. By the less accurate
        observations of others, the same was made about two lines. And this dis
        agreement might arise partly from the errors of the observations, partly
        from the dissimilitude of the internal parts of the earth, and the
        height of mountains; partly from the different heats of the air.
    


    
        I take an iron rod of 3 feet long to be shorter by a sixth part of one
        line in winter time with us here in England than in the
        summer. Because of the great heats under the equator, subduct this
        quantity from the difference of one line and a quarter observed by M. Richer,
        and there will remain one line 1/12,
        which agrees very well with 187/1000
        line collected, by the theory a little before. M. Richer
        repeated his observations, made in the island of Cayenne,
        every week for ten months together, and compared the lengths of the
        pendulum which he had there noted in the iron rods with the lengths
        thereof which he observed in France. This diligence and care
        seems to have been wanting to the other observers. If this gentleman's
        observations are to be depended on, the earth
        is higher under the equator than at the poles, and that by an excess of
        about 17 miles; as appeared above by the theory.
    





    
        Proposition xxi. Theorem xvii.


        
            
                That the equinoctial points go backward, and that the axis of the
                earth, by a nutation in every annual revolution, twice vibrates
                towards the ecliptic, and as often returns to its former position.
            
        


    

    
        The proposition appears from Cor. 20, Prop. LXVI, Book I; but that
        motion of nutation must be very small, and, indeed, scarcely
        perceptible.
    





    
        Proposition xxii. Theorem xviii.


        
            
                That all the motions of the moon, and all the inequalities of
                those motions, follow from the principles which we have laid down.
            
        


    

    
        That the greater planets, while they are carried about the sun, may in
        the mean time carry other lesser planets, revolving about them; and that
        those lesser planets must move in ellipses which have their foci in the
        centres of the greater, appears from Prop. LXV, Book I. But then their
        motions will be several ways disturbed by the action of the sun, and
        they will suffer such inequalities as are observed in our moon. Thus our
        moon (by Cor. 2, 3, 4, and 5, Prop. LXVI, Book I) moves faster, and, by
        a radius drawn to the earth, describes an area greater for the time, and
        has its orbit less curved, and therefore approaches nearer to the earth
        in the syzygies than in the quadratures, excepting in so far as these
        effects are hindered by the motion of eccentricity; for (by Cor. 9,
        Prop. LXVI, Book I) the eccentricity is greatest when the apogeon of the
        moon is in the syzygies, and least when the same is in the quadratures;
        and upon this account the perigeon moon is swifter, and nearer to us,
        but the apogeon moon slower, and farther from us, in the syzygies than
        in the quadratures. Moreover, the apogee goes forward, and the nodes
        backward; and this is done not with a regular but an unequal motion. For
        (by Cor. 7 and 8, Prop. LXVI, Book I) the apogee goes more swiftly
        forward in its syzygies, more slowly backward in its quadratures; and,
        by the excess of its progress above its regress, advances yearly in
        consequentia. But, contrariwise, the nodes (by Cor. 11, Prop.
        LXVI, Book I) are quiescent in their syzygies, and go fastest back in
        their quadratures. Farther, the greatest latitude of the moon (by Cor.
        10, Prop. LXVI, Book I) is greater in the quadratures of the moon than
        in its syzygies. And (by Cor. 6, Prop. LXVI, Book I) the mean motion of
        the moon is slower in the perihelion of the earth than in its aphelion.
        And these are the principal inequalities (of the moon) taken notice of
        by astronomers.
    


    
        But there are yet other inequalities not
        observed by former astronomers, by which the motions of the moon are so
        disturbed, that to this day we have not been able to bring them under
        any certain rule. For the velocities or horary motions of the apogee and
        nodes of the moon, and their equations, as well as the difference
        betwixt the greatest eccentricity in the syzygies, and the least
        eccentricity in the quadratures, and that inequality which we call the
        variation, are (by Cor. 14, Prop. LXVI, Book I) in the course of the
        year augmented and diminished in the triplicate proportion of the sun's
        apparent diameter. And besides (by Cor. 1 and 2, Lem. 10, and Cor. 16,
        Prop. LXVI, Book I) the variation is augmented and diminished nearly in
        the duplicate proportion of the time between the quadratures. But in
        astronomical calculations, this inequality is commonly thrown into and
        confounded with the equation of the moon's centre.
    





    
        Proposition xxiii. Problem V.


        
            
                To derive the unequal motions of the satellites of Jupiter and
                Saturn from the motions of our moon.
            
        


    

    
        From the motions of our moon we deduce the corresponding motions of the
        moons or satellites of Jupiter in this manner, by Cor. 16, Prop. LXVI,
        Book I. The mean motion of the nodes of the outmost satellite of Jupiter
        is to the mean motion of the nodes of our moon in a proportion
        compounded of the duplicate proportion of the periodic times of the
        earth about the sun to the periodic times of Jupiter about the sun, and
        the simple proportion of the periodic time of the satellite about
        Jupiter to the periodic time of our moon about the earth; and,
        therefore, those nodes, in the space of a hundred years, are carried 8°
        24′ backward, or in antecedentia. The mean motions of the
        nodes of the inner satellites are to the mean motion of the nodes of the
        outmost as their periodic times to the periodic time of the former, by
        the same Corollary, and are thence given. And the motion of the apsis of
        every satellite in consequentia is to the motion of its nodes
        in antecedentia as the motion of the apogee of our moon to the
        motion of its nodes (by the same Corollary), and is thence given. But
        the motions of the apsides thus found must be diminished in the
        proportion of 5 to 9, or of about 1 to 2, on account of a cause which I
        cannot here descend to explain. The greatest equations of the nodes, and
        of the apsis of every satellite, are to the greatest equations of the
        nodes, and apogee of our moon respectively, as the motions of the nodes
        and apsides of the satellites, in the time of one revolution of the
        former equations, to the motions of the nodes and apogee of our moon, in
        the time of one revolution of the latter equations. The variation of a
        satellite seen from Jupiter is to the variation of our moon in the same
        proportion as the whole motions of their nodes respectively
        during the times in which the satellite and our moon (after parting
        from) are revolved (again) to the sun, by the same Corollary; and
        therefore in the outmost satellite the variation does not exceed 5″ 12‴.
    





    
        Proposition xxiv. Theorem xix.


        That the flux and reflux of the sea arise from the actions of the sun and moon.


    

    
        By Cor. 19 and 20, Prop. LXVI, Book I, it appears that the waters of
        the sea ought twice to rise and twice to fall every day, as well lunar
        as solar; and that the greatest height of the waters in the open and
        deep seas ought to follow the appulse of the luminaries to the meridian
        of the place by a less interval than 6 hours; as happens in all that
        eastern tract of the Atlantic and AEthiopic seas between France
        and the Cape of Good Hope; and on the coasts of Chili
        and Peru, in the South Sea; in all which shores the
        flood falls out about the second, third, or fourth hour, unless where
        the motion propagated from the deep ocean is by the shallowness of the
        channels, through which it passes to some particular places, retarded to
        the fifth, sixth, or seventh hour, and even later. The hours I reckon
        from the appulse of each luminary to the meridian of the place; as well
        under as above the horizon; and by the hours of the lunar day I
        understand the 24th parts of that time which the moon, by its apparent
        diurnal motion, employs to come about again to the meridian of the place
        which it left the day before. The force of the sun or moon in raising
        the sea is greatest in the appulse of the luminary to the meridian of
        the place; but the force impressed upon the sea at that time continues a
        little while after the impression, and is afterwards increased by a new
        though less force still acting upon it. This makes the sea rise higher
        and higher, till this new force becoming too weak to raise it any more,
        the sea rises to its greatest height. And this will come to pass,
        perhaps, in one or two hours, but more frequently near the shores in
        about three hours, or even more, where the sea is shallow.
    


    
        The two luminaries excite two motions, which will not appear
        distinctly, but between them will arise one mixed motion compounded out
        of both. In the conjunction or opposition of the luminaries their forces
        will be conjoined, and bring on the greatest flood and ebb. In the
        quadratures the sun will raise the waters which the moon depresses, and
        depress the waters which the moon raises, and from the difference of
        their forces the smallest of all tides will follow. And because (as
        experience tells us) the force of the moon is greater than that of the
        sun, the greatest height of the waters will happen about the third lunar
        hour. Out of the syzygies and quadratures, the greatest tide, which by
        the single force of the moon ought to fall out at the third lunar hour,
        and by the single force of the sun at the third solar hour, by the
        compounded forces of both must fall out in an intermediate time
        that aproaches nearer to the third hour of the moon than to that of the
        sun. And, therefore, while the moon is passing from the syzygies to the
        quadratures, during which time the 3d hour of the sun precedes the 3d
        hour of the moon, the greatest height of the waters will also precede
        the 3d hour of the moon, and that, by the greatest interval, a little
        after the octants of the moon; and, by like intervals, the greatest tide
        will fol low the 3d lunar hour, while the moon is passing from the
        quadratures to the syzygies. Thus it happens in the open sea; for in the
        mouths of rivers the greater tides come later to their height.
    


    
        But the effects of the luminaries depend upon their distances from the
        earth; for when they are less distant, their effects are greater, and
        when more distant, their effects are less, and that in the triplicate
        proportion of their apparent diameter. Therefore it is that the sun, in
        the winter time, being then in its perigee, has a greater effect, and
        makes the tides in the syzygies something greater, and those in the
        quadratures something less than in the summer season; and every month
        the moon, while in the perigee, raises greater tides than at the
        distance of 15 days before or after, when it is in its apogee. Whence it
        comes to pass that two highest tides do not follow one the other in two
        immediately succeeding syzygies.
    


    
        The effect of either luminary doth likewise depend upon its declination
        or distance from the equator; for if the luminary was placed at the
        pole, it would constantly attract all the parts of the waters without
        any intension or remission of its action, and could cause no
        reciprocation of motion. And, therefore, as the luminaries decline from
        the equator towards either pole, they will, by degrees, lose their
        force, and on this account will excite lesser tides in the solstitial
        than in the equinoctial syzygies. But in the solstitial quadratures they
        will raise greater tides than in the quadratures about the equinoxes;
        because the force of the moon, then situated in the equator, most
        exceeds the force of the sun. Therefore the greatest tides fall out in
        those syzygies, and the least in those quadratures, which happen about
        the time of both equinoxes: and the greatest tide in the syzygies is
        always succeeded by the least tide in the quadratures, as we find by
        experience. But, because the sun is less distant from the earth in
        winter than in summer, it comes to pass that the greatest and least
        tides more frequently appear before than after the vernal equinox, and
        more frequently after than before the autumnal.
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        Moreover, the effects of the luminaries depend upon the latitudes of
        places. Let ApEP represent the earth covered with deep waters;
        C its centre; P, p its poles; AE the equator; F any place
        without the equator; Ff the parallel of the place; Dd
        the correspondent parallel on the other side of
        the equator; L the place of the moon three Hours before; H the place of
        the earth directly under it; h the opposite place; K, k
        the places at 90 degrees distance; CH, Ch, the greatest heights
        of the sea from the centre of the earth; and CK, Ck, its least
        heights: and if with the axes Hh, Kk, an ellipsis is
        described, and by the revolution of that ellipsis about its longer axis
        Hh a spheroid HPKhpk is formed, this spheroid will
        nearly represent the figure of the sea; and CF, Cf, CD, Cd,
        will represent the heights of the sea in the places Ff, Dd.
        But farther; in the said revolution of the ellipsis any point N
        describes the circle NM cutting the parallels Ff, Dd,
        in any places RT, and the equator AE in S; CN will represent the height
        of the sea in all those places R, S, T, situated in this circle.
        Wherefore, in the diurnal revolution of any place F, the greatest flood
        will be in F, at the third hour after the appulse of the moon to the
        meridian above the horizon; and afterwards the greatest ebb in Q, at the
        third hour after the setting of the moon; and then the greatest flood in
        f, at the third hour after the appulse of the moon to the
        meridian under the horizon; and, lastly, the greatest ebb in Q, at the
        third hour after the rising of the moon; and the latter flood in f will
        be less than the preceding flood in F. For the whole sea is divided into
        two hemispherical floods, one in the hemisphere KHk on the
        north side, the other in the opposite hemisphere Khk, which we
        may therefore call the northern and the southern floods. These floods,
        being always opposite the one to the other, come by turns to the
        meridians of all places, after an interval of 12 lunar hours. And seeing
        the northern countries partake more of the northern flood, and the
        southern countries more of the southern flood, thence arise tides,
        alternately greater and less in all places without the equator, in which
        the luminaries rise and set. But the greatest tide will happen when the
        moon declines towards the vertex of the place, about the third hour
        after the appulse of the moon to the meridian above the horizon; and
        when the moon changes its declination to the other side of the
        equator, that which was the greater tide will be changed into a
        lesser. And the greatest difference of the floods will fall out about
        the times of the solstices; especially if the ascending node of the moon
        is about the first of Aries. So it is found by experience that the
        morning tides in winter exceed those of the evening, and the evening
        tides in summer exceed those of the morning; at Plymouth by
        the height of one foot, but at Bristol by the height of 15
        inches, according to the observations of Colepress and Sturmy.
    


    
        But the motions which we have been describing suffer some alteration
        from that force of reciprocation, which the waters, being once moved,
        retain a little while by their vis insita. Whence it comes to
        pass that the tides may continue for some time, though the actions of
        the luminaries should cease. This power of
        retaining the impressed motion lessens the difference of the alternate
        tides, and makes those tides which immediately succeed after the
        syzygies greater, and those which follow next after the quadratures
        less. And hence it is that the alternate tides at Plymouth and
        Bristol do not differ much more one from the other than by the
        height of a foot or 15 inches, and that the greatest tides of all at
        those ports are not the first but the third after the syzygies. And,
        besides, all the motions are retarded in their passage through shallow
        channels, so that the greatest tides of all, in some straits and mouths
        of rivers, are the fourth or even the fifth after the syzygies.
    


    
        Farther, it may happen that the tide may be propagated from the ocean
        through different channels towards the same port, and may pass quicker
        through some channels than through others; in which case the same tide,
        divided into two or more succeeding one another, may compound new
        motions of different kinds. Let us suppose two equal tides flowing
        towards the same port from different places, the one preceding the other
        by 6 hours; and suppose the first tide to happen at the third hour of
        the appulse of the moon to the meridian of the port. If the moon at the
        time of the appulse to the meridian was in the equator, every 6 hours
        alternately there would arise equal floods, which, meeting with as many
        equal ebbs, would so balance one the other, that for that day, the water
        would stagnate and remain quiet. If the moon then declined from the
        equator, the tides in the ocean would be alternately greater and less,
        as was said; and from thence two greater and two lesser tides would be
        alternately propagated towards that port. But the two greater floods
        would make the greatest height of the waters to fall out in the middle
        time betwixt both; and the greater and lesser floods would make the
        waters to rise to a mean height in the middle time between them, and in
        the middle time between the two lesser floods the waters would rise to
        their least height. Thus in the space of 24 hours the waters would come,
        not twice, as commonly, but once only to their great est, and once only
        to their least height; and their greatest height, if the moon declined
        towards the elevated pole, would happen at the 6th or 30th hour after
        the appulse of the moon to the meridian; and when the moon changed its
        declination, this flood would be changed into an ebb. An example of all
        which Dr. Halley has given us, from the observations of sea
        men in the port of Batsham, in the kingdom of Tunquin,
        in the latitude of 20° 50′ north. In that port, on the day which follows
        after the passage of the moon over the equator, the waters stagnate:
        when the moon declines to the north, they begin to flow and ebb, not
        twice, as in other ports, but once only every day: and the flood happens
        at the setting, and the greatest ebb at the rising of the moon. This
        tide increases with the declination of the moon till the 7th or 8th day;
        then for the 7 or 8 days following it decreases
        at the same rate as it had increased before, and ceases when the moon
        changes its declination, crossing over the equator to the south. After
        which the flood is immediately changed into an ebb; and thenceforth the
        ebb happens at the setting and the flood at the rising of the moon; till
        the moon, again passing the equator, changes its declination. There are
        two inlets to this port and the neighboring channels, one from the seas
        of China, between the continent and the island of Leuconia;
        the other from the Indian sea, between the continent and the
        island of Borneo. But whether there be really two tides
        propagated through the said channels, one from the Indian sea
        in the space of 12 hours, and one from the sea of China in the
        space of 6 hours, which therefore happening at the 3d and 9th lunar
        hours, by being compounded together, produce those motions; or whether
        there be any other circumstances in the state of those seas. I leave to
        be determined by observations on the neighbouring shores.
    


    
        Thus I have explained the causes of the motions of the moon and of the
        sea. Now it is fit to subjoin something concerning the quantity of those
        motions.
    





    
        Proposition xxv. Problem vi.


        To find the forces with which the sun disturbs the motions of the moon.


    

    [image: Mathematical Principles of Natural Philosophy figure: 419]

    
        Let S represent the sun, T the earth, P the moon, CADB the moon's
        orbit. In SP take SK equal to ST; and let SL be to SK in the duplicate
        proportion of SK to SP: draw LM parallel to PT; and if ST or SK is
        supposed to represent the accelerated force of gravity of the earth
        towards the sun, SL will represent the accelerative force of gravity of
        the moon towards the sun. But that force is compounded of the parts SM
        and LM, of which the force LM, and that part of SM which is represented
        by TM, disturb the motion of the moon, as we have shewn in Prop. LXVI,
        Book I, and its Corollaries. Forasmuch as the earth and moon are
        revolved about their common centre of gravity, the motion of the earth
        about that centre will be also disturbed by the like forces; but we may
        consider the sums both of the forces and of the motions as in the moon,
        and represent the sum of the forces by the lines TM and ML, which are
        analogous to thorn both. The force ML (in its mean quantity) is to the
        centripetal force by which the moon may be retained in its orbit
        revolving about the earth at rest, at the distance PT, in the duplicate
        proportion of the periodic time of the moon about the earth to the
        periodic time of the earth about the sun (by Cor. 17, Prop. LXVI, Book
        I); that is, in the duplicate proportion of 27d.7h.43′
        to 365d.6h.9′; or as 1000 to 178725; or as 1 to
        17829/40. But in the
        4th Prop. of this Book we found, that, if both earth
        and moon were revolved about their common centre of gravity, the mean
        distance of the one from the other would be nearly 60½ mean
        semi-diameters of the earth; and the force by which the moon may be kept
        revolving in its orbit about the earth in rest at the distance PT of 60½
        semi-diameters of the earth, is to the force by which it may be revolved
        in the same time, at the distance of 60 semi-diameters, as 60½ to 60:
        and this force is to the force of gravity with us very nearly as 1 to 60
        x 60. Therefore the mean force ML is to the force of gravity on the
        surface of our earth as 1 x 60½ to 60 x 60 x 60 x 17829/40,
        or as 1 to 638092,6; whence by the proportion of the lines TM, ML, the
        force TM is also given; and these are the forces with which the sun
        disturbs the motions of the moon.   Q.E.I.
    





    
        Proposition xxvi. Problem vii.


        
            
                To find the horary increment of the area which the moon, by a
                radius drawn to the earth, describes in a circular orbit.
            
        


    

    [image: Mathematical Principles of Natural Philosophy figure: 420]

    
        We have above shown that the area which the moon describes by a radius
        drawn to the earth is proportional to the time of description, excepting
        in so far as the moon's motion is disturbed by the action of the sun;
        and here we propose to investigate the inequality of the moment, or
        horary increment of that area or motion so disturbed. To
        render the calculus more easy, we shall suppose the orbit of the moon to
        be circular, and neglect all inequalities but that only which is now
        under consideration; and, because of the immense distance of the sun, we
        shall farther suppose that the lines SP and ST are parallel. By this
        means, the force LM will be always reduced to its mean quantity TP, as
        well as the force TM to its mean quantity 3PK. These forces (by Cor. 2
        of the Laws of Motion) compose the force TL; and this force, by letting
        fall the perpendicular LE upon the radius TP, is resolved into the
        forces TE, EL; of which the force TE, acting constantly in the direction
        of the radius TP, neither accelerates nor retards the description of the
        area TPC made by that radius TP; but EL, acting on the radius
        TP in a perpendicular direction, accelerates or retards the
        description of the area in proportion as it accelerates or
        retards the moon. That acceleration of the
        moon, in its passage from the quadrature C to the conjunction A, is in
        every moment of time as the generating accelerative force EL,
        that is, as 3PK x TK

        TP. Let the time be represented by the
        mean motion of the moon, or (which comes to the same thing) by the angle
        CTP, or even by the arc CP. At right angles upon CT erect CG equal to
        CT; and, supposing the quadrantal arc AC to be divided into an infinite
        number of equal parts Pp, &c., these parts may
        represent the like infinite number of the equal parts of time.
        Let fall pk perpendicular on CT, and draw TG meeting with KP,
        kp produced in F and f; then will FK be equal to TK,
        and Kk be to PK as Pp to Tp, that is, in a
        given proportion; and therefore FK x Kk, or the area FKkf,
        will be as 3PK x TK

        TP, that is, as EL; and compounding, the
        whole area GCKF will be as the sum of all the forces EL impressed upon
        the moon in the whole time CP; and therefore also as the velocity
        generated by that sum, that is, as the acceleration of the description
        of the area CTP, or as the increment of the moment thereof.
        The force by which the moon may in its periodic time CADB of 27d.7h.43′
        be retained revolving about the earth in rest at the distance TP, would
        cause a body falling in the time CT to describe the length ½CT, and at
        the same time to acquire a velocity equal to that with which the moon is
        moved in its orbit. This appears from Cor. 9, Prop, IV., Book I. But
        since Kd, drawn perpendicular on TP, is but a third
        part of EL, and equal to the half of TP, or ML, in the
        octants, the force EL in the octants, where it is greatest, will exceed
        the force ML in the proportion of 3 to 2; and therefore will be to that
        force by which the moon in its periodic time may be retained revolving
        about the earth at rest as 100 to ⅔ x 178721½, or 11915; and in the time
        CT will generate a velocity equal to 100/11915
        parts of the velocity of the moon; but in the time CPA will generate a
        greater velocity in the proportion of CA to CT or TP. Let the greatest
        force EL in the octants be represented by the area FK x Kk, or
        by the rectangle ½TP x Pp, which is equal thereto; and the
        velocity which that greatest force can generate in any time CP will be
        to the velocity which any other lesser force EL can generate in the same
        time as the rectangle ½TP x CP to the area KCGF; but the velocities
        generated in the whole time CPA will be one to the other as the
        rectangle ½TP x CA to the triangle TCG, or as the quadrantal arc CA to
        the radius TP; and therefore the latter velocity generated in the whole
        time will be 100/11915
        parts of the velocity of the moon. To this velocity of the moon, which
        is proportional to the mean moment of the area (supposing this mean
        moment to be represented by the number 11915), we add and subtract the
        half of the other velocity; the sum 11915 + 50, or 11965, will represent
        the greatest moment of the area in the syzygy A; and the difference
        11915 − 50, or 11865, the least moment thereof in the quadratures.
        Therefore the areas which in equal times are described in the syzygies
        and quadratures are one to the other as 11965 to 11865. And if to the
        least moment 11865 we add a moment which shall be to 100, the difference
        of the two former moments, as the trapezium FKCG to the triangle TCG,
        or, which comes to the same thing, as the square of the sine PK to the
        square of the radius TP (that is, as Pd to TP), the sum will
        represent the moment of the area when the moon is in any intermediate
        place P.
    


    
        But these things take place only in the hypothesis that the sun and the
        earth are at rest, and that the synodical revolution of the moon is
        finished in 27d.7h.43′. But since the moon's
        synodical period is really 29d.12h.41′, the
        increments of the moments must be enlarged in the same proportion as the
        time is, that is, in the proportion of 1080853 to 1000000. Upon which
        account, the whole increment, which was 100/11915
        parts of the mean moment, will now become T100/11023
        parts thereof; and therefore the moment of the area in the quadrature of
        the moon will be to the moment thereof in the syzygy as 11023 − 50 to
        11023 + 50; or as 10973 to 11073: and to the moment thereof, when the
        moon is in any intermediate place P, as 10973 to 10973 + Pd;
        that is, supposing TP = 100.
    


    
        The area, therefore, which the moon, by a radius drawn to the earth,
        describes in the several little equal parts of time, is nearly as the
        sum of the number 219,46, and the versed sine of the double distance of
        the moon from the nearest quadrature, considered in a circle which hath
        unity for its radius. Thus it is when the variation in the octants is in
        its mean quantity. But if the variation there is greater or less, that
        versed sine must be augmented or diminished in the same proportion.
    





    
        Proposition xxvii. Problem viii.


        From the horary motion of the moon to find its distance from the earth.


    

    
        The area which the moon, by a radius drawn to the earth, describes in
        every, moment of time, is as the horary motion of the moon and the
        square of the distance of the moon from the earth conjunctly. And
        therefore the distance of the moon from the earth is in a proportion
        compounded of the subduplicate proportion of the area directly, and the
        subduplicate proportion of the horary motion inversely.
          Q.E.I.
    


    
        Cor. 1. Hence the apparent diameter of the moon
        is given; for it is reciprocally as the distance of the moon from the
        earth. Let astronomers try how accurately this rule agrees with the
        phaenomena.
    


    
        Cor. 2. Hence also the orbit of the moon may be
        more exactly defined from the phaenomena than hitherto could be done.
    



     





    
        Proposition xxviii. Problem ix.


        
            
                To find the diameters of the orbit, in which, without
                eccentricity, the moon would move.
            
        


    

    
        The curvature of the orbit which a body describes, if attracted in
        lines perpendicular to the orbit, is as the force of attraction
        directly, and the square of the velocity inversely. I estimate the
        curvatures of lines compared one with another according to the
        evanescent proportion of the sines or tangents of their angles of
        contact to equal radii, supposing those radii to be infinitely
        diminished. But the attraction of the moon towards the earth in the
        syzygies is the excess of its gravity towards the earth above the force
        of the sun 2PK (see Fig. Prop. XXV), by which force the accelerative
        gravity of the moon towards the sun exceeds the accelerative gravity of
        the earth towards the sun, or is exceeded by it. But in the quadratures
        that attraction is the sum of the gravity of the moon towards the earth,
        and the sun's force KT, by which the moon is attracted towards the
        earth. And these attractions, putting N for AT+CT

        2, are nearly as 
        178725

        AT2-2000

        CT x N and 178725

        CT2+1000

        AT x N, or as 178725N x CT² − 2000AT² x
        CT, and 178725N x AT² + 1000CT² x AT. For if the accelerative gravity of
        the moon towards the earth be represented by the number 178725, the mean
        force ML, which in the quadratures is PT or TK, and draws the moon
        towards the earth, will be 1000, and the mean force TM in the syzygies
        will be 3000; from which, if we subtract the mean force ML, there will
        remain 2000, the force by which the moon in the syzygies is drawn from
        the earth, and which we above called 2PK. But the velocity of the moon
        in the syzygies A and B is to its velocity in the quadratures C and D as
        CT to AT, and the moment of the area, which the moon by a radius drawn
        to the earth describes in the syzygies, to the moment of that area described
        in the quadratures conjunctly; that is, as 11073CT to 10973AT. Take this
        ratio twice inversely, and the former ratio once directly, and the
        curvature of the orb of the moon in the syzygies will be to the
        curvature thereof in the quadratures as 120406729 x 178725AT² x CT² x N
        − 120406729 x 2000AT4 x CT to 122611329 x 178725AT² x CT² x N
        + 122611329 x 1000CT4 x AT, that is, as 2151969AT x CT x N −
        24081AT³ to 2191371AT x CT x N + 12261CT³.
    


    
        Because the figure of the moon's orbit is unknown, let us, in its
        stead, assume the ellipsis DBCA, in the centre of which we suppose the
        earth to be situated, and the greater axis DC to lie between the
        quadratures as the lesser AB between the syzygies. But since the plane
        of this ellipsis is revolved about the earth by an angular motion, and
        the orbit, whose curvature we now examine, should be described in a
        plane void of such motion
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        we are to consider the figure which the moon, while it is revolved in
        that ellipsis, describes in this plane, that is to say, the figure Cpa,
        the several points p of which are found by assuming any point
        P in the ellipsis, which may represent the place of the moon, and
        drawing Tp equal to TP in such manner that the angle PTp
        may be equal to the apparent motion of the sun from the time of the last
        quadrature in C; or (which comes to the same thing) that the angle CTp
        may be to the angle CTP as the time of the synodic revolution of the
        moon to the time of the periodic revolution thereof, or as 29d.12h.44′
        to 27d.7h.43′. If, therefore, in this proportion
        we take the angle CTa to the right angle CTA, and make Ta
        of equal length with TA, we shall have a the lower and C the
        upper apsis of this orbit Cpa. But, by computation, I find that
        the difference betwixt the curvature of this orbit Cpa at the
        vertex a, and the curvature of a circle described about the
        centre T with the interval TA, is to the difference between the
        curvature of the ellipsis at the vertex A, and the curvature of the same
        circle, in the duplicate proportion of the angle CTP to the angle CTp;
        and that the curvature of the ellipsis in A is to the curvature of that
        circle in the duplicate proportion of TA to TC; and the curvature of
        that circle to the curvature of a circle described about the centre T
        with the interval TC as TC to TA; but that the curvature of this last
        arch is to the curvature of the ellipsis in C in the duplicate
        proportion of TA to TC; and that the difference betwixt the curvature of
        the ellipsis in the vertex C, and the curvature of this last circle, is
        to the difference betwixt the curvature of the figure Cpa, at
        the vertex C, and the curvature of this same last circle, in
        the duplicate proportion of the angle CTp to the angle CTP; all
        which proportions are easily drawn from the sines of the angles of
        contact, and of the differences of those angles. But, by comparing those
        proportions together, we find the curvature of the figure Cpa
        at a to be to its curvature at C as AT³ − 16824/100000CT²
        AT to CT³ + 16824/100000AT²
        x CT; where the number 16824/100000
        represents the difference of the squares of the angles CTP and CTp,
        applied to the square of the lesser angle CTP; or (which is all one) the
        difference of the squares of the times 27d.7h.43′,
        and 29d.12j.44′, applied to the square of the time
        27d.7h.43′, and 27d.7h.43′
    


    
        Since, therefore, a represents the syzygy of the moon, and C
        its quadrature, the proportion now found must be the same with that
        proportion of the curvature of the moon's orb in the syzygies to the
        curvature thereof in the quadratures, which we found above. Therefore,
        in order to find the proportion of CT to AT,
        let us multiply the extremes and the means, and the terms which come
        out, applied to AT x CT, become 2062,79CT4 - 2151969N x CT³ +
        368676N x AT x CT² + 36342AT² x CT² − 362047N x AT² x CT + 2191371N x
        AT³ + 4051,4AT4 = 0. Now if for the half sum N of the terms
        AT and CT we put 1, and x for their half difference, then CT
        will be = 1 + x, and AT = 1 − x. And substituting
        those values in the equation, after resolving thereof, we shall find x
        = 0,00719; and from thence the semi-diameter CT = 1,00719, and the
        semi-diameter AT = 0,99281, which numbers are nearly as 701/24,
        and 691/24. Therefore
        the moon's distance from the earth in the syzygies is to its distance in
        the quadratures (setting aside the consideration of eccentricity) as 69
        1/24 to 701/24;
        or, in round numbers, as 69 to 70.
    





    
        Proposition xxix. Problem X.


        To find the variation of the moon. 


    

    
        This inequality is owing partly to the elliptic figure of the moon's
        orbit, partly to the inequality of the moments of the area which the
        moon by a radius drawn to the earth describes. If the moon P revolved in
        the ellipsis DBCA about the earth quiescent in the centre of the
        ellipsis, and by the radius TP, drawn to the earth, described the area
        CTP, proportional to the time of description; and the greatest
        semi-diameter CT of the ellipsis was to the least TA as 70 to 69; the
        tangent of the angle CTP would be to the tangent of the angle of the
        mean motion, computed from the quadrature C, as the semi-diameter TA of
        the ellipsis to its semi-diameter TC, or as 69 to 70. But the
        description of the area CTP, as the moon advances from the quadrature to
        the syzygy, ought to be in such manner accelerated, that the moment of
        the area in the moon's syzygy may be to the moment thereof in its
        quadrature as 11073 to 10973; and that the excess of the moment in any
        intermediate place P above the moment in the quadrature may be as the
        square of the sine of the angle CTP; which we may effect with accuracy
        enough, if we diminish the tangent of the angle CTP in the subduplicate
        proportion of the number 10973 to the number 11073, that is, in
        proportion of the number 68,6877 to the number 69. Upon which account
        the tangent of the angle CTP will now be to the tangent of the mean
        motion as 68,6877 to 70; and the angle CTP in the octants, where the
        mean motion is 45°, will be found 44°27′28″, which subtracted from 45°,
        the angle of the mean motion, leaves the greatest variation 32′32″. Thus
        it would be, if the moon, in passing from the quadrature to the syzygy,
        described an angle CTA of 90 degrees only. But because of the motion of
        the earth, by which the sun is apparently transferred in
        consequentia, the moon, before it overtakes the sun, describes an
        angle CT, greater than a right angle, in the proportion of the time of
        the synodic revolution of the moon to the time of its periodic
        revolution, that is, in the proportion of 29d.12h.44′
        to 27d.7h.43′. Whence it comes to pass that all
        the angles about the centre T are dilated in the same proportion; and
        the greatest variation, which otherwise would be but 32′ 32″,
        now augmented in the said proportion, becomes 35′ 10″.
    


    
        And this is its magnitude in the mean distance of the sun from the
        earth, neglecting the differences which may arise from the curvature of
        the orbis magnus, and the stronger action of the sun upon the
        moon when horned and new, than when gibbous and full. In other distances
        of the sun from the earth, the greatest variation is in a proportion
        compounded of the duplicate proportion of the time of the synodic
        revolution of the moon (the time of the year being given) directly, and
        the triplicate proportion of the distance of the sun from the earth
        inversely. And, therefore, in the apogee of the sun, the greatest
        variation is 33′14″, and in its perigee 37′11″, if the eccentricity of
        the sun is to the transverse semi-diameter of the orbis magnus
        as 1615/16 to 1000.
    


    
        Hitherto we have investigated the variation in an orb not eccentric, in
        which, to wit, the moon in its octants is always in its mean distance
        from the earth. If the moon, on account of its eccentricity, is more or
        less removed from the earth than if placed in this orb, the variation
        may be something greater, or something less, than according to this
        rule. But I leave the excess or defect to the determination of
        astronomers from the phenomena.
    





    
        Proposition xxx. Problem xi.


        To find the horary motion of the nodes of the moon, in a circular orbit.


    

    
        Let S represent the sun, T the earth, P the moon, NPn the
        orbit of the moon, Npn the orthographic projection of the orbit
        upon the plane of the ecliptic: N, n the nodes, nTNm
        the line of the nodes produced indefinitely;
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        PI, PK perpendiculars upon the lines ST, Qq;
        Pp a perpendicular upon the plane of the ecliptic; A, B the
        moon's syzygies in the plane of the ecliptic; AZ a perpendicular let
        fall upon Nn, the line of the nodes; Q, g the
        quadratures of the moon in the plane of the ecliptic, and pK a
        perpendicular on the line Qq lying between the quadratures. The
        force of the sun to disturb the motion of the moon (by Prop. XXV) is
        twofold, one proportional to the line LM, the other to the line MT, in
        the scheme of that Proposition; and the moon by the former force is
        drawn towards the earth, by the latter towards the sun, in a direction
        parallel to the right line ST joining the earth and the sun. The former
        force LM acts in the direction of the plane of the moon's orbit, and
        therefore makes no change upon the situation thereof, and is upon that
        account to be neglected; the latter force MT, by which the plane of the
        moon's orbit is disturbed, is the same with the force 3PK or 3IT. And
        this force (by Prop. XXV) is to the force by which the moon may, in its
        periodic time, be uniformly revolved in a circle about the earth at
        rest, as 3IT to the radius of the circle multiplied by the number
        178,725, or as IT to the radius there of multiplied by 59,575. But in
        this calculus, and all that follows, I consider all the lines drawn from
        the moon to the sun as parallel to the line which joins the earth and
        the sun; because what inclination there is almost as much diminishes all
        effects in some cases as it augments them in others; and we are now
        inquiring after the mean motions of the nodes, neglecting such niceties
        as are of no moment, and would only serve to render the calculus more
        perplexed.
    


    
        Now suppose PM to represent an arc which the moon describes in the
        least moment of time, and ML a little line, the half of which the moon,
        by the impulse of the said force 3IT, would describe in the same time;
        and joining PL, MP, let them be produced to m and l,
        where they cut the plane of the ecliptic, and upon Tm let fall
        the perpendicular PH. Now, since the right line ML is parallel to the
        plane of the ecliptic, and therefore can never meet with the right line
        ml which lies in that plane, and yet both those right lines lie
        in one common plane LMPml, they will be parallel, and upon that
        account the triangles LMP, lmP will be similar. And seeing MPm
        lies in the plane of the orbit, in which the moon did move while in the
        place P, the point m will fall upon the line Nn,
        which passes through the nodes N, n, of that orbit. And
        because the force by which the half of the little line LM is generated,
        if the whole had been together, and at once impressed in the point P,
        would have generated that whole line, and caused the moon to move in the
        arc whose chord is LP; that is to say, would have transferred the moon
        from the plane MPmT into the plane LPlT; therefore the
        angular motion of the nodes generated by that force will be equal to the
        angle mTl. But ml is to mP as ML
        to MP; and since MP, because of the time given, is also given, ml
        will be as the rectangle ML x mP,
        that is, as the rectangle IT x mP. And if Tml is a
        right angle, the angle mTl will be as 
        ml

        Tm and therefore as 
        IT x Pm

        Tm, that is (because Tm and mP,
        TP and PH are proportional), as IT
        x PH

        TP; and, therefore, because TP is given,
        as IT x PH. But if the angle Tml or STN is oblique, the angle mTl
        will be yet less, in proportion of the sine of the angle STN to the
        radius, or AZ to AT. And therefore the velocity of the nodes is as IT x
        PH x AZ, or as the solid content of the sines of the three angles TPI,
        PTN, and STN.
    


    
        If these are right angles, as happens when the nodes are in the
        quadratures, and the moon in the syzygy, the little line ml
        will be removed to an infinite distance, and the angle mTl
        will become equal to the angle mPl. But in this case
        the angle mPl is to the angle PTM, which the moon in
        the same time by its apparent motion describes about the earth, as 1 to
        59,575. For the angle mPl is equal to the angle LPM,
        that is, to the angle of the moon's deflexion from a rectilinear path;
        which angle, if the gravity of the moon should have then ceased, the
        said force of the sun 3IT would by itself have generated in that given
        time; and the angle PTM is equal to the angle of the moon's deflexion
        from a rectilinear path; which angle, if the force of the sun 3IT should
        have then ceased, the force alone by which the moon is retained in its
        orbit would have generated in the same time. And these forces (as we
        have above shewn) are the one to the other as 1 to 59,575. Since,
        therefore, the mean horary motion of the moon (in respect of the fixed
        stars) is 32′ 56″ 27‴ 12½iv, the horary motion of the node in
        this case will be 33″ 10‴ 33iv.12v. But in other
        cases the horary motion will be to 33″ 10‴ 33iv.12v,
        as the solid content of the sines of the three angles TPI, PTN, and STN
        (or of the distances of the moon from the quadrature, of the moon from
        the node, and of the node from the sun) to the cube of the radius. And
        as often as the sine of any angle is changed from positive to negative,
        and from negative to positive, so often must the regressive be changed
        into a progressive, and the progressive into a regressive motion. Whence
        it comes to pass that the nodes are progressive as often as the moon
        happens to be placed between either quadrature, and the node nearest to
        that quadrature. In other cases they are regressive, and by the excess
        of the regress above the progress, they are monthly transferred in
        antecedentia.
    


    
        Cor. 1. Hence if from P and M, the extreme
        points of a least arc PM, on the line Qq joining the
        quadratures we let fall the perpendiculars PK, Mk, and produce
        the same till they cut the line of the nodes Nn in D and d,
        the horary motion of the nodes will be as the area MPDd, and
        the square of the line AZ conjunctly. For let PK, PH, and AZ, be the
        three said sines, viz., PK the sine of the distance of the moon from the
        quadrature, 
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        PH the sine of the distance of the moon from the node, and AZ the sine of the
        distance of the node from the sun; and the velocity of the node will be
        as the solid content of PK x PH x AZ. But PT is to PK as PM to Kk;
        and, therefore, because PT and PM are given, Kk will be as PK.
        Likewise AT is to PD as AZ to PH, and therefore PH is as the rectangle
        PD x AZ; and, by compounding those proportions, PK x PH is as the solid
        content Kk x PD x AZ, and PK x PH x AZ as Kk x PD x
        AZ²; that is, as the area PDdM and AZ² conjunctly.
          Q.E.D.
    


    
        Cor. 2. In any given position of the nodes
        their mean horary motion is half their horary motion in the moon's
        syzygies; and therefore is to 16″ 35‴ 16iv.36v. as
        the square of the sine of the distance of the nodes from the syzygies to
        the square of the radius, or as AZ² to AT². For if the moon, by an
        uniform motion, describes the semi-circle QAq, the sum of all
        the areas PDdM, during the time of the moon's passage from Q to
        M, will make up the area QMdE, terminating at the tangent QE of
        the circle; and by the time that the moon has arrived at the point n,
        that sum will make up the whole area EQAn described by the line
        PD: but when the moon proceeds from n to q, the line
        PD will fall without the circle, and describe the area nqe,
        terminating at the tangent qe of the circle, which area,
        because the nodes were before regressive, but are now progressive, must
        be subducted from the former area, and, being itself equal to the area
        QEN, will leave the semi-circle NQAn. While, therefore, the
        moon describes a semi-circle, the sum of all the areas PDdM
        will be the area of that semi-circle; and while the moon describes a
        complete circle, the sum of those areas will be the area of the whole
        circle. But the area PDdM, when the moon is in the syzygies, is
        the rectangle of the arc PM into the radius PT; and the sum of all the
        areas, every one equal to this area, in the time that the moon
        describes a complete circle, is the rectangle of the whole circumference
        into the radius of the circle; and this rectangle, being double the area
        of the circle, will be double the quantity of the former sum. If,
        therefore, the nodes went on with that velocity uniformly continued
        which they acquire in the moon's syzygies, they would describe a space
        double of that which they describe in fact; and, therefore, the mean
        motion, by which, if uniformly continued, they would describe the same
        space with that which they do in fact describe by an unequal motion, is
        but one-half of that motion which they are possessed of in the
        moon's syzygies. Wherefore since their greatest horary motion, if the
        nodes are in the quadratures, is 33″ 10‴ 33iv, their mean
        horary motion in this case will be 16″ 35‴ 16iv.36v.
        And seeing the horary motion of the nodes is every where as AZ² and the
        area PDdM conjunctly, and, therefore, in the moon's syzygies,
        the horary motion of the nodes is as AZ² and the area PDdM
        conjunctly, that is (because the area PDdM described in the
        syzygies is given), as AZ², therefore the mean motion also will be as
        AZ²; and, therefore, when the nodes are without the quadratures, this
        motion will be to 16″ 35‴ 16iv.36v. as AZ² to AT².
          Q.E.D.
    





    
        Proposition xxxi. Problem xii.


        To find the horary motion of the nodes of the moon, in an, elliptic orbit.


    

    
        Let Qpmaq represent an ellipsis described with the greater
        axis Qq, am the lesser axis ab; QAqB a
        circle circumscribed; T the earth in the common centre of both; S the
        sun; p the moon moving in this ellipsis; and
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        pm an arc which it describes in the
        least moment of time; N and n the nodes joined by the line Nn;
        pK and mk perpendiculars upon the axis Qq,
        produced both ways till they meet the circle in P and M, and the line of
        the nodes in D and d. And if the moon, by a radius drawn to
        the earth, describes an area proportional to the time of
        description, the horary motion of the node in the ellipsis will
        be as the area pDdm and AZ² conjunctly.
    


    
        For let PF touch the circle in P, and produced meet TN in F; and pf
        touch the ellipsis in p, and produced meet the same TN in f,
        and both tangents concur in the axis TQ at Y. And let ML represent the
        space which the moon, by the impulse of the above-mentioned force 3IT or
        3PK, would describe with a transverse motion, in the meantime while
        revolving in the circle it describes the arc PM; and ml denote
        the space which the moon revolving in the ellipsis would describe in the
        same time by the impulse of the same force 3IT or 3PK; and let LP and lp
        be produced till they meet the plane of the ecliptic in G and g,
        and FG and fg be joined, of which FG produced may cut pf,
        pg, and TQ, in c, e, and R respectively; and fg
        produced may cut TQ in r. Because the force 3IT or 3PK in the
        circle is to the force 3IT or 3pK in the ellipsis as PK to pK,
        or as AT to aT, the space ML generated by the former force
        will be to the space ml generated by the latter as PK to pK;
        that is, because of the similar figures PYKp and FYRc,
        as FR to cR. But (because of the similar triangles PLM, PGF)
        ML is to FG as PL to PG, that is (on account of the parallels Lk,
        PK, GR), as pl to pe, that is (because of the
        similar triangles plm, cpe) as lm to ce;
        and inversely as LM is to lm, or as FR is to cR, so
        is FG to ce. And therefore if fg was to ce
        as fy to cY, that is, as fr to cR
        (that is, as fr to FR and FR to cR conjunctly, that
        is, as fT to FT, and FG to ce conjunctly), because
        the ratio of FG to ce, expunged on both sides, leaves the
        ratios fg to FG and fT to FT, fg would be
        to FG as fT to FT; and, therefore, the angles which FG and fg
        would subtend at the earth T would be equal to each other. But these
        angles (by what we have shewn in the preceding Proposition) are the
        motions of the nodes, while the moon describes in the circle the arc PM,
        in the ellipsis the arc pm; and therefore the motions of the
        nodes in the circle and in the ellipsis would be equal to each other.
        Thus, I say, it would be, if fg was to ce as fY
        to cY, that is, fg was equal to 
        ce x fY

        cY. But because of the similar triangles
        fgp, cep, fg is to ce as fp to cp;
        and therefore fg is equal to ce
        x fp

        cp; and therefore the angle which fg
        subtends in fact is to the former angle which FG subtends, that is to
        say, the motion of the nodes in the ellipsis is to the motion of the
        same in the circle as this fg or ce
        x fp

        cp to the fromer fg or 
        ce x fY

        cY, that is, as fp x cY
        to fY x cp, or as fp to fY, and
        cY to cp; that is, if ph parallel to TN
        meet FP in h, as Fh to FY and FY to FP; that is, as Fh
        to FP or Dp to DP, and therefore as the area Dpmd to
        the area DPMd. And, therefore, seeing (by Corol. 1, Prop. XXX)
        the latter area and AZ² conjunctly are proportional to the horary motion
        of the nodes in the circle, the former area and AZ² conjunctly will be
        proportional to the horary motion of the nodes in the ellipsis.
          Q.E.D.
    


    
        Cor. Since, therefore, in any given position of
        the nodes, the sum of all the areas pDdm, in the time
        while the moon is carried from the quadrature to any place m,
        is the area mpQEd terminated at the tangent of the
        ellipsis QE; and the sum of all those areas, in one entire revolution,
        is the area of the whole ellipsis; the mean motion of the nodes in the
        ellipsis will be to the mean motion of the nodes in the circle as the
        ellipsis to the circle; that is, as Ta to TA, or 69 to 70. And,
        therefore, since (by Corol 2, Prop. XXX) the mean horary motion of the
        nodes in the circle is to 16″ 35‴ 16iv.36v. as AZ²
        to AT², if we take the angle 16″ 21‴ 3iv.30v. to
        the angle 16″ 35‴ 16iv.36v. as 69 to 70, the mean
        horary motion of the nodes in the ellipsis will be to 16″ 21‴ 3iv.30v.
        as AZ² to AT²; that is, as the square of the sine of the distance of the
        node from the sun to the square of the radius.
    


    
        But the moon, by a radius drawn to the earth, describes the area in the
        syzygies with a greater velocity than it does that in the quadratures,
        and upon that account the time is contracted in the syzygies, and
        prolonged in the quadratures; and together with the time the motion of
        the nodes is likewise augmented or diminished. But the moment of the
        area in the quadrature of the moon was to the moment thereof in the
        syzygies as 10973 to 11073; and therefore the mean moment in the octants
        is to the excess in the syzygies, and to the defect in the quadratures,
        as 11023, the half sum of those numbers, to their half difference 50.
        Wherefore since the time of the moon in the several little equal parts
        of its orbit is reciprocally as its velocity, the mean time in the
        octants will be to the excess of the time in the quadratures, and to the
        defect of the time in the syzygies arising from this cause,
        nearly as 11023 to 50. But, reckoning from the quadratures to the
        syzygies, I find that the excess of the moments of the area, in the
        several places above the least moment in the quadratures, is nearly as
        the square of the sine of the moon's distance from the quadratures; and
        therefore the difference betwixt the moment in any place, and the mean
        moment in the octants, is as the difference betwixt the square of the
        sine of the moon's distance from the quadratures, and the square of the
        sine of 45 degrees, or half the square of the radius; and the increment
        of the time in the several places between the octants and quadratures,
        and the decrement thereof between the octants and syzygies, is in the
        same proportion. But the motion of the nodes, while the moon describes
        the several little equal parts of its orbit, is accelerated or retarded
        in the duplicate proportion of the time; for
        that motion, while the moon describes PM, is (caeteris paribus]
        as ML, and ML is in the duplicate proportion of the time. Wherefore the
        motion of the nodes in the syzygies, in the time while the moon
        describes given little parts of its orbit, is diminished in the
        duplicate proportion of the number 11073 to the number 11023; and the
        decrement is to the remaining motion as 100 to 10973; but to the whole
        motion as 100 to 11073 nearly. But the decrement in the places between
        the octants and syzygies, and the increment in the places between the
        octants and quadratures, is to this decrement nearly as the whole motion
        in these places to the whole motion in the syzygies, and the difference
        betwixt the square of the sine of the moon's distance from the
        quadrature, and the half square of the radius, to the half square of the
        radius conjunctly. Wherefore, if the nodes are in the quadratures, and
        we take two places, one on one side, one on the other, equally distant
        from the octant and other two distant by the same interval, one from the
        syzygy, the other from the quadrature, and from the decrements of the
        motions in the two places between the syzygy and octant we subtract the
        increments of the motions in the two other places between the octant and
        the quadrature, the remaining decrement will be equal to the decrement
        in the syzygy, as will easily appear by computation; and therefore the
        mean decrement, which ought to be subducted from the mean motion of the
        nodes, is the fourth part of the decrement in the syzygy. The whole
        horary motion of the nodes in the syzygies (when the moon by a radius
        drawn to the earth was supposed to describe an area proportional to the
        time) was 32″ 42‴ 7iv. And we have shewn that the decrement
        of the motion of the nodes, in the time while the moon, now moving with
        greater velocity, describes the same space, was to this motion as 100 to
        11073; and therefore this decrement is 17‴ 43iv.11v.
        The fourth part of which 4‴ 25iv.48v. subtracted
        from the mean horary motion above found, 16″ 21‴ 3iv.30v.
        leaves 16″ 16‴ 37iv.42v. their correct mean horary
        motion.
    


    
        If the nodes are without the quadratures, and two places are
        considered, one on one side, one on the other, equally distant from the
        syzygies, the sum of the motions of the nodes, when the moon is in those
        places, will be to the sum of their motions, when the moon is in the
        same places and the nodes in the quadratures, as AZ² to AT². And the
        decrements of the motions arising from the causes but now explained will
        be mutually as the motions themselves, and therefore the remaining
        motions will be mutually betwixt themselves as AZ² to AT²; and the mean
        motions will be as the remaining motions. And, therefore, in any given
        position of the nodes, their correct mean horary motion is to 16″ 16‴ 37iv.42v.
        as AZ² to AT²; that is, as the square of the sine of the distance of the
        nodes from the syzygies to the square of the radius.
    


     





    
        Proposition xxxii. Problem xiii.


        To find the mean motion of the nodes of the moon. 
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        The yearly mean motion is the sum of all the mean horary motions
        throughout the course of the year. Suppose that the node is in N, and
        that, after every hour is elapsed, it is drawn back again to its former
        place; so that, notwithstanding its proper motion, it may constantly
        remain in the same situation with respect to the fixed stars; while in
        the mean time the sun S, by the motion of the earth, is seen to leave
        the node, and to proceed till it completes its apparent annual course by
        an uniform motion. Let Aa represent a given least arc, which
        the right line TS always drawn to the sun, by its intersection with the
        circle NAn, describes in the least given moment of time; and
        the mean horary motion (from what we have above shewn) will be as AZ²,
        that is (because AZ and ZY are proportional), as the rectangle of AZ
        into ZY, that is, as the area AZYa; and the sum of all the mean
        horary motions from the beginning will be as the sum of all the areas aYZA,
        that is, as the area NAZ. But the greatest AZYa is equal to the
        rectangle of the arc Aa into the radius of the circle; and
        therefore the sum of all these rectangles in the whole circle will be to
        the like sum of all the greatest rectangles as the area of the whole
        circle to the rectangle of the whole circumference into the radius, that
        is, as 1 to 2. But the horary motion corresponding to that greatest
        rectangle was 16″ 16‴ 37iv.42v. and this motion in
        the complete course of the sidereal year, 365d.6h.9′,
        amounts to 39° 38′ 7″ 50‴, and therefore the half thereof, 19° 49′ 3″
        55‴, is the mean motion of the nodes corresponding to the whole circle.
        And the motion of the nodes, in the time while the sun is carried from N
        to A, is to 19° 49′ 3″ 55‴ as the area NAZ to the whole circle.
    


    
        Thus it would be if the node was after every hour drawn back again to
        its former place, that so, after a complete revolution, the sun at the
        year's end would be found again in the same node which it had left when
        the year begun. But, because of the motion of the node in the mean time,
        the sun must needs meet the node sooner; and now it remains that we
        compute the abbreviation of the time. Since, then, the sun, in the
        course of the year, travels 360 degrees, and the node in the same time
        by its greatest motion would be carried 39° 38′ 7″ 50‴, or 39,6355
        degrees; and the mean motion of the node in any place N is to its mean
        motion in its quadrature as AZ² to AT²; the motion of the sun will be to
        the motion of the node in N as 360AT² to
        39,6355 AZ²; that is, as 9,0827646AT² to AZ². Wherefore if we suppose
        the circumference NAn of the whole circle to be divided into
        little equal parts, such as Aa, the time in which the sun would
        describe the little arc Aa, if the circle was quiescent, will
        be to the time of which it would describe the same arc, supposing the
        circle together with the nodes to be revolved about the centre T,
        reciprocally as 9,0827646AT² to 9,0827646AT² + AZ²; for the time is
        reciprocally as the velocity with which the little arc is described, and
        this velocity is the sum of the velocities of both sun and node. If,
        therefore, the sector NTA represent the time in which the sun by itself,
        without the motion of the node, would describe the arc NA, and the
        indefinitely small part ATa of the sector represent the little
        moment of the time in which it would describe the least arc Aa;
        and (letting fall aY perpendicular upon Nn) if in AZ
        we take dZ of such length that the rectangle of dZ
        into ZY may be to the least part ATa of the sector as AZ² to
        9,0827646AT² + AZ², that is to say, that dZ may be to ½AZ as
        AT² to 9,0827646AT² + AZ²; the rectangle of dZ into ZY will
        represent the decrement of the time arising from the motion of the node,
        while the arc Aa is described; and if the curve NdGn
        is the locus where the point d is always found, the
        curvilinear area NdZ will be as the whole decrement of time
        while the whole arc NA is described; and, therefore, the excess of the
        sector NAT above the area NdZ will be as the whole time. But
        because the motion of the node in a less time is less in proportion of
        the time, the area AaYZ must also be diminished in the same
        proportion; which may be done by taking in AZ the line eZ of
        such length, that it may be to the length of AZ as AZ² to 9,0827646AT² +
        AZ²; for so the rectangle of eZ into ZY will be to the area
        AZYa as the decrement of the time in which the arc Aa
        is described to the whole time in which it would have been described, if
        the node had been quiescent; and, therefore, that rectangle will be as
        the decrement of the motion of the node. And if the curve NeFn
        is the locus of the point e, the whole area NeZ,
        which is the sum of all the decrements of that motion, will be
        as the whole decrement thereof during the time in which the
        arc AN is described; and the remaining area NAe will be as the
        remaining motion, which is the true motion of the node, during the time
        in which the whole arc NA is described by the joint motions of both sun
        and node. Now the area of the semi-circle is to the area of the figure NeFn
        found by the method of infinite series nearly as 793 to 60. But the
        motion corresponding or proportional to the whole circle was
        19° 49′ 3″ 55‴; and therefore the motion corresponding to double the
        figure NeFn is 1° 29′ 58″ 2‴, which taken from the
        former motion leaves 18° 19′ 5″ 53‴, the whole motion of the node with
        respect to the fixed stars in the interval between two of its
        conjunctions with the sun; and this motion subducted from the annual
        motion of the sun 360°, leaves 341° 40′ 54″ 7‴, the
        motion of the sun in the interval between the same conjunctions. But as
        this motion is to the annual motion 360°, so is the motion of the node
        but just now found 18° 19′ 5″ 53‴ to its annual motion, which will
        therefore be 19° 18′ 1″ 23‴; and this is the mean motion of the nodes in
        the sidereal year. By astronomical tables, it is 19° 21′ 21″ 50‴ . The
        difference is less than 1/300
        part of the whole motion, and seems to arise from the eccentricity of
        the moon's orbit, and its inclination to the plane of the ecliptic. By
        the eccentricity of this orbit the motion of the nodes is too much
        accelerated; and, on the other hand, by the inclination of the orbit,
        the motion of the nodes is something retarded, and reduced to its just
        velocity.
    





    
        Proposition xxxiii. Problem xiv.


        To find the true motion of the nodes of the moon. 
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        In the time which is as the area NTA − NdZ (in the preceding
        Fig.) that motion is as the area NAe, and is thence given; but
        because the calculus is too difficult, it will be better to use the
        following construction of the Problem. About the centre C, with any
        interval CD, describe the circle BEFD; produce DC to A so as AB may be
        to AC as the mean motion to half the mean true motion when the nodes are
        in their quadratures (that is, as 19° 18′ 1″ 23‴ to 19° 49′ 3″ 55‴; and
        therefore BC to AC as the difference of those motions 0° 31′ 2″ 32‴ to
        the latter motion 19° 49′ 3″ 55‴, that is, as 1 to 38
        3/10).
        Then through the point D draw the indefinite line Gg, touching
        the circle in D; and if we take the angle BCE, or BCF, equal to the
        double distance of the sun from the place of the node, as found by the
        mean motion, and drawing AE or AF cutting the perpendicular DG in G, we
        take another angle which shall be to the whole motion of the node in the
        interval between its syzygies (that is, to 9° 11′ 3″) as the tangent DG
        to the whole circumference of the circle BED, and add this last
        angle (for which the angle DAG may be used) to the mean motion of the
        nodes, while they are passing from the quadratures to the syzygies, and
        subtract it from their mean motion while they are passing from the
        syzygies to the quadratures, we shall have their true motion; for the
        true motion so found will nearly agree with the true motion which comes
        out from assuming the times as the area NTA − NdZ, and the
        motion of the node as the area NAe; as whoever will please to
        examine and make the computations will find: and this is the
        semi-menstrual equation of the motion of the nodes. But there is also a
        menstrual equation, but which is by no means necessary for finding
        of the moon's latitude; for since the variation of
        the inclination of the moon's orbit to the plane of the ecliptic is
        liable to a twofold inequality, the one semi-menstrual, the other
        menstrual, the menstrual inequality of this variation, and the
        menstrual equation of the nodes, so moderate and correct each other,
        that in computing the latitude of the moon both may be neglected.
    


    
        Cor. From this and the preceding Prop, it
        appears that the nodes are quiescent in their syzygies, but regressive
        in their quadratures, by an hourly motion of 16″ 19‴ 26iv.;
        and that the equation of the motion of the nodes in the octants is 1°
        30; all which exactly agree with the phaenomena of the heavens.
    





    
        Scholium.


    

    
        
            Mr. Machin, Astron., Prof. Gresh.. and Dr. Henry
            Pemberton, separately found out the motion of the nodes by a
            different method. Mention has been made of this method in another
            place. Their several papers, both of which I have seen, contained two
            Propositions, and exactly agreed with each other in both of them. Mr.
            Machin's paper coming first to my hands, I shall here insert
            it.
        


    

    
        Of the Motion of the Moon's Nodes.


            Proposition i.


            
                The mean motion of the sun from the node is defined by a
                geometric mean proportional between the mean motion of the sun and
                that mean motion with which the sun recedes with the greatest
                swiftness from the node in the quadratures.
                
            


        

        
            Let T be the earth's place, Nn the line of the moon's nodes
            at any given time, KTM a perpendicular thereto, TA a right line
            revolving about the centre with the same angular velocity with which
            the sun and the node recede from one another, in such sort that the
            angle between the quiescent right line Nn and the revolving
            line TA may be always equal to the distance of the places of the sun
            and node. Now if any right line TK be divided into parts TS and SK,
            and those parts be taken as the mean horary motion of the sun to the
            mean horary motion of the node in the quadratures, and there be taken
            the right line TH, a mean proportional between the part TS and the
            whole TK, this right line will be proportional to the sun's mean
            motion from the node.
        


        
            For let there be described the circle NKnM from the centre
            T and with the radius TK, and about the same centre, with the
            semi-axis TH 
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            and TN, let there be described an ellipsis NHnL; and in the
            time in which the sun recedes from the node through the arc Na,
            if there be drawn the right line Tba, the area of the sector
            NTa will be the exponent of the sum of the motions of the sun
            and node in the same time. Let, therefore, the extremely small arc aA
            be that which the right line Tba, revolving according to the
            aforesaid law, will uniformly describe in a given particle of time,
            and the extremely small sector TAa will be as the sum of the
            velocities with which the sun and node are carried two different ways
            in that time. Now the sun's velocity is almost uniform, its inequality
            being so small as scarcely to produce the least inequality in the mean
            motion of the nodes. The other part of this sum, namely, the mean
            quantity of the velocity of the node, is increased in the recess from
            the syzygies in a duplicate ratio of the sine of its distance from the
            sun (by Cor. Prop. XXXI, of this Book), and, being greatest in its
            quadratures with the sun in K, is in the same ratio to the sun's
            velocity as SK to TS, that is, as (the difference of the squares of TK
            and TH, or) the rectangle KHM to TH². But the ellipsis NBH divides the
            sector ATa, the exponent of the sum of these two velocities,
            into two parts ABba and BTb, proportional to the
            velocities. For produce BT to the circle in β, and from the
            point B let fall upon the greater axis the perpendicular BG, which
            being produced both ways may meet the circle in the points F and f;
            and because the space ABba is to the sector TBb as
            the rectangle ABβ to BT² (that rectangle being equal to the
            difference of the squares of TA and TB, because the right line Aβ
            is equally cut in T, and unequally in B), therefore when the space ABba
            is the greatest of all in K, this ratio will be the same as the ratio
            of the rectangle KHM to HT². But the greatest mean velocity of the
            node was shewn above to be in that very ratio
            to the velocity of the sun; and therefore in the quadratures the
            sector ATa is divided into parts proportional to the
            velocities. And because the rectangle KHM is to HT² as FBf to
            BG², and the rectangle ABβ is equal to the rectangle FBf,
            therefore the little area ABba, where it is greatest, is to
            the remaining sector TBb as the rectangle ABβ to
            BG². But the ratio of these little areas always was as the rectangle
            ABβ to BT²; and therefore the little area ABba in
            the place A is less than its correspondent little area in the
            quadratures in the duplicate ratio of BG to BT, that is, in the
            duplicate ratio of the sine of the sun's distance from the node. And
            therefore the sum of all the little areas ABba, to wit, the
            space ABN, will be as the motion of the node in the time in which the
            sun hath been going over the arc NA since he left the node; and the
            remaining space, namely, the elliptic sector NTB, will be as the sun's
            mean motion in the same time. And because the mean annual motion of
            the node is that motion which it performs in the time that the sun
            completes one period of its course, the mean motion of the node from
            the sun will be to the mean motion of the sun itself as the area of
            the circle to the area of the ellipsis; that is, as the right line TK
            to the right line TH, which is a mean proportional between TK and TS;
            or, which comes to the same as the mean proportional TH to the right
            line TS.
        


    

    
        
            Proposition ii.


            The mean motion of the moon's nodes being given, to find their true motion.


        

        
            Let the angle A be the distance of the sun from the mean place of
            the node, or the sun's mean motion from the node. Then if we take the
            angle B, whose tangent is to the tangent of the angle A as TH to TK,
            that is,
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            in the sub-duplicate ratio of the mean horary motion of the sun to the mean
            horary motion of the sun from the node, when the node is in the
            quadrature, that angle B will be the distance of the sun from the
            node's true place. For join FT, and, by the demonstration of the last
            Proportion, the angle FTN will be the distance of the sun from the
            mean place of the node, and the angle ATN the distance from the true
            place, and the tangents of these angles are between themselves as TK to TH.
        


        
            Cor. Hence the angle FTA is the equation of
            the moon's nodes; and the sine of this angle, where it is greatest in
            the octants, is to the radius as KH to TK + TH. But the sine of this
            equation in any other place A is to the greatest sine as the sine of
            the sums of the angles FTN + ATN to the radius; that is, nearly as the
            sine of double the distance of the sun from the mean place of the node
            (namely, 2FTN) to the radius.
        


    

    
        Scholium.



        
            If the mean horary motion of the nodes in the quadratures be 16″ 16‴
            37iv.42v. that is, in a whole sidereal year, 39°
            38′ 7″ 50‴, TH will be to TK in the subduplicate ratio of the number
            9,0827646 to the number 10,0827646, that is, as 18,6524761 to
            19,6524761. And, therefore, TH is to HK as 18,6524761 to 1; that is,
            as the motion of the sun in a sidereal year to the mean motion of the
            node 19° 18′ 1″ 23⅔‴.
        


        
            But if the mean motion of the moon's nodes in 20 Julian years is
            386° 50′ 15″, as is collected from the observations made use of in the
            theory of the moon, the mean motion of the nodes in one sidereal year
            will be 19° 20′ 31″ 58‴. and TH will be to HK as 360° to 19° 20′ 31″
            58‴; that is, as 18,61214 to 1: and from hence the mean horary motion
            of the nodes in the quadratures will come out 16″ 18‴ 48iv.
            And the greatest equation of the nodes in the octants will be 1° 29′ 57″.“
        


    




    
        Proposition xxxiv. Problem xv.


        
            
                To find the horary variation of the inclination, of the moon's
                orbit to the plane of the ecliptic.
            
        


    

    
        Let A and a represent the syzygies; Q and q the
        quadratures; N and n the nodes; P the place of the moon in its
        orbit; p the orthographic projection of that place upon the
        plane of the ecliptic; and mTl the momentaneous
        motion of the nodes as above. If upon Tm we let fall the
        perpendicular PG, and joining pG we produce it till it meet Tl
        in g, and join also Pg, the angle PGp will
        be the inclination of the moon's orbit to the plane of the ecliptic when
        the moon is in P; and the angle Pgp will be the inclination of
        the same after a small moment of time is elapsed; and therefore the
        angle GPg will be the momentaneous variation of the
        inclination. But this angle GPg is to the angle GTg as
        TG to PG and Pp to PG conjunctly. And, therefore, if for the
        moment of time we assume
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        an hour, since the angle GTg (by Prop. XXX) is to the angle 33″
        10‴ 33iv. as IT x PG x AZ to AT³, the angle GPg (or
        the horary variation of the inclination) will be to the angle 33″ 10‴ 33iv.
        as IT x AZ x TG x Pp

        PG to AT³.   Q.E.I.
    


    
        And thus it would be if the moon was uniformly revolved in a circular
        orbit. But if the orbit is elliptical, the mean motion of the nodes will
        be diminished in proportion of the lesser axis to the greater, as we
        have shewn above; and the variation of the inclination will be also
        diminished in the same proportion.
    


    
        Cor. 1. Upon Nn erect the
        perpendicular TF, and let pM be the horary motion of the moon
        in the plane of the ecliptic; upon QT let fall the perpendiculars pK,
        Mk, and produce them till they meet TF in H and h;
        then IT will be to AT as Kk to Mp; and TG to Hp
        as TZ to AT; and, therefore, IT x TG will be equal to 
        Kk x Hp x TZ

        Mp, that is, equal to the area HpMh
        multiplied into the ratio TZ

        Mp : and therefore the horary variation
        of the inclination will be to 33″ 10‴ 33iv. as the area HpMh
        multiplied into AZ x TZ

        Mp x Pp

        PG to AT³.
    


    
        Cor. 2. And, therefore, if the earth and nodes
        were after every hour drawn back from their new and instantly restored
        to their old places, so as their situation might continue given for a
        whole periodic month together, the whole variation of the inclination
        during that month would be to  33″ 10‴ 33iv.
        as the aggregate of all the areas HpMh, generated in
        the time of one revolution of the point p (with due regard in
        summing to their proper signs + −), multiplied into AZ
        x TZ x Pp

        PG to Mp x AT³; that
        is, as the whole circle QAqa multiplied into AZ
        x TZ x Pp

        PG to Mp x AT³, that
        is, as the circumference QAqa multiplied into AZ
        x TZ x Pp

        PG to 2Mp x AT².
    


    
        Cor. 3. And, therefore, in a given position of
        the nodes, the mean horary variation, from which, if uniformly continued
        through the whole month, that menstrual variation might be generated, is
        to 33″ 10‴ 33iv. as AZ x TZ x Pp

        PG to 2AT², or as Pp
        x AZ x TZ

        1/2AT to
        PG x 4AT; that is (because Pp is to PG as the sine of the
        aforesaid inclination to the radius, and AZ
        x TZ

        1/2AT to 4AT as
        the sine of double the angle ATn to four times the radius), as
        the sine of the same inclination multiplied into the sine of double the
        distance of the nodes from the sun to four times the square of the
        radius.
    


    
        Cor. 4. Seeing the horary variation of the
        inclination, when the nodes are in the quadratures, is (by this Prop.)
        to the angle 33″ 10‴ 33iv. as IT x AZ x
        TG x Pp

        PG to AT³, that is, as
        IT x TG

        1/2AT x
        Pp

        PG to 2AT, that is, as the
        sine of double the distance of the moon from the quadratures multiplied
        into Pp

        PG to twice the radius, the sum of all
        the horary variations during the time that the moon, in this situation
        of the nodes, passes from the quadrature to the syzygy (that is, in the
        space of 1771/6 hours)
        will be to the sum of as many angles 33″ 10‴ 33iv. or 5878″,
        as the sum of all the sines of double the distance of the moon from the
        quadratures multiplied into Pp

        PG to the sum of as many diameters;
        that is, as the diameter multiplied into Pp

        PG to the circumference; that is, if
        the inclination be 5° 1′, as 7 x 874/10000
        to 22, or as 278 to 10000. And, therefore, the whole variation, composed
        out of the sum of all the horary variations in the aforesaid time, is
        163″, or 2′ 43″.
    



     





    
        Proposition xxxv. Problem xvi.


        
            
                To a given time to find the inclination of the moon's orbit to
                the plant of the ecliptic.
            
        


    

    
        Let AD be the sine of the greatest inclination, and AB the sine of the
        least. Bisect BD in C; and round the centre C, with the interval BC,
        describe the circle BGD. In AC take CE in the same proportion to EB
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        as EB to twice BA.
        And if to the time given we set off the angle AEG equal to double the distance of the nodes from the
        quadratures, and upon AD let fall the perpendicular GH, AH will be the
        sine of the inclination required.
    


    
        For GE² is equal to GH² + HE² = BHD + HE² = HBD + HE² − BH² = HBD + BE²
        − 2BH x BE = BE² + 2EC x BH = 2EC x AB + 2EC x BH = 2EC x AH; wherefore
        since 2EC is given, GE² will be as AH. Now let AEg represent
        double the distance of the nodes from the quadratures, in a given moment
        of time after, and the arc Gg, on account of the given angle GEg,
        will be as the distance GE. But Hh is to Gg as GH to
        GC, and, therefore, Hh is as the rectangle GH x Gg, or
        GH x GE, that is, as GH

        GE x GE², or GH

        GE x AH; that is, as AH and the sine of
        the angle AEG conjunctly. If, therefore, in any one case, AH be the sine
        of inclination, it will increase by the same increments as the sine of
        inclination doth, by Cor. 3 of the preceding Prop. and therefore will
        always continue equal to that sine. But when the point G falls upon
        either point B or D, AH is equal to this sine, and therefore remains
        always equal thereto.   Q.E.D.
    


    
        In this demonstration I have supposed that the angle BEG, representing
        double the distance of the nodes from the quadratures, increaseth
        uniformly; for I cannot descend to every minute circumstance of
        inequality. Now suppose that BEG is a right angle, and that Gg
        is in this case the horary increment of double the distance of the nodes
        from the sun; then, by Cor. 3 of the last Prop. the horary variation of
        the inclination in the same case will be to 33″ 10‴ 33iv. as
        the rectangle of AH, the sine of the inclination, into the sine of the
        right angle BEG, double the distance of the nodes from the sun, to four
        times the square of the radius; that is, as AH, the
        sine of the mean inclination, to four times the radius; that is, seeing
        the mean inclination is about 5° 8½, as its sine 896 to 40000, the
        quadruple of the radius, or as 224 to 10000. But the whole variation
        corresponding to BD, the difference of the sines, is to this horary
        variation as the diameter BD to the arc Gg, that is, conjunctly
        as the diameter BD to the semi-circumference BGD, and as the time of
        20797/10 hours, in which
        the node proceeds from the quadratures to the syzygies, to one hour,
        that is as 7 to 11, and 20797/10
        to 1. Wherefore, compounding all these proportions, we shall have the
        whole variation BD to 33″ 10‴ 33iv. as 224 x 7 x 20797/10
        to 110000, that is, as 29645 to 1000; and from thence that variation BD
        will come out 16′ 23½″.
    


    
        And this is the greatest variation of the inclination, abstracting from
        the situation of the moon in its orbit; for if the nodes are in the
        syzygies, the inclination suffers no change from the various positions
        of the moon. But if the nodes are in the quadratures, the inclination is
        less when the moon is in the syzygies than when it is in the quadratures
        by a difference of 2′ 43″, as we shewed in Cor. 4 of the preceding
        Prop.; and the whole mean variation BD, diminished by 1′ 21½″, the half
        of this excess, becomes 15′ 2″, when the moon is in the quadratures; and
        increased by the same, becomes 17′ 45″ when the moon is in the syzygies.
        If, therefore, the moon be in the syzygies, the whole variation in the
        passage of the nodes from the quadratures to the syzygies will be 17′
        45″; and, therefore, if the inclination be 5° 17′ 20″, when the nodes
        are in the syzygies, it will be 4° 59′ 35″ when the nodes are in the
        quadratures and the moon in the syzygies. The truth of all which is
        confirmed by observations.
    


    
        Now if the inclination of the orbit should be required when the moon is
        in the syzygies, and the nodes any where between them and the
        quadratures, let AB be to AD as the sine of 4° 59′ 35″ to the sine of 5°
        17′ 20″, and take the angle AEG equal to double the distance of the
        nodes from the quadratures; and AH will be the sine of the inclination
        desired. To this inclination of the orbit the inclination of the same is
        equal, when the moon is 90° distant from the nodes. In other situations
        of the moon, this menstrual inequality, to which the variation of the
        inclination is obnoxious in the calculus of the moon's latitude, is
        balanced, and in a manner took off, by the menstrual inequality of the
        motion of the nodes (as we said before), and therefore may be neglected
        in the computation of the said latitude.
    





    Scholium.



    
        By these computations of the lunar motions I was willing to shew that
        by the theory of gravity the motions of the moon could be calculated
        from their physical causes. By the same theory I moreover found that the
        annual equation of the mean motion of the moon arises from the various
        dilatation which the orbit of the moon suffers from
        the action of the sun according to Cor. 6, Prop. LXVI, Book 1. The force
        of this action is greater in the perigeon sun, and dilates the moon's
        orbit; in the apogeon sun it is less, and permits the orbit to be again
        contracted. The moon moves slower in the dilated and faster in the
        contracted orbit; and the annual equation, by which this inequality is
        regulated, vanishes in the apogee and perigee of the sun. In the mean
        distance of the sun from the earth it arises to about 11′ 50″; in other
        distances of the sun it is proportional to the equation of the sun's
        centre, and is added to the mean motion of the moon, while the earth is
        passing from its aphelion to its perihelion, and subducted while the
        earth is in the opposite semi-circle. Taking for the radius of the orbis
        magnus 1000, and 167/8
        for the earth's eccentricity, this equation, when of the greatest
        magnitude, by the theory of gravity comes out 11′ 49″. But the
        eccentricity of the earth seems to be something greater, and with the
        eccentricity this equation will be augmented in the same proportion.
        Suppose the eccentricity 1611/12,
        and the greatest equation will be 11′ 51″.
    


    
        Farther; I found that the apogee and nodes of the moon move faster in
        the perihelion of the earth, where the force of the sun's action is
        greater, than in the aphelion thereof, and that in the reciprocal
        triplicate proportion of the earth's distance from the sun; and hence
        arise annual equations of those motions proportional to the equation of
        the sun's centre. Now the motion of the sun is in the reciprocal
        duplicate proportion of the earth's distance from the sun; and the
        greatest equation of the centre which this inequality generates is 1°
        56′ 20″, corresponding to the abovementioned eccentricity of the sun, 16
        11/12. But if the motion of
        the sun had been in the reciprocal triplicate proportion of the
        distance, this inequality would have generated the greatest equation 2°
        54′ 30″; and therefore the greatest equations which the inequalities of
        the motions of the moon's apogee and nodes do generate are to 2° 54′ 30″
        as the mean diurnal motion of the moon's apogee and the mean diurnal
        motion of its nodes are to the mean diurnal motion of the sun. Whence
        the greatest equation of the mean motion of the apogee comes out 19′
        43″, and the greatest equation of the mean motion of the nodes 9′ 24″.
        The former equation is added, and the latter subducted, while the earth
        is passing from its perihelion to its aphelion, and contrariwise when
        the earth is in the opposite semi-circle.
    


    
        By the theory of gravity I likewise found that the action of the sun
        upon the moon is something greater when the transverse diameter of the
        moon's orbit passeth through the sun than when the same is perpendicular
        upon the line which joins the earth and the sun; and therefore the
        moon's orbit is something larger in the former than in the latter case.
        And hence arises another equation of the moon's mean motion, depending
        upon the situation of the moon's apogee in respect
        of the sun, which is in its greatest quantity when the moon's apogee is
        in the octants of the sun, and vanishes when the apogee arrives at the
        quadratures or syzygies; and it is added to the mean motion while the
        moon's apogee is passing from the quadrature of the sun to the syzygy,
        and subducted while the apogee is passing from the syzygy to the
        quadrature. This equation, which I shall call the semi-annual, when
        greatest in the octants of the apogee, arises to about 3′ 45″, so far as
        I could collect from the phaenomena: and this is its quantity in the
        mean distance of the sun from the earth. But it is increased and
        diminished in the reciprocal triplicate proportion of the sun's
        distance, and therefore is nearly 3′ 34″ when that distance is greatest,
        and 3′ 56″ when least. But when the moon's apogee is without the
        octants, it becomes less, and is to its greatest quantity as the sine of
        double the distance of the moon's apogee from the nearest syzygy or
        quadrature to the radius.
    


    
        By the same theory of gravity, the action of the sun upon the moon is
        something greater when the line of the moon's nodes passes through the
        sun than when it is at right angles with the line which joins the sun
        and the earth; and hence arises another equation of the moon's mean
        motion, which I shall call the second semi-annual; and this is greatest
        when the nodes are in the octants of the sun, and vanishes when they are
        in the syzygies or quadratures; and in other positions of the nodes is
        proportional to the sine of double the distance of either node from the
        nearest syzygy or quadrature. And it is added to the mean motion of the
        moon, if the sun is in antecedentia, to the node which is
        nearest to him, and subducted if in consequentia; and in the
        octants, where it is of the greatest magnitude, it arises to 47″ in the
        mean distance of the sun from the earth, as I find from the theory of
        gravity. In other distances of the sun, this equation, greatest in the
        octants of the nodes, is reciprocally as the cube of the sun's distance
        from the earth; and therefore in the sun's perigee it comes to about
        49″, and in its apogee to about 45″.
    


    
        By the same theory of gravity, the moon's apogee goes forward at the
        greatest rate when it is either in conjunction with or in opposition to
        the sun, but in its quadratures with the sun it goes backward; and the
        eccentricity comes, in the former case, to its greatest quantity; in the
        latter to its least, by Cor. 7, 8, and 9, Prop. LXVI, Book 1. And those
        inequalities, by the Corollaries we have named, are very great, and
        generate the principal which I call the semi-annual equation of the
        apogee; and this semi-annual equation in its greatest quantity comes to
        about 12° 18′, as nearly as I could collect from the phaenomena. Our
        countryman, Horrox, was the first who advanced the theory of
        the moon's moving in an ellipsis about the earth placed in its lower
        focus. Dr. Halley improved the notion, by putting the centre
        of the ellipsis in an epicycle whose centre is
        uniformly revolved about the earth; and from the motion in this epicycle
        the mentioned inequalities in the progress and regress of the apogee,
        and in the quantity of eccentricity, do arise. Suppose the mean distance
        of the moon from the earth to be divided into 100000 parts, and let T
        represent the earth, and TC the moon's mean eccentricity of 5505 such
        parts. Produce TC to B, so as CB may be the sine of the greatest
        semi-annual equation 12° 18′ to the radius TC; and the circle BDA
        [image: Mathematical Principles of Natural Philosophy figure: 447]
        described about the centre C, with the interval CB,
        will be the epicycle spoken of, in which the centre of the moon's
        orbit is placed, and revolved according to the order of the letters BDA.
        Set off the angle BCD equal to twice the annual argument, or twice the
        distance of the sun's true place from the place of the moon's apogee
        once equated, and CTD will be the semi-annual equation of the moon's
        apogee, and TD the eccentricity of its orbit, tending to the place of
        the apogee now twice equated. But, having the moon's mean motion, the
        place of its apogee, and its eccentricity, as well as the longer axis of
        its orbit 200000, from these data the true place of the moon
        in its orbit, together with its distance from the earth, may be
        determined by the methods commonly known.
    


    
        In the perihelion of the earth, where the force of the sun is greatest,
        the centre of the moon's orbit moves faster about the centre C than in
        the aphelion, and that in the reciprocal triplicate proportion of the
        sun's distance from the earth. But, because the equation of the sun's
        centre is included in the annual argument, the centre of the moon's
        orbit moves faster in its epicycle BDA, in the reciprocal duplicate
        proportion of the sun's distance from the earth. Therefore, that it may
        move yet faster in the reciprocal simple proportion of the distance,
        suppose that from D, the centre of the orbit, a right line DE is drawn,
        tending towards the moon's apogee once equated, that is, parallel to TC;
        and set off the angle EDF equal to the excess of the aforesaid annual
        argument above the distance of the moon's apogee from the sun's perigee
        in consequentia; or, which comes to the same thing, take the
        angle CDF equal to the complement of the sun's true anomaly to 360°; and
        let DF be to DC as twice the eccentricity of the orbis magnus
        to the sun's mean distance from the earth, and the sun's mean diurnal
        motion from the moon's apogee to the sun's mean diurnal motion from its
        own apogee conjunctly, that is, as 337/8
        to 1000, and 52′ 27″ 16‴ to 59′ 8″ 10‴ conjunctly, or as 3 to 100; and
        imagine the centre of the moon's orbit placed in the point F to be
        revolved in an epicycle whose centre is D; and radius DF, while the
        point D moves in the circumference of the circle DABD: for by this means
        the centre of the moon's orbit comes to
        describe a certain curve line about the centre C, with a velocity which
        will be almost reciprocally as the cube of the sun's distance from the
        earth, as it ought to be.
    


    
        The calculus of this motion is difficult, but may be rendered more easy
        by the following approximation. Assuming, as above, the moon's mean
        distance from the earth of 100000 parts, and the eccentricity TC of 5505
        such parts, the line CB or CD will be found 1172¾, and DF 351/5
        of those parts; and this line DF at the distance TC subtends the angle
        at the earth, which the removal of the centre of the orbit from the
        place D to the place F generates in the motion of this centre; and
        double this line DF in a parallel position, at the distance of the upper
        focus of the moon's orbit from the earth, subtends at the earth the same
        angle as DF did before, which that removal generates in the motion of
        this upper focus; but at the distance of the moon from the earth this
        double line 2DF at the upper focus, in a parallel position to the first
        line DF, subtends an angle at the moon, which the said removal generates
        in the motion of the moon, which angle may be therefore called the
        second equation of the moon's centre; and this equation, in the mean
        distance of the moon from the earth, is nearly as the sine of the angle
        which that line DF contains with the line drawn from the point F to the
        moon, and when in its greatest quantity amounts to 2′ 25″. But the angle
        which the line DF contains with the line drawn from the point F to the
        moon is found either by subtracting the angle EDF from the mean anomaly
        of the moon, or by adding the distance of the moon from the sun to the
        distance of the moon's apogee from the apogee of the sun; and as the
        radius to the sine of the angle thus found, so is 2′ 25″ to the second
        equation of the centre: to be added, if the forementioned sum be less
        than a semi-circle; to be subducted, if greater. And from the moon's
        place in its orbit thus corrected, its longitude may be found in the
        syzygies of the luminaries.
    


    
        The atmosphere of the earth to the height of 35 or 40 miles refracts
        the sun's light. This refraction scatters and spreads the light over the
        earth's shadow; and the dissipated light near the limits of the shadow
        dilates the shadow. Upon which account, to the diameter of the shadow,
        as it comes out by the parallax, I add 1 or 1⅓ minute in lunar eclipses.
    


    
        But the theory of the moon ought to be examined and proved from the
        phenomena, first in the syzygies, then in the quadratures, and last of
        all in the octants; and whoever pleases to undertake the work will find
        it not amiss to assume the following mean motions of the sun and moon at
        the Royal Observatory of Greenwich, to the last day of December
        at noon, anno 1700, O.S. viz. The mean motion of the sun
        ♑ 20° 43′ 40″, and of its apogee ♋
        7° 44′ 30″; the mean motion of the moon ♒
        15° 21′ 00″; of its apogee, ♊ 8°
        20′ 00″; and of its ascending node ♌
        27° 24′ 20″; and the difference of meridians betwixt the Observatory at
        Greenwich and the Royal Observatory at
        Paris, Oh.9′20″: but the mean motion of the moon and
        of its apogee are not yet obtained with sufficient accuracy.
    





    
        Proposition xxxvi. Problem xvii.


        To find the force of the sun to move the sea.


    

    
        The sun's force ML or PT to disturb the motions of the moon, was (by
        Prop. XXV.) in the moon's quadratures, to the force of gravity with us,
        as 1 to 638092,6; and the force TM − LM or 2PK in the moon's syzygies is
        double that quantity. But, descending to the surface of the earth, these
        forces are diminished in proportion of the distances from the centre of
        the earth, that is, in the proportion of 60½ to 1; and therefore the
        former force on the earth's surface is to the force of gravity as 1 to
        38604600; and by this force the sea is depressed in such places as are
        90 degrees distant from the sun. But by the other force, which is twice
        as great, the sea is raised not only in the places directly under the
        sun, but in those also which are directly opposed to it; and the sum of
        these forces is to the force of gravity as 1 to 12868200. And because
        the same force excites the same motion, whether it depresses the waters
        in those places which are 90 degrees distant from the sun, or raises
        them in the places which are directly under and directly opposed to the
        sun, the aforesaid sum will be the total force of the sun to disturb the
        sea, and will have the same effect as if the whole was employed in
        raising the sea in the places directly under and directly opposed to the
        sun, and did not act at all in the places which are 90 degrees removed
        from the sun.
    


    
        And this is the force of the sun to disturb the sea in any given place,
        where the sun is at the same time both vertical, and in its mean
        distance from the earth. In other positions of the sun, its force to
        raise the sea is as the versed sine of double its altitude above the
        horizon of the place directly, and the cube of the distance from the
        earth reciprocally.
    


    
        Cor. Since the centrifugal force of the parts
        of the earth, arising from the earth's diurnal motion, which is to the
        force of gravity as 1 to 289, raises the waters under the equator to a
        height exceeding that under the poles by 85472 Paris feet, as
        above, in Prop. XIX., the force of the sun, which we have now shewed to
        be to the force of gravity as 1 to 12868200, and therefore is to that
        centrifugal force as 289 to 12868200, or as 1 to 44527, will be able to
        raise the waters in the places directly under and directly opposed to
        the sun to a height exceeding that in the places which arc 90 degrees
        removed from the sun only by one Paris foot and 1131/30
        inches; for this measure is to the measure of 85472 feet as 1 to 44527.
    





    
        Proposition xxxvii. Problem xviii.


        To find the force of the moon to move the sea.


    

    
        The force of the moon to move the sea is to be deduced from its
        proportion to the force of the sun, and this
        proportion is to be collected from the proportion of the motions of the
        sea, which are the effects of those forces. Before the mouth of the
        river Avon, three miles below Bristol, the height of
        the ascent of the water in the vernal and autumnal syzygies of the
        luminaries (by the observations of Samuel Sturmy) amounts to
        about 45 feet, but in the quadratures to 25 only. The former of those
        heights arises from the sum of the aforesaid forces, the latter from
        their difference. If, therefore, S and L are supposed to represent
        respectively the forces of the sun and moon while they are in the
        equator, as well as in their mean distances from the earth, we shall
        have L + S to L − S as 45 to 25, or as 9 to 5.
    


    
        At Plymouth (by the observations of Samuel Colepress)
        the tide in its mean height rises to about 16 feet, and in the spring
        and autumn the height thereof in the syzygies may exceed that in the
        quadratures by more than 7 or 8 feet. Suppose the greatest difference of
        those heights to be 9 feet, and L + S will be to L − S as 20½ to 11½, or
        as 41 to 23; a proportion that agrees well enough with the former. But
        because of the great tide at Bristol, we are rather to depend
        upon the observations of Sturmy; and, therefore, till we
        procure something that is more certain, we shall use the proportion of 9
        to 5.
    


    
        But because of the reciprocal motions of the waters, the greatest tides
        do not happen at the times of the syzygies of the luminaries, but, as we
        have said before, are the third in order after the syzygies; or
        (reckoning from the syzygies) follow next after the third appulse of the
        moon to the meridian of the place after the syzygies; or rather (as Sturmy
        observes) are the third after the day of the new or full moon, or rather
        nearly after the twelfth hour from the new or full moon, and therefore
        fall nearly upon the forty-third hour after the new or full of the moon.
        But in this port they fall out about the seventh hour after the appulse
        of the moon to the meridian of the place; and therefore follow next
        after the appulse of the moon to the meridian, when the moon is distant
        from the sun, or from opposition with the sun by about 18 or 19 degrees
        in consequentia. So the summer and winter seasons come not to
        their height in the solstices themselves, but when the sun is advanced
        beyond the solstices by about a tenth part of its whole course, that is,
        by about 36 or 37 degrees. In like manner, the greatest tide is raised
        after the appulse of the moon to the meridian of the place, when the
        moon has passed by the sun, or the opposition thereof; by
        about a tenth part of the whole motion from one greatest tide to
        the next following greatest tide. Suppose that distance about 18½
        degrees; and the sun's force in this distance of the moon from the
        syzygies and quadratures will be of less moment to augment and diminish
        that part of the motion of the sea which proceeds from the motion of the
        moon than in the syzygies and quadratures themselves in the proportion
        of the radius to the co-sine of double this
        distance, or of an angle of 37 degrees; that is in proportion of
        10000000 to 7986355; and, therefore, in the preceding analogy, in place
        of S we must put 0,7986355S.
    


    
        But farther; the force of the moon in the quadratures must be
        diminished, on account of its declination from the equator; for the moon
        in those quadratures, or rather in 18½ degrees past the quadratures,
        declines from the equator by about 23° 13′; and the force of either
        luminary to move the sea is diminished as it declines from the equator
        nearly in the duplicate proportion of the co-sine of the declination;
        and therefore the force of the moon in those quadratures is only
        0.8570327L; whence we have L + 0,7986355S to 0,8570327L − 0,7986355S as
        9 to 5.
    


    
        Farther yet; the diameters of the orbit in which the moon should move,
        setting aside the consideration of eccentricity, are one to the other as
        69 to 70; and therefore the moon's distance from the earth in the
        syzygies is to its distance in the quadratures, caeteris paribus,
        as 69 to 70; and its distances, when 18½ degrees advanced beyond the
        syzygies, where the greatest tide was excited, and when 18½ degrees
        passed by the quadratures, where the least tide was produced, are to its
        mean distance as 69,098745 and 69,897345 to 69½. But the force of the
        moon to move the sea is in the reciprocal triplicate proportion of its
        distance; and therefore its forces, in the greatest and least of those
        distances, are to its force in its mean distance is 0.9830427 and
        1,017522 to 1. From whence we have 1,017522L x 0,7986355S to 0,9830427 x
        0,8570327L − 0,7986355S as 9 to 5; and S to L as 1 to 4,4815. Wherefore
        since the force of the sun is to the force of gravity as 1 to 12868200,
        the moon's force will be to the force of gravity as 1 to 2871400.
    


    
        Cor. 1. Since the waters excited by the sun's
        force rise to the height of a foot and 111/30
        inches, the moon's force will raise the same to the height of 8 feet and
        75/22 inches; and the
        joint forces of both will raise the same to the height of 10½ feet; and
        when the moon is in its perigee to the height of 12½ feet, and more,
        especially when the wind sets the same way as the tide. And a force of
        that quantity is abundantly sufficient to excite all the motions of the
        sea, and agrees well with the proportion of those motions; for in such
        seas as lie free and open from east to west, as in the Pacific
        sea, and in those tracts of the Atlantic and Ethiopic
        seas which lie without the tropics, the waters commonly rise to 6, 9,
        12, or 15 feet; but in the Pacific sea, which is of a greater
        depth, as well as of a larger extent, the tides are said to be greater
        than in the Atlantic and Ethiopic seas; for to have
        a full tide raised, an extent of sea from east to west is required of no
        less than 90 degrees. In the Ethiopic sea, the waters rise to
        a less height within the tropics than in the temperate zones, because of
        the narrowness of the sea between Africa and the southern
        parts of America. In the middle of the open sea the waters
        cannot rise with out falling together, and at
        the same time, upon both the eastern and western shores, when,
        notwithstanding, in our narrow seas, they ought to fall on those shores
        by alternate turns; upon which account there is commonly but a small
        flood and ebb in such islands as lie far distant from the continent. On
        the contrary, in some ports, where to fill and empty the bays
        alternately the waters are with great violence forced in and out through
        shallow channels, the flood and ebb must be greater than ordinary; as at
        Plymouth and Chepstow Bridge in England, at
        the mountains of St. Michael, and the town of Auranches,
        in Normandy, and at Cambaia and Pegu in
        the East Indies. In these places the sea is hurried in and out
        with such violence, as sometimes to lay the shores under water, some
        times to leave them dry for many miles. Nor is this force of the influx
        and efflux to be broke till it has raised and depressed the waters to
        30, 40, or 50 feet and above. And a like account is to be given of long
        and shallow channels or straits, such as the Magellanic
        straits, and those channels which environ England. The tide in
        such ports and straits, by the violence of the influx and efflux, is
        augmented above measure. But on such shores as lie towards the deep and
        open sea with a steep descent, where the waters may freely rise and fall
        without that precipitation of influx and efflux, the proportion of the
        tides agrees with the forces of the sun and moon.
    


    
        Cor. 2. Since the moon's force to move the sea
        is to the force of gravity as 1 to 2871400, it is evident that this
        force is far less than to appear sensibly in statical or hydrostatical
        experiments, or even in those of pendulums. It is in the tides only that
        this force shews itself by any sensible effect.
    


    
        Cor. 3. Because the force of the moon to move
        the sea is to the like force of the sun as 4,4815 to 1, and those forces
        (by Cor. 14, Prop. LXVI, Book 1) are as the densities of the bodies of
        the sun and moon and the cubes of their apparent diameters conjunctly,
        the density of the moon will be to the density of the sun as 4,4815 to 1
        directly, and the cube of the moon's diameter to the cube of the sun's
        diameter inversely; that is (seeing the mean apparent diameters of the
        moon and sun are 31′ 16½″, and 32′ 12″), as 4891 to 1000. But the
        density of the sun was to the density of the earth as 1000 to 4000; and
        therefore the density of the moon is to the density of the earth as 4891
        to 4000, or as 11 to 9. Therefore the body of the moon is more dense and
        more earthly than the earth itself.
    


    
        Cor. 4. And since the true diameter of the moon
        (from the observations of astronomers) is to the true diameter of the
        earth as 100 to 365, the mass of matter in the moon will be to the mass
        of matter in the earth as 1 to 39,788.
    


    
        Cor. 5. And the accelerative gravity on the
        surface of the moon will be about three times
        less than the accelerative gravity on the surface of the earth.
    


    
        Cor. 6. And the distance of the moon's centre
        from the centre of the earth will be to the distance of the moon's
        centre from the common centre of gravity of the earth and moon as 40,788
        to 39,788
    


    
        Cor. 7. And the mean distance of the centre of
        the moon from the centre of the earth will be (in the moon's octants)
        nearly 602/5 of the
        great est semi-diameters of the earth; for the greatest semi-diameter of
        the earth was 19658600 Paris feet, and the mean distance of
        the centres of the earth and moon, consisting of 602/5
        such semi-diameters, is equal to 1187379440 feet. And this distance (by
        the preceding Cor.) is to the distance of the moon's centre from the
        common centre of gravity of the earth and moon as 40,788 to 39,788;
        which latter distance, therefore, is 1158268534 feet. And since the
        moon, in respect of the fixed stars, performs its revolution in 27d.7h.43
        4/9′, the versed sine of
        that angle which the moon in a minute of time describes is 12752341 to
        the radius 1000,000000,000000; and as the radius is to this versed sine,
        so are 1158268534 feet to 14,7706353 feet. The moon, therefore, falling
        towards the earth by that force which retains it in its orbit, would in
        one minute of time describe 14,7706353 feet; and if we augment this
        force in the proportion of 17829/40
        to 17729/40, we shall
        have the total force of gravity at the orbit of the moon, by Cor. Prop.
        III; and the moon falling by this force, in one minute of time would
        describe 14,8538067 feet. And at the 60th part of the distance of the
        moon from the earth's centre, that is, at the distance of 197896573 feet
        from the centre of the earth, a body falling by its weight, would, in
        one second of time, likewise describe 14,8538067 feet. And, therefore,
        at the distance of 19615800, which compose one mean semi-diameter of the
        earth, a heavy body would describe in falling 15,11175, or 15 feet, 1
        inch, and 41/11 lines,
        in the same time. This will be the descent of bodies in the latitude of
        45 degrees. And by the foregoing table, to be found under Prop. XX, the
        descent in the latitude of Paris will be a little greater by
        an excess of about ⅔ parts of a line. Therefore, by this computation,
        heavy bodies in the latitude of Paris falling in vacuo will
        describe 15 Paris feet, 1 inch, 425/33
        lines, very nearly, in one second of time. And if the gravity be
        diminished by taking away a quantity equal to the centrifugal force
        arising in that latitude from the earth's diurnal motion, heavy bodies
        falling there will describe in one second of time 15 feet, 1 inch, and
        1½ line. And with this velocity heavy bodies do really fall in the
        latitude of Paris, as we have shewn above in Prop. IV and XIX.
    


    
        Cor. 8. The mean distance of the centres of the
        earth and moon in the syzygies of the moon is equal to 60 of the
        greatest semi-diameters of the earth, subducting only about one 30th
        part of a semi- diameter: and in the moon's
        quadratures the mean distance of the same centres is 605/6
        such semi-diameters of the earth; for these two distances are to the
        mean distance of the moon in the octants as 69 and 70 to 69½, by Prop.
        XXVIII.
    


    
        Cor. 9. The mean distance of the centres of the
        earth and moon in the syzygies of the moon is 60 mean semi-diameters of
        the earth, and a 10th part of one semi-diameter; and in the moon's
        quadratures the mean distance of the same centres is 61 mean
        semi-diameters of the earth, subducting one 30th part of one
        semi-diameter.
    


    
        Cor. 10. In the moon's syzygies its mean
        horizontal parallax in the latitudes of 0, 30, 38, 45, 52, 60, 90
        degrees is 57′ 20″, 57′ 16″, 57′ 14″, 57′ 12″, 57′ 10″, 57′ 8″, 57′ 4″,
        respectively.
    


    
        In these computations I do not consider the magnetic attraction of the
        earth, whose quantity is very small and unknown: if this quantity should
        ever be found out, and the measures of degrees upon the meridian, the
        lengths of isochronous pendulums in different parallels, the laws of the
        motions of the sea, and the moon's parallax, with the apparent diameters
        of the sun and moon, should be more exactly determined from phenomena:
        we should then be enabled to bring this calculation to a greater
        accuracy.
    





    
        Proposition xxxviii. Problem xix.


        To find the figure of the moon's body.


    

    
        If the moon's body were fluid like our sea, the force of the earth to
        raise that fluid in the nearest and remotest parts would be to the force
        of the moon by which our sea is raised in the places under and opposite
        to the moon as the accelerative gravity of the moon towards the earth to
        the accelerative gravity of the earth towards the moon, and the diameter
        of the moon to the diameter of the earth conjunctly; that is, as 39,788
        to 1, and 100 to 365 conjunctly, or as 1081 to 100. Wherefore, since our
        sea, by the force of the moon, is raised to 83/5
        feet, the lunar fluid would be raised by the force of the earth to 93
        feet; and upon this account the figure of the moon would be a spheroid,
        whose greatest diameter produced would pass through the centre of the
        earth, and exceed the diameters perpendicular thereto by 186 feet. Such
        a figure, therefore, the moon affects, and must have put on from the
        beginning.   Q.E.I.
    


    
        Cor. Hence it is that the same face of the moon
        always respects the earth; nor can the body of the moon possibly rest in
        any other position, but would return always by a libratory motion to
        this situation; but those librations, however, must be exceedingly slow,
        because of the weakness of the forces which excite them; so that the
        face of the moon, which should be always obverted to the earth, may, for
        the reason assigned in Prop. XVII. be turned towards the other focus of
        the moon's orbit, without being immediately drawn back, and converted
        again towards the earth.
    





    
        
        Lemma I.


            
                If APEp represent the earth uniformly dense, marked
                with the centre C, the poles P, p, and the
                equator AE; and if about the centre C, with the
                radius CP, we suppose the sphere Pape to be
                described, and QR to denote the plane on which a right
                line, drawn from the centre of the sun to the centre of the earth,
                insists at right angles; and further suppose that the several
                particles of the whole exterior earth PapAPepE, without
                the height of the said sphere, endeavour to recede towards this
                side and that side from the plane QR, every particle by a
                force proportional to its distance from that plane; I say, in the
                first place, that the whole force and efficacy of all the
                particles that are situate in AE, the circle of the
                equator, and disposed uniformly without the globe, encompassing
                the same after the manner of a ring, to wheel the earth about its
                centre, is to the whole force and efficacy of as many particles in
                that point A of the equator which is at the greatest
                distance from the plane QR, to wheel the earth about its
                centre with a like circular motion, as 1 to 2.
                And that circular motion will be performed about an axis lying in
                the common section of the equator and the plane QR.
            


        

        
            For let there be described from the centre K, with the diameter IL,
            the semi-circle INL. Suppose the semi-circumference INL to be divided
            into innumerable equal parts, and from the several parts N to the diameter
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            IL let fall the sines NM.
            Then the sums of the squares of all the sines NM will be equal to the sums
            of the squares of the sines KM, and both sums together will be equal
            to the sums of the squares of as many semi-diameters KN; and therefore
            the sum of the squares of all the sines NM will be but half so great
            as the sum of the squares of as many semi-diameters KN.
        


        
            Suppose now the circumference of the circle AE to be divided into the
            like number of little equal parts, and from every such part F a
            perpendicular FG to be let fall upon the plane QR, as well as the
            perpendicular AH from the point A. Then the force by which the
            particle F recedes from the plane QR will (by
            supposition) be as that perpendicular FG; and this force multiplied by
            the distance CG will represent the power of the particle F to turn the
            earth round its centre. And, therefore, the power of a particle in the
            place F will be to the power of a particle in the place A as FG x GC
            to AH x HC; that is, as FC² to AC²: and therefore the whole power of
            all the particles F, in their proper places F, will be to the power of
            the like number of particles in the place A as the sum of all the FC²
            to the sum of all the AC², that is (by what we have demonstrated
            before), as 1 to 2.   Q.E.D.
        


        
            And because the action of those particles is exerted in the direction
            of lines perpendicularly receding from the plane QR, and that equally
            from each side of this plane, they will wheel about the circumference
            of the circle of the equator, together with the adherent body of the
            earth, round an axis which lies as well in the plane QR as in that of
            the equator.
        


    

    
        Lemma ii.


            
                The same things still supposed, I say, in the second place,
                that the total force or power of all the particles situated every
                where about the sphere to turn the earth about the said axis is to
                the whole force of the like number of particles, uniformly
                disposed round the whole circumference of the equator AE in
                the fashion of a ring, to turn the whole earth about with the like
                circular motion, as 2 to 5.
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            For let IK be any lesser circle parallel to the equator AE, and let Ll
            be any two equal particles in this circle, situated without the sphere
            Pape; and if upon the plane QR, which is at right angles with
            a radius drawn to the sun, we let fall the perpendiculars LM, lm,
            the total forces by which these particles recede from the plane QR
            will be proportional to the perpendiculars LM, lm. Let the
            right line Ll be drawn parallel to the plane Pape,
            and bisect the same in X; and through the point X draw Nn
            parallel to the plane QR, and meeting the perpendiculars LM, lm,
            in N and n; and upon the plane QR let full the perpendicular
            XY. And the contrary forces of the particles L and l to
            wheel about the earth contrariwise are as LM x MC,
            and lm x mC; that is, as
            LN x MC + NM x MC, and ln
            x mC − nm x mC; or LN
            x MC + NM x MC, and LN x mC −
            NM x mC, and LN x Mm −
            NM x (MC + mC), the difference of the two, is the force of
            both taken together to turn the earth round. The affirmative part of
            this difference LN x Mm, or 2LN x NX, is to 2AH x HC, the
            force of two particles of the same size situated in A, as LX² to AC²;
            and the negative part  NM x
            (MC + mC), or 2XY x CY, is to 2AH x HC, the force of the same
            two particles situated in A, as CX² to AC². And therefore the
            difference of the parts, that is, the force of the two particles L and
            l, taken together, to wheel the earth about, is to the force
            of two particles, equal to the former and situated in the place A, to
            turn in like manner the earth round, as LX² − CX² to AC². But if the
            circumference IK of the circle IK is supposed to be divided into an
            infinite number of little equal parts L, all the LX² will be to the
            like number of IX² as 1 to 2 (by Lem. 1); and to the same number of
            AC² as IX² to 2AC²; and the same number of CX² to as many AC² as 2CX²
            to 2AC². Wherefore the united forces of all the particles in the
            circumference of the circle IK are to the joint forces of as many
            particles in the place A as IX² − 2CX² to 2AC²; and therefore (by Lem.
            1) to the united forces of as many particles in the circumference of
            the circle AE as IX² − 2CX² to AC².
        


        
            Now if Pp, the diameter of the sphere, is conceived to be
            divided into an infinite number of equal parts, upon which a like
            number of circles IK are supposed to insist, the matter in the
            circumference of every circle IK will be as IX²; and therefore the
            force of that matter to turn the earth about will be as IX² into IX² −
            2CX²; and the force of the same matter, if it was situated in the
            circumference of the circle AE, would be as IX² into AC². And
            therefore the force of all the particles of the whole matter situated
            without the sphere in the circumferences of all the circles is to the
            force of the like number of particles situated in the circumference of
            the greatest circle AE as all the IX² into IX² − 2CX² to as many IX²
            into AC²; that is, as all the AC² − CX² into AC² − 3CX² to as many AC²
            − CX² into AC²; that is, as all the AC4 − 4AC² x CX² + 3CX4
            to as many AC4 − AC² x CX²; that is, as the whole fluent
            quantity, whose fluxion is AC4 − 4AC² x CX² + 3CX4,
            to the whole fluent quantity, whose fluxion is AC4 − AC² x
            CX²; and, therefore, by the method of fluxions, as AC4 x CX
            − 4/3AC² x CX³ +
            3/5CX5 to AC4
            x CX − ⅓AC² x CX³; that is, if for CX we write the whole Cp,
            or AC, as 4/15 AC5
            to ⅔AC5; that is, as 2 to 5.   Q.E.D.
        


    

    
        Lemma iii.


            
                The same things still supposed, I say, in the third place, that
                the motion of the whole earth about the axis above-named arising
                from the motions of all the particles, will be to the motion of
                the aforesaid ring about the same axis in a proportion compounded
                of the proportion of the matter in the earth to the matter in the
                ring; and the proportion of three squares of the quadrantal arc of
                any circle to two squares of its diameter, that is, in the
                proportion of the matter to the matter, and of the number
                925275 to the number 1000000.
            


        

        
            For the motion of a cylinder revolved about its quiescent axis is to
            the motion of the inscribed sphere revolved
            together with it as any four equal squares to three circles inscribed
            in three of those squares; and the motion of this cylinder is to the
            motion of an exceedingly thin ring surrounding both sphere and
            cylinder in their common contact as double the matter in the cylinder
            to triple the matter in the ring; and this motion of the ring,
            uniformly continued about the axis of the cylinder, is to the uniform
            motion of the same about its own diameter performed in the same
            periodic time as the circumference of a circle to double its diameter.
        


    

    
        Hypothesis ii.


            
                
                    If the other parts of the earth were taken away, and the
                    remaining ring was carried alone about the sun in the orbit of the
                    earth by the annual motion, while by the diurnal motion it was in
                    the mean time revolved about its own axis inclined to the plane of
                    the ecliptic by an angle of 23½ degrees, the motion of the
                    equinoctial points would be the same, whether the ring were fluid,
                    or whether it consisted of a hard and rigid matter.
                
            


        

    

    
        Proposition xxxix. Problem xx.


            To find the precession of the equinoxes. 


        

    

    
        The middle horary motion of the moon's nodes in a circular orbit, when
        the nodes are in the quadratures, was 16″ 35‴ 16iv.36v.;
        the half of which, 8″ 17‴ 38iv.18v. (for the
        reasons above explained) is the mean horary motion of the nodes in such
        an orbit, which motion in a whole sidereal year becomes 20° 11′ 46″.
        Because, therefore, the nodes of the moon in such an orbit would be
        yearly transferred 20° 11′ 46″ in antecedentia; and, if there
        were more moons, the motion of the nodes of every one (by Cor. 16, Prop.
        LXVI. Book 1) would be as its periodic time; if upon the surface of the
        earth a moon was revolved in the time of a sidereal day, the annual
        motion of the nodes of this moon would be to 20° 11′ 46″ as 23h.56′,
        the sidereal day, to 27d.7h.43′, the periodic time
        of our moon, that is, as 1436 to 39343. And the same thing would happen
        to the nodes of a ring of moons encompassing the earth, whether these
        moons did not mutually touch each the other, or whether they were
        molten, and formed into a continued ring, or whether that ring should
        become rigid and inflexible.
    


    
        Let us, then, suppose that this ring is in quantity of matter equal to
        the whole exterior earth PapAPepE, which lies without
        the sphere Pape (see fig. Lem. II); and because this sphere is
        to that exterior earth as aC² to AC² − aC², that is
        (seeing PC or aC the least semi-diameter of the earth is to AC
        the greatest semi-diameter of the same as 229 to 230), as 52441 to 459;
        if this ring encompassed the earth round the equator, and both together
        were revolved about the diameter of the ring, the motion of the
        ring (by Lem. III) would be to the motion of the inner sphere as 459 to
        52441 and 1000000 to 925275 conjunctly, that is, as 4590 to 485223; and
        therefore the motion of the ring would be to the sum of the motions of
        both ring and sphere as 4590 to 489813. Wherefore if the ring adheres to
        the sphere, and communicates its motion to the sphere, by which its
        nodes or equinoctial points recede, the motion remaining in the ring
        will be to its former motion as 4590 to 489813; upon which account the
        motion of the equinoctial points will be diminished in the same
        proportion. Wherefore the annual motion of the equinoctial points of the
        body, composed of both ring and sphere, will be to the motion 20° 11′
        46″ as 1436 to 39343 and 4590 to 489813 conjunctly, that is, as 100 to
        292369. But the forces by which the nodes of a number of moons (as we
        explained above), and therefore by which the equinoctial points of the
        ring recede (that is, the forces 3IT, in fig. Prop. XXX), are in the
        several particles as the distances of those particles from the plane QR;
        and by these forces the particles recede from that plane: and therefore
        (by Lem. II) if the matter of the ring was spread all over the surface
        of the sphere, after the fashion of the figure PapAPepE,
        in order to make up that exterior part of the earth, the total force or
        power of all the particles to wheel about the earth round any diameter
        of the equator, and therefore to move the equinoctial points, would
        become less than before in the proportion of 2 to 5. Wherefore the
        annual regress of the equinoxes now would be to 20° 11′ 46″ as 10 to
        73092; that is, would be 9″ 56‴ 50iv.
    


    
        But because the plane of the equator is inclined to that of the
        ecliptic, this motion is to be diminished in the proportion of the sine
        91706 (which is the co-sine of 23½ deg.) to the radius 100000; and the
        remaining motion will now be 9″ 7‴ 20iv. which is the annual
        precession of the equinoxes arising from the force of the sun.
    


    
        But the force of the moon to move the sea was to the force of the sun
        nearly as 4,4815 to 1; and the force of the moon to move the equinoxes
        is to that of the sun in the same proportion. Whence the annual
        precession of the equinoxes proceeding from the force of the moon comes
        out 40″ 52‴ 52iv. and the total annual precession arising
        from the united forces of both will be 50″ 00‴ 12iv. the
        quantity of which motion agrees with the phaenomena; for the precession
        of the equinoxes, by astronomical observations, is about 50″ yearly.
    


    
        If the height of the earth at the equator exceeds its height at the
        poles by more than 171/6
        miles, the matter thereof will be more rare near the surface than at the
        centre; and the precession of the equinoxes will be augmented by the
        excess of height, and diminished by the greater rarity.
    


    
        And now we have described the system of the sun, the earth, moon, and
        planets, it remains that we add something about the comets.
    





    
        
        
            Lemma iv.


            That the comets are higher than the moon, and in the regions of the planets.


        

    

    
        As the comets were placed by astronomers above the moon, because they
        were found to have no diurnal parallax, so their annual parallax is a
        convincing proof of their descending into the regions of the planets;
        for all the comets which move in a direct course according to the order
        of the signs, about the end of their appearance become more than
        ordinarily slow or retrograde, if the earth is between them and the sun;
        and more than ordinarily swift, if the earth is approaching to a
        heliocentric opposition with them; whereas, on the other hand, those
        which move against the order of the signs, towards the end of their
        appearance appear swifter than they ought to be, if the earth is between
        them and the sun; and slower, and perhaps retrograde, if the earth is in
        the other side of its orbit. And these appearances proceed chiefly from
        the diverse situations which the earth acquires in the course of its
        motion, after the same manner as it happens to the planets, which appear
        sometimes retrograde, sometimes more slowly, and sometimes more swiftly,
        progressive, according as the motion of the earth falls in with that of
        the planet, or is directed the contrary way. If the earth move the same
        way with the comet, but, by an angular motion about the sun, so much
        swifter that right lines drawn from the earth to the comet converge
        towards the parts beyond the comet, the comet seen from the earth,
        because of its slower motion, will appear retrograde; and even if the
        earth is slower than the comet, the motion of the earth being subducted,
        the motion of the comet will at least appear retarded; but if the earth
        tends the contrary way to that of the comet, the motion of the comet
        will from thence appear accelerated; and from this apparent
        acceleration, or retardation, or regressive motion, the distance of the
        comet may be inferred in this manner.
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        Let ♈ QA, ♈
        QB, ♈ QC, be three observed
        longitudes of the comet about the time of its first appearing, and
        ♈ QF its last observed longitude before
        its disappearing. Draw the right line ABC, whose parts AB, BC,
        intercepted between the right lines QA and QB, QB and QC, may be one to
        the other as the two times between the three first observations. Produce
        AC to G, so as AG may be to AB as the time between the first and last
        observation to the time between the first and second; and join QG. Now
        if the comet did move uniformly in a right line, and the earth either
        stood still, or was likewise carried forwards in a right line by an
        uniform motion, the angle ♈ QG
        would be the longitude of the comet at the time
        of the last observation. The angle, therefore, FQG, which is the
        difference of the longitude, proceeds from the inequality of the motions
        of the comet and the earth; and this angle, if the earth and comet move
        contrary ways, is added to the angle ♈
        QG, and accelerates the apparent motion of the comet; but if the comet
        move the same way with the earth, it is subtracted, and either retards
        the motion of the comet, or perhaps renders it retrograde, as we have
        but now explained. This angle, therefore, proceeding chiefly from the
        motion of the earth, is justly to be esteemed the parallax of the comet;
        neglecting, to wit, some little increment or decrement that may arise
        from the unequal motion of the comet in its orbit: and from this
        parallax we thus deduce the distance of the comet.
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        Let S represent the sun, acT the orbis magnus, a
        the earth's place in the first observation, c the place of the
        earth in the third observation, T the place of the earth in the last
        observation, and T♈ a right line
        drawn to the beginning of Aries. Set off the angle ♈
        TV equal to the angle ♈ QF, that
        is, equal to the longitude of the comet at the time when the earth is in
        T; join ac, and produce it to g, so as ag
        may be to ac as AG to AC; and g will be the place at
        which the earth would have arrived in the time of the last observation,
        if it had continued to move uniformly in the right line ac.
        Wherefore, if we draw g♈
        parallel to T♈, and make the angle
        ♈ gV equal to the angle
        ♈ QG, this angle ♈
        gV will be equal to the longitude of the comet seen from the
        place g, and the angle TVg will be the parallax which
        arises from the earth's being transferred from the place g
        into the place T; and therefore V will be the place of the comet in the
        plane of the ecliptic. And this place V is commonly lower than the orb
        of Jupiter.
    


    
        The same thing may be deduced from the incurvation of the way of the
        comets; for these bodies move almost in great circles, while their
        velocity is great; but about the end of their course, when that part of
        their apparent motion which arises from the parallax bears a greater
        proportion to their whole apparent motion, they commonly deviate from
        those circles, and when the earth goes to one side, they deviate to the
        other; and this deflexion, because of its corresponding with the motion
        of the earth, must arise chiefly from the parallax; and the quantity
        thereof is so considerable, as, by my computation, to place the
        disappearing comets a good deal lower than Jupiter. Whence it follows
        that when they approach nearer to us in their perigees and perihelions
        they often descend below the orbs of Mars and the inferior planets.
    


    
        The near approach of the comets is farther
        confirmed from the light of their heads; for the light of a celestial
        body, illuminated by the sun, and receding to remote parts, is
        diminished in the quadruplicate proportion of the distance; to wit, in
        one duplicate proportion, on account of the increase of the distance
        from the sun, and in another duplicate proportion, on account of the
        decrease of the apparent diameter. Wherefore if both the quantity of
        light and the apparent diameter of a comet are given, its distance will
        be also given, by taking the distance of the comet to the distance of a
        planet in the direct proportion of their diameters and the reciprocal
        subduplicate proportion of their lights. Thus, in the comet of the year
        1682, Mr. Flamsted observed with a telescope of 16 feet, and
        measured with a micrometer, the least diameter of its head, 2′ 00; but
        the nucleus or star in the middle of the head scarcely amounted to the
        tenth part of this measure; and therefore its diameter was only 11″ or
        12″; but in the light and splendor of its head it surpassed that of the
        comet in the year 1680, and might be compared with the stars of the
        first or second magnitude. Let us suppose that Saturn with its ring was
        about four times more lucid; and because the light of the ring was
        almost equal to the light of the globe within, and the apparent diameter
        of the globe is about 21″, and therefore the united light of both globe
        and ring would be equal to the light of a globe whose diameter is 30″,
        it follows that the distance of the comet was to the distance of Saturn
        as 1 to √4 inversely, and 12″ to 30 directly;
        that is, as 24 to 30, or 4 to 5. Again; the comet in the month of April
        1665, as Hevelius informs us, excelled almost all the fixed
        stars in splendor, and even Saturn itself, as being of a much more vivid
        colour; for this comet was more lucid than that other which had appeared
        about the end of the preceding year, and had been compared to the stars
        of the first magnitude. The diameter of its head was about 6′; but the
        nucleus, compared with the planets by means of a telescope, was plainly
        less than Jupiter; and sometimes judged less, sometimes judged equal, to
        the globe of Saturn within the ring. Since, then, the diameters of the
        heads of the comets seldom exceed 8′ or 12′, and the diameter of the
        nucleus or central star is but about a tenth or perhaps fifteenth part
        of the diameter of the head, it appears that these stars are generally
        of about the same apparent magnitude with the planets. But in regard
        that their light may be often compared with the light of Saturn, yea,
        and sometimes exceeds it, it is evident that all comets in their
        perihelions must either be placed below or not far above Saturn; and
        they are much mistaken who remove them almost as far as the fixed stars;
        for if it was so, the comets could receive no more light from our sun
        than our planets do from the fixed stars.
    


    
        So far we have gone, without considering the obscuration which comets
        suffer from that plenty of thick smoke which encompasseth their heads,
        and through which the heads always shew dull, as through a cloud; for by
        how much the more a body is obscured by this
        smoke, by so much the more near it must be allowed to come to the sun,
        that it may vie with the planets in the quantity of light which it
        reflects. Whence it is probable that the comets descend far below the
        orb of Saturn, as we proved before from their parallax. But, above all,
        the thing is evinced from their tails, which must be owing either to the
        sun's light reflected by a smoke arising from them, and dispersing
        itself through the aether, or to the light of their own heads. In the
        former case, we must shorten the distance of the comets, lest we be
        obliged to allow that the smoke arising from their heads is propagated
        through such a vast extent of space, and with such a velocity and
        expansion as will seem altogether incredible; in the latter case, the
        whole light of both head and tail is to be ascribed to the central
        nucleus. But, then, if we suppose all this light to be united and
        condensed within the disk of the nucleus, certainly the nucleus will by
        far exceed Jupiter itself in splendor, especially when it emits a very
        large and lucid tail. If, therefore, under a less apparent diameter, it
        reflects more light, it must be much more illuminated by the sun, and
        therefore much nearer to it; and the same argument will bring down the
        heads of comets sometimes within the orb of Venus, viz., when, being hid
        under the sun's rays, they emit such huge and splendid tails, like beams
        of fire, as sometimes they do; for if all that light was supposed to be
        gathered together into one star, it would sometimes exceed not one Venus
        only, but a great many such united into one.
    


    
        Lastly; the same thing is inferred from the light of the heads, which
        increases in the recess of the comets from the earth towards the sun,
        and decreases in their return from the sun towards the earth; for so the
        comet of the year 1665 (by the observations of Hevelius), from
        the time that it was first seen, was always losing of its apparent
        motion, and therefore had already passed its perigee; but yet the
        splendor of its head was daily in creasing, till, being hid under the
        sun's rays, the comet ceased to appear. The comet of the year 1683 (by
        the observations of the same Hevelius), about the end of July,
        when it first appeared, moved at a very slow rate, advancing only about
        40 or 45 minutes in its orb in a day's time; but from that time its
        diurnal motion was continually upon the increase, till September
        4, when it arose to about 5 degrees; and therefore, in all this interval
        of time, the comet was approaching to the earth. Which is like wise
        proved from the diameter of its head, measured with a micrometer; for, August
        6, Hevelius found it only 6′ 05″, including the coma,
        which, September 2 he observed to be 9′ 07″, and therefore its
        head appeared far less about the beginning than towards the end of the
        motion; though about the beginning, because nearer to the sun, it
        appeared far more lucid than towards the end, as the same Hevelius
        declares. Wherefore in all this interval of time, on account of its
        recess from the sun, it decreased in splendor,
        notwithstanding its access towards the earth. The comet of the year
        1618, about the middle of December, and that of the year 1680,
        about the end of the same month, did both move with their greatest
        velocity, and were therefore then in their perigees; but the greatest
        splendor of their heads was seen two weeks before, when they had just
        got clear of the sun's rays; and the greatest splendor of their tails a
        little more early, when yet nearer to the sun. The head of the former
        comet (according to the observations of Cysatus), December
        1, appeared greater than the stars of the first magnitude; and, December
        16 (then in the perigee), it was but little diminished in magnitude, but
        in the splendor and brightness of its light a great deal. January
        7, Kepler, being uncertain about the head, left off observing.
        December 12, the head of the latter comet was seen and observed
        by Mr. Flamsted, when but 9 degrees distant from the sun;
        which is scarcely to be done in a star of the third magnitude. December
        15 and 17, it appeared as a star of the third magnitude, its lustre
        being diminished by the brightness of the clouds near the setting sun. December
        26, when it moved with the greatest velocity, being almost in its
        perigee, it was less than the mouth of Pegasus, a star of the
        third magnitude. January 3, it appeared as a star of the
        fourth. January 9, as one of the fifth. January 13,
        it was hid by the splendor of the moon, then in her increase. January
        25, it was scarcely equal to the stars of the seventh magnitude. If we
        compare equal intervals of time on one side and on the other from the
        perigee, we shall find that the head of the comet, which at both
        intervals of time was far, but yet equally, removed from the earth, and
        should have therefore shone with equal splendor, appeared brightest on
        the side of the perigee towards the sun, and disappeared on the other.
        Therefore, from the great difference of light in the one situation and
        in the other, we conclude the great vicinity of the sun and comet in the
        former; for the light of comets uses to be regular, and to appear
        greatest when the heads move fastest, and are therefore in their
        perigees; excepting in so far as it is increased by their nearness to
        the sun.
    


    
        Cor. 1. Therefore the comets shine by the sun's light, which they reflect.
    


    
        Cor. 2. From what has been said, we may
        likewise understand why comets are so frequently seen in that hemisphere
        in which the sun is, and so seldom in the other. If they were visible in
        the regions far above Saturn, they would appear more frequently in the
        parts opposite to the sun; for such as were in those parts would be
        nearer to the earth, whereas the presence of the sun must obscure and
        hide those that appear in the hemisphere in which he is. Yet, looking
        over the history of comets, I find that four or five times more have
        been seen in the hemisphere towards the sun than in the opposite
        hemisphere; besides, without doubt, not a few, which have been hid by
        the light of the sun: for comets descending into
        our parts neither emit tails, nor are so well illuminated by the sun, as
        to discover themselves to our naked eyes, until they are come nearer to
        us than Jupiter. But the far greater part of that spherical space, which
        is described about the sun with so small an interval, lies on that side
        of the earth which regards the sun; and the comets in that greater part
        are commonly more strongly illuminated, as being for the most part
        nearer to the sun.
    


    
        Cor. 3. Hence also it is evident that the
        celestial spaces are void of resistance; for though the comets are
        carried in oblique paths, and some times contrary to the course of the
        planets, yet they move every way with the greatest freedom, and preserve
        their motions for an exceeding long time, even where contrary to the
        course of the planets. I am out in my judgment if they are not a sort of
        planets revolving in orbits returning into themselves with a perpetual
        motion; for, as to what some writers contend, that they are no other
        than meteors, led into this opinion by the perpetual changes that happen
        to their heads, it seems to have no foundation; for the heads of comets
        are encompassed with huge atmospheres, and the lowermost parts of these
        atmospheres must be the densest; and therefore it is in the clouds only,
        not in the bodies of the comets them selves, that these changes are
        seen. Thus the earth, if it was viewed from the planets, would, without
        all doubt, shine by the light of its clouds, and the solid body would
        scarcely appear through the surrounding clouds. Thus also the belts of
        Jupiter are formed in the clouds of that planet, for they change their
        position one to another, and the solid body of Jupiter is hardly to be
        seen through them; and much more must the bodies of comets be hid under
        their atmospheres, which are both deeper and thicker.
    





    
        Proposition xl. Theorem xx.


        
            
                That the comets move in some of the conic sections, having their
                foci in the centre of the sun; and by radii drawn to the sun
                describe areas proportional to the times.
            
        


    

    
        This proposition appears from Cor. 1, Prop. XIII, Book 1, compared with
        Prop. VIII, XII, and XIII, Book III.
    


    
        Cor. 1. Hence if comets are revolved in orbits
        returning into themselves, those orbits will be ellipses; and their
        periodic times be to the periodic times of the planets in the
        sesquiplicate proportion of their principal axes. And therefore the
        comets, which for the most part of their course are higher than the
        planets, and upon that account describe orbits with greater axes, will
        require a longer time to finish their revolutions. Thus if the axis of a
        comet's orbit was four times greater than the axis of the orbit of
        Saturn, the time of the revolution of the comet would be to the time of
        the revolution of Saturn, that is, to 30 years, as 4 √4
        (or 8) to 1, and would therefore be 240 years.
    


    
        Cor. 2. But their
        orbits will be so near to parabolas, that parabolas may be used for them
        without sensible error.
    


    
        Cor. 3. And, therefore, by Cor. 7, Prop. XVI,
        Book 1, the velocity of every comet will always be to the velocity of
        any planet, supposed to be revolved at the same distance in a circle
        about the sun, nearly in the subduplicate proportion of double the
        distance of the planet from the centre of the sun to the distance of the
        comet from the sun's centre, very nearly. Let us suppose the radius of
        the orbis manus, or the greatest semidiameter of the ellipsis
        which the earth describes, to consist of 100000000 parts; and then the
        earth by its mean diurnal motion will describe 1720212 of those parts,
        and 71675½ by its horary motion. And therefore the comet, at the same
        mean distance of the earth from the sun, with a velocity which is to the
        velocity of the earth as √2 to 1, would by
        its diurnal motion describe 2432747 parts, and 101364½ parts by its
        horary motion. But at greater or less distances both the diurnal and
        horary motion will be to this diurnal and horary motion in the
        reciprocal subduplicate proportion of the distances, and is therefore
        given.
    


    
        Cor. 4. Wherefore if the latus rectum
        of the parabola is quadruple of the radius of the orbis magnus,
        and the square of that radius is sup posed to consist of 100000000
        parts, the area which the comet will daily describe by a radius drawn to
        the sun will be 1216373½ parts, and the horary area will be 50682¼
        parts. But, if the latus rectum is greater or less in any
        proportion, the diurnal and horary area will be less or greater in the
        subduplicate of the same proportion reciprocally.
    





    
        Lemma V.


        
            
                To find a curve line of the parabolic kind which shall pass
                through any given number of points.
            
        


    

     Let those points be A, B, C, D, E, F, &c., and from the same to
        any right line HN, given in position, let fall as many perpendiculars
        AH, BI, CK, DL, EM, FN, &c.
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        Case 1. If HI, IK, KL, &c., the intervals
        of the points H, I, K, L, M, N, &c., are equal, take b, 2b, 3b,
        4b, 5b, &c., the first differences of the perpendiculars AH,
        BI, CK, &c.; their second differences c, 2c, 3c, 4c, &c.;
        their third, d, 2d, 3d, &c., that is to say, so as AH − BI
        may be = b, BI − CK = 2b, CK
        − DL = 3b, DL + EM = 4b, − EM + FN = 5b,
        &c.; then b − 2b = c, &c., and so
        on to the last difference, which is here f. Then, erecting any
        perpendicular RS, which may be considered as an ordinate of the curve
        required, in order to find the length of this ordinate, suppose the
        intervals HI, IK, KL, LM, &c., to be units, and let AH = a,
        −HS = p, ½p into −IS = q, ⅓q into
        + SK = r, ¼r into + SL = s,
        1/5s
        into + SM = t; proceeding, to wit, to ME, the last
        perpendicular but one, and prefixing negative signs before the terms HS,
        IS, &c., which lie from S towards A; and affirmative signs before
        the terms SK, SL, &c., which lie on the other side of the point S;
        and, observing well the signs, RS will be = a + bp + cq + dr + es
        + ft, + &c.
    


    
        Case 2. But if HI, IK, &c., the intervals
        of the points H, I, K, L, &c.. are unequal, take b, 2b, 3b, 4b,
        5b, &c., the first differences of the perpendiculars AH, BI,
        CK, &c., divided by the intervals between those perpendiculars; c,
        2c, 3c, 4c, &c., their second differences, divided by the
        intervals between every two; d, 2d, 3d, &c., their third
        differences, divided by the intervals between every three; e, 2e,
        &c., their fourth differences, divided by the intervals between
        every four; and so forth; that is, in such manner, that b may
        be =AH-BI

        HI, 2b=BI-CK

        IK, 3b=CK-DL

        KL, &c., then c =
        b-2b

        HK, 2c=2b-3b

        IL, 3c=3b-4b

        KM, &c., then d=
        c-2c

        HL, 2d=2c-3c

        IM, &c. And those differences being
        found, let AH be = a, − HS = p, p into −IS = q,
        q into + SK = r, r into + SL = s, s into + SM
        = t; proceeding, to wit, to ME, the last perpendicular but
        one: and the ordinate RS will be = a + bp + cq + dr + es + ft,
        + &c.
    


    
        Cor. Hence the areas of all curves may be
        nearly found; for if some number of points of the curve to be squared
        are found, and a parabola be supposed to be drawn through those points,
        the area of this parabola will be nearly the same with the area of the
        curvilinear figure proposed to be squared: but the parabola can be
        always squared geometrically by methods vulgarly known.
    





    
        Lemma vi.


        
            
                Certain observed places of a comet being given, to find the place
                of the same to any intermediate given time.
            
        


    

    
        Let HI, IK, KL, LM (in the preceding Fig.), represent the times between
        the observations; HA, IB, KC, LD, ME, five observed longitudes of the
        comet; and HS the given time between the first observation and the
        longitude required. Then if a regular curve ABCDE is supposed to be
        drawn through the points A, B, C, D, E, and the ordinate RS is found out
        by the preceding lemma, RS will be the longitude required.
    


    
        After the same method, from five observed
        latitudes, we may find the latitude to a given time.
    


    
        If the differences of the observed longitudes are small, suppose of 4
        or 5 degrees, three or four observations will be sufficient to find a
        new longitude and latitude; but if the differences are greater, as of 10
        or 20 degrees, five observations ought to be used.
    





    
        Lemma vii.


        
            Through a given point P to draw a right line BC, whose
            parts PB, PC, cut off by two right lines AB, AC,
            given in position, may be one to the other in a given proportion.
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        From the given point P suppose any right line PD to be drawn to either
        of the right lines given, as AB; and produce the same towards AC, the
        other given right line, as far as E, so as PE may be to PD in the given
        proportion. Let EC be parallel to AD. Draw CPB, and PC will be to PB as
        PE to PD.   Q.E.F.
    





    
        Lemma viii.


        
            Let ABC be a parabola, having its focus in S.
            By the chord AC bisected in I cut off the
            segment ABCI, whose diameter is Iμ and vertex μ.
            In Iμ produced take μO equal to one half of
            Iμ. Join OS, and produce it to ξ, so as Sξ may
            be equal to 2SO. Now, supposing a comet to revolve in the
            arc CBA, draw ξB, cutting AC in E;
            I say, the point E will cut off from the chord AC the
            segment AE, nearly proportional to the time.
        


    

    
        For if we join EO, cutting the parabolic arc ABC in Y, and draw μX
        touching the same arc in the vertex μ, and meeting EO in X,
        the curvilinear area AEXμA will be to the curvilinear area ACYμA
        as AE to AC; and, therefore, since the triangle ASE is to the triangle
        ASC in the same proportion, the whole area ASEXμA will be to
        the whole area ASCYμA as
        [image: Mathematical Principles of Natural Philosophy figure: 468b]
        
        AE to AC. But, because ξO is to SO as 3 to 1, and EO to XO in the
        same proportion, SX will be parallel to EB; and, therefore, joining BX,
        the triangle SEB will be equal to the triangle XEB. Wherefore if to the
        area ASEXμA we add the triangle EXB, and from the sum subduct
        the triangle SEB, there will remain the area ASBXμA, equal to
        the area ASEXμA, and therefore in proportion to the area ASCYμA
        as AE to AC. But the area ASBYμA is nearly equal to the area
        ASBXμA; and this area ASBYμA is to the area ASCYμA
        as the time of description of the arc AB to the time of description of
        the whole arc AC; and, therefore, AE is to AC nearly in the proportion
        of the times.   Q.E.D.
    


    
        Cor. When the point B falls upon the vertex μ
        of the parabola, AE is to AC accurately in the proportion of the times.
    





    Scholium.



    
        If we join μξ cutting AC in δ, and in it take ξn
        in proportion to μB as 27MI to 16Mμ, and draw Bn,
        this Bn will cut the chord AC, in the proportion of the times,
        more accurately than before; but the point n is to be taken
        beyond or on this side the point ξ, according as the point B
        is more or less distant from the principal vertex of the parabola than
        the point μ.
    





    
        Lemma ix.


        
            The right lines Iμ and μM, and the length
            AI2

            4Sμ, are equal among themselves.
        


    

    
        For 4Sμ is the latus rectum of the parabola belonging to the
        vertex μ.
    





    
        Lemma X.


        
            Produce Sμ to N and P, so as μN
            may be one third of μI, and SP may be to
            SN as SN to Sμ; and in the time that a comet
            would describe the arc AμC, if it was supposed to
            move always forwards with the velocity which it hath in a height
            equal to SP, it would describe a length equal to the chord
            AC.
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        For if the comet with the velocity which it hath in μ was in
        the said time supposed to move uniformly forward in the right line which
        touches the parabola in μ, the area which it would describe by
        a radius drawn to the point's would be equal to the parabolic area ASCμA;
        and therefore the space contained under the length described in the
        tangent and the length Sμ would be to the space contained under
        the lengths AC and SM as the area ASCμA
        to the triangle ASC, that is, as SN to SM. Wherefore AC is to the length
        described in the tangent as Sμ to SN. But since the velocity of
        the comet in the height SP (by Cor. 6, Prop. XVI., Book I) is to the
        velocity of the same in the height Sμ in the reciprocal
        subduplicate proportion of SP to Sμ, that is, in the proportion
        of Sμ to SN, the length described with this velocity will be to
        the length in the same time described in the tangent as Sμ to
        SN. Wherefore since AC, and the length described with this new velocity,
        are in the same proportion to the length described in the tangent, they
        mast be equal betwixt themselves.   Q.E.D.
    


    
        Cor. Therefore a comet, with that velocity
        which it hath in the height Sμ + ⅔Iμ, would in the
        same time describe the chord AC nearly.
    





    
        Lemma xi.


        
            If a comet void of all motion was let fall from, the height
            SN, or Sμ + ⅓Iμ, towards the sun, and was still
            impelled to the sun by the same force uniformly continued by which
            it was impelled at first, the same, in one half of that time in
            which it might describe the arc AC in its own orbit, would
            in descending describe a space equal to the length Iμ.
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        For in the same time that the comet would require to describe the
        parabolic arc AC, it would (by the last Lemma), with that velocity which
        it hath in the height SP, describe the chord AC; and, therefore (by Cor.
        7, Prop. XVI, Book 1), if it was in the same time supposed to revolve by
        the force of its own gravity in a circle whose semi-diameter was SP, it
        would describe an arc of that circle, the length of which would be to
        the chord of the parabolic arc AC in the subduplicate proportion of 1 to
        2. Wherefore if with that weight, which in the height SP it hath towards
        the sun, it should fall from that height towards the sun, it would (by
        Cor. 9, Prop. XVI, Book 1) in half the said time describe a space equal
        to the square of half the said chord applied to quadruple the height SP,
        that is, it would describe the space AI2

        4SP. But since the weight of the comet
        towards the sun in the height SN is to the weight of the same towards
        the sun in the height SP as SP to Sμ, the comet, by the weight
        which it hath in the height SN, in falling from that height towards the
        sun, would in the same time describe the space 
        AI2

        4Sμ; that is, a space equal to the length
        Iμ or μM .   Q.E.D.
    


     





    
        Proposition xli. Problem xxi.


        
            
                From three observations given to determine the orbit of a comet
                moving in a parabola.
            
        


    

    
        This being a Problem of very great difficulty, I tried many methods of
        resolving it; and several of these Problems, the composition whereof I
        have given in the first Book, tended to this purpose. But afterwards I
        contrived the following solution, which is something more simple.
    


    
        Select three observations distant one from another by intervals of time
        nearly equal; but let that interval of time in which the comet moves
        more slowly be somewhat greater than the other; so, to wit, that the
        difference of the times may be to the sum of the times as the sum of the
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        times to about 600 days; or that the point E may fall upon M nearly,
        and may err therefrom rather towards I than
        towards A. If such direct observations are not at hand, a new place of
        the comet must be found, by Lem. VI.
    


    
        Let S represent the sun; T, t, τ, three places of the earth
        in the orbis magnus; TA, tB, τC, three
        observed longitudes of the comet; V the time between the first
        observation and the second; W the time between the second and the third;
        X the length which in the whole time V + W
        [image: Mathematical Principles of Natural Philosophy figure: 471b]
        the comet might describe with that velocity which it hath in the mean
        distance of the earth from the sun, which length is to be found by Cor.
        3, Prop. XL, Book III; and tV a
        perpendicular upon the chord Tτ. In the mean observed longitude
        tB take at pleasure the point B, for the place of the comet in
        the plane of the ecliptic; and from thence, towards the sun S, draw the
        line BE, which may be to the perpendicular tV as the content
        under SB and St² to the cube of the hypothenuse of the right
        angled triangle, whose sides are SB, and the tangent of the latitude of
        the comet in the second observation to the radius tB. And
        through the point E (by Lemma VII) draw the right line AEC, whose parts
        AE and EC, terminating in the right lines TA and τC, may be
        one to the other as the times V and W: then A and C will be nearly the
        places of the comet in the plane of the ecliptic in the first and third
        observations, if B was its place rightly assumed in the second.
    


    
        Upon AC, bisected in I, erect the perpendicular Ii. Through B
        draw the obscure line Bi parallel to AC. Join the obscure line
        Si, cutting AC in λ, and complete the parallelogram iI
        λμ. Take Iσ equal to 3Iλ; and through the sun
        S draw the obscure line σξ equal to 3Sσ + 3iλ.
        Then, cancelling the letters A, E, C, I, from the point B towards the
        point ξ, draw the new obscure line BE, which may be to the
        former BE in the duplicate proportion of the distance BS to the quantity
        Sμ + ⅓iλ. And through the point E draw again the right
        line AEC by the same rule as before; that is, so as its parts AE and EC
        may be one to the other as the times V and W between the observations.
        Thus A and C will be the places of the comet more accurately.
    


    
        Upon AC, bisected in I, erect the perpendiculars AM, CN, IO, of which
        AM and CN may be the tangents of the latitudes in the first and third
        observations, to the radii TA and τC. Join MN, cutting IO in
        O. Draw the rectangular parallelogram iIλμ, as
        before. In IA produced take ID equal to Sμ + ⅔iλ. Then
        in MN, towards N, take MP, which may be to the above found length X in
        the subduplicate proportion of the mean distance of the earth from the
        sun (or of the semi-diameter of the orbis magnus) to the
        distance OD. If the point P fall upon the point N; A, B, and C, will be
        three places of the comet, through which its orbit is to be described in
        the plane of the ecliptic. But if the point P falls not upon the point
        N, in the right line AC take CG equal to NP, so as the points G and P
        may lie on the same side of the line NC.
    


    
        By the same method as the points E, A, C, G, were found from the
        assumed point B, from other points b and β assumed
        at pleasure, find out the new points e, a, c, g; and ε,
        α, κ, γ. Then through G, g, and γ, draw the
        circumference of a circle Ggγ, cutting the right line τC
        in Z: and Z will he one place of the comet in the plane of the ecliptic.
        And in AC, ac, ακ, taking AF, af, αΦ, equal
        respectively to CG, cg, κγ; through the points F, f,
        and Φ, draw the circumference of a circle FfΦ,
        cutting the right line AT in X; and the point X will be another place of
        the comet in the plane of the ecliptic. And at
        the points X and Z, erecting the tangents of the latitudes of the comet
        to the radii TX and τZ, two places of the comet in its own
        orbit will be determined. Lastly, if (by Prop. XIX., Book 1) to the
        focus S a parabola is described passing through those two places, this
        parabola will be the orbit of the comet.   Q.E.I.
    


    
        The demonstration of this construction follows from the preceding
        Lemmas, because the right line AC is cut in E in the proportion of the
        times, by Lem. VII., as it ought to be, by Lem. VIII.; and BE; by Lem.
        XI., is a portion of the right line BS or Bξ in the plane of
        the ecliptic, intercepted between the arc ABC and the chord AEC; and MP
        (by Cor. Lem. X.) is the length of the chord of that arc, which the
        comet should describe in its proper orbit between the first and third
        observation, and therefore is equal to MN, providing B is a true place
        of the comet in the plane of the ecliptic.
    


    
        But it will be convenient to assume the points B, b, β, not
        at random, but nearly true. If the angle AQt, at which the
        projection of the orbit in the plane of the ecliptic cuts the right line
        tB, is rudely known, at that angle with Bt draw the
        obscure line AC, which may be to 4/3Tτ
        in the subduplicate proportion of SQ, to St; and, drawing the
        right line SEB so as its part EB may be equal to the length Vt,
        the point B will be determined, which we are to use for the first time.
        Then, cancelling the right line AC, and drawing anew AC according to the
        preceding construction, and, moreover, finding the length MP, in tB
        take the point b, by this rule, that, if TA and τC
        intersect each other in Y, the distance Yb may be to the
        distance YB in a proportion compounded of the proportion of MP to MN,
        and the subduplicate proportion of SB to Sb. And by the same
        method you may find the third point β, if you please to repeat
        the operation the third time; but if this method is followed, two
        operations generally will be sufficient; for if the distance Bb
        happens to be very small, after the points F, f, and G, g,
        are found, draw the right lines Ff and Gg, and they
        will cut TA and τC in the points required, X and Z.
    





    
        Example.


        
            Let the comet of the year 1680 be proposed. The following table shews
            the motion thereof, as observed by Flamsted, and calculated
            afterwards by him from his observations, and corrected by Dr. Halley
            from the same observations. 
        


    

    
        
            
                		
                    1680, Dec.
                    12

                    21

                    24

                    26

                    29

                    30

                    1681, Jan. 5

                    9

                    10

                    13

                    25

                    30

                    
                    Feb. 2

                    5
                
                		Time
                		sun's
Longitude
                		Comet's
            


            
                		Appar.
                		True.
                		Longitude.
                		Lat. N.
            


            
                		
                    h.   ″

                    4.46

                    6.32½

                    6.12

                    5.14

                    7.55

                    8.02

                    5.51

                    6.49

                    5.54

                    6.56

                    7.44

                    8.07

                    6.20

                    6.50
                
                		
                    h.   '   ″

                    4.46.0

                    6.36.59

                    6.17.52

                    5.20.44

                    8.03.02

                    8.10.26

                    6.01.38

                    7.00.53

                    6.06.10

                    7.08.55

                    7.58.42

                    8.21.53

                    6.34.51

                    7.04.41
                
                		
                    °   '   ″

                    ♑   1.51.23

                    11.06.44

                    14.09.26

                    16.09.22

                    19.19.43

                    20.21.09

                    26.22.18

                    ♒   0.29.02

                    1.27.43

                    4.33.20

                    16.45.36

                    21.49.58

                    24.46.59

                    27.49.51
                
                		
                    °   '   ″

                    ♑   6.32.30

                    ♒   5.08.12

                    18.49.23

                    28.24.13

                    ♓   13.10.41

                    17.38.20

                    ♈ 8.48.53

                    18.44.04

                    20.40.50

                    25.59.48

                    ♉ 9.35.0

                    13.19.51

                    15.13.53

                    16.59.06
                
                		
                    °   '   ″

                    8.25. 0

                    21.42.13

                    25.23. 5

                    27.00.52

                    28.09.58

                    28.11.53

                    26.15. 7

                    24.11.56

                    23.43.52

                    22.17.28

                    17.56.30

                    16.42.18

                    16.04. 1

                    15.27. 3
                
            


        
    


    To these you may add some observations of mine.


    
      
        
            		
                1681, Feb. 25

                27

                Mar. 1

                2

                5

                7

                9
            
            		Ap.
Time.
            		Comet's
        


        
            		 
  
            		Longitude
            		Lat. N.
        


        
            		
                h.   '

                8.30

                8.15

                11. 0

                8. 0

                11.30

                9.30

                8.30
            
            		
                °   '   ″

                ♉   26.18.35

                27.04.30

                27.52.42

                28.12.48

                29.18. 0

                ♊     0. 4. 0

                0. 43. 4
            
            		
                °   '   ″

                12.46.46

                12.36.12

                12.23.40

                12.19.38

                12.03.16

                11.57. 0

                11.45.52
            
        


      
    


    
        These observations were made by a telescope of 7 feet, with a
        micrometer and threads placed in the focus of the telescope; by which
        instruments we determined the positions both of the fixed stars among
        themselves, and of the comet in respect of the fixed stars. Let A
        represent the star of the fourth magnitude in the left heel of Perseus
        (Bayer's' ο), B the following star of the third magnitude in
        the left foot (Bayer's ζ), C a star of the sixth magnitude (Bayer's
        n) in the heel of the same foot, and D, E, F, G, H, I, K, L, M,
        N, O, Z, α, β, γ, δ, other smaller stars in the same foot; and
        let p, P, Q, R, S, T, V, X, represent the places of the comet
        in the observations above set down; and, reckoning the distance AB of 80
        7/12 parts, AC was 52¼ of
        those parts; BC, 585/6;
        AD, 575/12; BD, 82
        6/11; CD, 23⅔; AE, 294/7;
        CE, 57½; DE, 4911/12;
        AI, 277/12; BI, 52
        1/6; CI, 367/12;
        DI, 535/11; AK, 38⅔; BK,
        43; CK, 315/9; FK, 29;
        FB, 23; FC, 36¼; AH, 186/7;
        DH, 507/8; BN, 465/12;
        CN, 31⅓; BL, 455/12; NL,
        315/7. HO was to HI as 7
        to 6, and, produced, did pass between the stars D and E, so as the
        distance of the star D from this right line was 1/6CD.
        LM was to LN as 2 to 9, and, produced, did pass through the star H. Thus
        were the positions of the fixed stars determined in respect of one
        another. 
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        Mr. Pound has since observed a second time the positions of
        those fixed stars amongst themselves, and collected their longitudes and
        latitudes according to the following table.
    


    
        
            
                		The
fixed
stars.
                		Their
Longitudes
                		Latitude
North.
                		The
fixed
stars.
                		Their
Longitudes
                		Latitude
North.
            


            
                		
                     

                    A

                    B

                    C

                    E

                    F

                    G

                    H

                    I

                    K
                
                		
                    °   '   ″

                    ♉   26.41.50

                    28.40.23

                    27.58.30

                    26.27.17

                    28.28.37

                    26.56. 8

                    27.11.45

                    27.25. 2

                    27.42. 7
                
                		
                    °   '   ″

                    ♉   12. 8.36

                    11.17.54

                    12.40.25

                    12.52. 7

                    11.52.22

                    14.4.58

                    12.2. 1

                    11.53.11

                    11.53.26
                
                		
                     

                    L

                    M

                    N

                    Z

                    α

                    β

                    γ

                    δ
                
                		
                    °   '   ″

                    ♉   29.33.34

                    29.18.54

                    28.48.29

                    29.44.48

                    29.52. 3

                    ♊   0. 8.23

                    0.40.10

                    1. 3.20
                
                		
                    °   '   ″

                    12. 7.48

                    12. 7.20

                    12.31. 9

                    11.57.13

                    11.55.48

                    11.48.53

                    11.55.18

                    11.30.42
                
            


        
    


    The positions of the comet to these fixed stars were observed to be as follow:


    
        Friday, February 25, O.S. at 8½h. P. M. the
        distance of the comet in p from the star E was less than
        3/13AE, and greater than
        1/5AE, and therefore nearly
        equal to 3/14AE; and
        the angle ApE was a little obtuse, but almost right. For from
        A, letting fall a perpendicular on pE; the distance of the
        comet from that perpendicular was 1/5pE.
    


    
        The same night, at 9½h., the distance of the comet in P from
        the star E was greater than 1

        41/2 AE, and less
        than 1

        51/4 AE, and
        therefore nearly equal to 1

        47/8 of AE, or
        8/39 AE. But the distance of
        the comet from the perpendicular let fall from the star A upon the right
        line PE was 4/5PE.
    


    
        Sunday, February 27, 8¼h. P. M. the distance of
        the comet in Q from the star O was equal to the distance of the stars O
        and H; and the right line QO produced passed between the stars K and B.
        I could not, by reason of intervening clouds, determine the position of
        the star to greater accuracy.
    


    
        Tuesday, March 1, 11h . P. M. the comet in R lay
        exactly in a line between the stars K and C, so as the part CR of the
        right line CRK was a little greater than ⅓CK, and a little less than ⅓CK
        + 1/8CR, and therefore
        = ⅓CK + 1/16CR, or
        16/45CK.
    


    
        Wednesday, March 2, 8h. P. M. the distance of the
        comet in S from the star C was nearly 4/9FC;
        the distance of the star F from the right line CS produced was 1/24FC;
        and the distance of the star B from the same right line was five times
        greater than the distance of the star F; and the right line NS produced
        passed between the stars H and I five or six times nearer to the star H
        than to the star I.
    


    
        Saturday, March 5, 11½h. P. M. when the comet was
        in T, the right line MT was equal to ½ML, and the right line LT produced
        passed between B and F four or five times nearer to F than to B, cutting
        off from BF a fifth or sixth part thereof towards F: and MT produced
        passed on the outside of the space BF towards the star B four times
        nearer to the star B than to the star F. M was a very small star,
        scarcely to be seen by the telescope; but the star L was greater, and of
        about the eighth magnitude.
    


    
        Monday, March 7, 9½h. P. M. the comet being in V,
        the right line Va produced did pass between B and F, cutting
        off, from BF towards F, 1/10
        of BF, and was to the right line Vβ as 5 to 4. And the distance
        of the comet from the right line αβ was ½Vβ.
    


    
        Wednesday, March 9, 8½h. P. M. the comet being in
        X, the right line γX was equal to ¼γδ and the
        perpendicular let fall from the star δ upon the right γX
        was 2/5 of γδ.
    


    
        The same night, at 12h. the comet being in Y, the right line
        γY was equal to ⅓ of γδ, or
        a little less, as perhaps 5/16
        of γδ; and a perpendicular let fall from the star δ
        on the right line γY was equal to about 1/6
        or 1/7 γδ.
        But the comet being then extremely near the horizon, was scarcely
        discernible, and therefore its place could not be determined with that
        certainty as in the foregoing observations.
    


    
        Prom these observations, by constructions of figures and calculations,
        I deduced the longitudes and latitudes of the comet; and Mr. Pound,
        by correcting the places of the fixed stars, hath determined more
        correctly the places of the comet, which correct places are set down
        above. Though my micrometer was none of the best, yet the errors in
        longitude and latitude (as derived from my observations) scarcely exceed
        one minute. The comet (according to my observations), about the end of
        its motion, began to decline sensibly towards the north, from the
        parallel which it described about the end of February.
    


    
        Now, in order to determine the orbit of the comet out of the
        observations above described, I selected those three which Flamsted
        made, Dec. 21, Jan. 5, and Jan. 25; from
        which I found St of 9842,1 parts, and Vt of 455, such
        as the semi-diameter of the orbis magnus contains 10000. Then
        for the first observation, assuming tB of 5657 of those parts,
        I found SB 9747, BE for the first time 412, Sμ 9503, iλ
        413, BE for the second time 421, OD 10186, X 8528,4, PM 8450, MN 8475,
        NP 25; from whence, by the second operation, I collected the distance tb
        5640; and by this operation I at last deduced the distances TX 4775 and
        τZ 11322. From which, limiting the orbit, I found its
        descending node in ♋, and ascending node in ♑
        1° 53; the inclination of its plane to the plane of the ecliptic 61°
        20⅓, the vertex thereof (or the perihelion of the comet) distant from
        the node 8° 38, and in ♐ 27°
        43′, with latitude 7° 34′ south; its latus rectum 236,8; and
        the diurnal area described by a radius drawn to the sun 93585, supposing
        the square of the semi-diameter of the orbis magnus 100000000;
        that the comet in this orbit moved directly according to the order of
        the signs, and on Dec. 8d.00h.04′ P. M
        was in the vertex or perihelion of its orbit. All which I determined by
        scale and compass, and the chords of angles, taken from the table of
        natural sines, in a pretty large figure, in which, to wit, the radius of
        the orbis magnus (consisting of 10000 parts) was equal to 16⅓
        inches of an English foot.
    


    
        Lastly, in order to discover whether the comet did truly move in the
        orbit so determined, I investigated its places in this orbit partly by
        arithmetical operations, and partly by scale and compass, to the times
        of some of the observations, as may be seen in the following table:—
        
    


    
        
            
                		The Comet's
            


            
                		 
 
                		Dist.
from
sun.
                		Longitude
computed.
                		Latitud.
computed.
                		Longitude
observed.
                		Latitude
observed
                		Dif.
Lo.
                		Dif.
Lat.
            


            
                		
                    Dec. 12

                    29

                    
                    Feb. 5

                    
                    Mar. 5
                
                		
                    2792

                    8403

                    16669

                    21737
                
                		
                    ♑ 6°.32′

                    ♓ 13 .13⅔

                    ♉ 17 .00

                    29 .19¾
                
                		
                    8°.18½

                    28 .00

                    15 .29⅔

                    12 . 4
                
                		
                    ♑ 6° 31½

                    ♓ 13 .11

                    ♉ 16 .597/8

                    29 .206/7
                
                		
                    8°.26

                    28 .101/12

                    15 .272/5

                    12 .3½
                
                		
                    +1

                    +2

                    +0

                    -1
                
                		
                    -7½

                    -101/12

                    + 2¼

                    + ½
                
            


        
    


    
        But afterwards Dr. Halley did determine the orbit to a
        greater accuracy by an arithmetical calculus than could be done by
        linear descriptions; and, retaining the place of the nodes in ♋ and ♑
        1° 53′, and the inclination of the plane of the orbit to the ecliptic
        61° 20⅓′, as well as the time of the comet's being in perihelio, Dec.
        8d.00h.04′, he found the distance of the
        perihelion from the ascending node measured in the comet's orbit 9° 20′,
        and the lutus rectum of the parabola 2430 parts, supposing the
        mean distance of the sun from the earth to be 100000 parts; and from
        these data, by an accurate arithmetical calculus, he computed
        the places of the comet to the times of the observations as follows:—
    


    
        
            
                		The Comet's
            


            
                		True time.
                		Dist from
the sun.
                		Longitude
computed.
                		Latitude
computed.
                		Errors in
Long.     Lat.
            


            
                		
                    d.   h.   ′ ″

                    Dec. 12.4.46.  

                    21.6.37.  

                    24.6.18.  

                    26.5.20.  

                    29.8. 3.  

                    30.8.10.  

                    
                    Jan. 5.3.1.½

                    9.7. 0.  

                    10.6. 6.  

                    13.7. 9.  

                    25.7.59.  

                    30.8.22.  

                    
                    Feb. 2.6.35.  

                    5.7.4.½

                    25.8.41.  

                    
                    Mar. 5.11.39.   
                
                		
                    

                    28025

                    61076

                    70008

                    75576

                    84021

                    86661

                    101440

                    110959

                    113162

                    120000

                    145370

                    155303

                    160951

                    166686

                    202570

                    216205
                
                		
                    °   ′   ″

                    ♑ 6.29.25

                    ♒ 5.6.30

                    18.48.20

                    28.22.45

                    ♓ 13.12.40

                    17.40.5

                    ♈ 8.49.49

                    18.44.36

                    20.41.0

                    26.0.21

                    ♉ 9.33.40

                    13.17.41

                    15.11.11

                    16.58.55

                    26.15.46

                    29.18.35
                
                		
                    °   ′   ″

                    8.26.0 bor.

                    21.43.20

                    25.22.40

                    27.1.36

                    28.10.10

                    28.11.20

                    26.15.15

                    24.12.54

                    23.44.10

                    22.17.30

                    17.57.55

                    16.42.7

                    16.4.15

                    15.29.13

                    12.48.0

                    15.5.40
                
                		
                    ′   ″

                    -3.5

                    -1.42

                    -1.3

                    -1.28

                    +1.59

                    +1.45

                    +0.56

                    +0.32

                    0.10

                    0.33

                    -1.20

                    -2.10

                    -2.42

                    -0.41

                    -2.49

                    +0.35
                
                		
                    ′   ″

                    -2.0

                    +1.7

                    -0.25

                    +0.44

                    +0.12

                    -0.33

                    +0.8

                    0.58

                    +0.18

                    +0.2

                    +1.25

                    -0.11

                    +0.14

                    +2.0

                    +1.10

                    +2.14
                
            


        
    


    
        This comet also appeared in the November before, and at Coburg,
        in Saxony, was observed by Mr. Gottfried Kirch, on
        the 4th of that month, on the 6th and 11th O. S.; from its positions to
        the nearest fixed stars observed with sufficient accuracy, sometimes
        with a two feet, and sometimes with a ten feet telescope; from the
        difference of longitudes of Coburg and London, 11°;
        and from the places of the fixed stars observed by Mr. Pound,
        Dr. Halley has determined the places of the comet as follows:—
    


    
        Nov. 3, 17h.2′, apparent
        time at London, the comet was in ♌
        29 deg. 51′, with 1 deg. 17′ 45″ latitude north.
    


    
        November 5. 15h.58′ the comet was in ♍ 3° 23′, with 1° 6′ nortl. lat.


    
        November 10, 16h.31′, the comet was equally distant
        from two stars in ♌ which are σ
        and τ in Bayer; but it had not quite touched the
        right line that joins them, but was very little distant from it. In Flamsted's
        catalogue this star σ was then in ♍
        14° 15′, with 1 deg. 41′ lat. north nearly, and τ in ♍ 17° 3½′, with 0 deg. 34 lat. south; and the
        middle point between those stars was ♍
        15° 39¼′, with 0° 33½′ lat. north. Let the distance of the comet from
        that right line be about 10′ or 12′; and the difference of the longitude
        of the comet and that middle point will be 7′; and the difference of the
        latitude nearly 7½′; and thence it follows that the comet was in
        ♍ 15° 32′, with about 26′ lat. north.
    


    
        The first observation from the position of the comet with respect to
        certain small fixed stars had all the exactness that could be desired;
        the second also was accurate enough. In the third observation, which was
        the least accurate, there might be an error of 6 or 7 minutes, but
        hardly greater. The longitude of the comet, as found in the first and
        most accurate observation, being computed in the aforesaid parabolic
        orbit, comes out ♌ 29° 30′ 22″, its
        latitude north 1° 25′ 7″, and its distance from the sun 115546.
    


    
        Moreover, Dr. Halley, observing that a remarkable comet had
        appeared four times at equal intervals of 575 years (that is, in the
        month of September after Julius Caesar was killed; An.
        Chr. 531, in the consulate of Lampadius and Orestes;
        An. Chr. 1106, in the month of February; and at the
        end of the year 1680; and that with a long and remarkable tail, except
        when it was seen after Caesar's death, at which time, by
        reason of the inconvenient situation of the earth, the tail was not so
        conspicuous), set himself to find out an elliptic orbit whose greater
        axis should be 1382957 parts, the mean distance of the earth from the
        sun containing 10000 such; in which orbit a comet might revolve in 575
        years; and, placing the ascending node in ♋
        2° 2′, the inclination of the plane of the orbit to the plane of the
        ecliptic in an angle of 61° 6′ 48″, the perihelion of the comet in this
        plane in ♐ 22° 44′ 25″, the
        equal time of the perihelion December 7d.23h.9′,
        the distance of the perihelion from the ascending node in the plane of
        the ecliptic 9° 17′ 35″, and its conjugate axis 18481,2, he computed the
        motions of the comet in this elliptic orbit. The places of the comet, as
        deduced from the observations, and as arising from computation made in
        this orbit, may be seen in the following table. 
    


    
        
            
                		True time.
                		Longitudes
observed.
                		Latitude
North
obs.
                		Longitude
computed.
                		Latitude
computed.
                		Errors in
Long.   Lat.
            


            
                		
                    d.   h.   ′

                    Nov. 3.16.47

                    5.15.37

                    10.16.18

                    16.17.00

                    18.21.34

                    20.17.0

                    23.17.5

                    Dec. 12.4.46

                    21.6.37

                    24.6.18

                    26.5.21

                    29.8.3

                    30.8.10

                    Jan. 5.6.1½

                    9.7.7

                    10.6.6

                    13.7.9

                    25.7.59

                    30.8.22

                    Feb. 2.6.35

                    5.7.4½

                    25.8.41

                    Mar. 1.11.10

                    5.11.39

                    9.8.38
                
                		
                    °   ′   ″

                    ♌   29.51.0

                    ♍   3.23.0

                    15.32. 0

                    

                    

                    

                    

                    ♑   6.32.30

                    ♒ 5. 8.12

                    18.49.23

                    28.24.13

                    ♓   13.10.41

                    17.38. 0

                    ♈   8.48.53

                    18.44. 4

                    20.40.50

                    25.59.48

                    ♉   9.35. 0

                    13.19.51

                    15.13.53

                    16.59. 6

                    26.18.35

                    27.52.42

                    29.18. 0

                    ♊   0.43.4
                
                		
                    °   ′   ″

                    1.17.45

                    1.6. 0

                    0.27. 0

                    

                    

                    

                    

                    8.28. 0

                    21.42.13

                    25.23. 5

                    27. 0.52

                    28. 9.58

                    28.11.53

                    26.15. 7

                    24.11.56

                    23.43.32

                    22.17.28

                    17.56.30

                    16.42.18

                    16. 4. 1

                    15.27. 3

                    12.46.46

                    12.23.40

                    12. 3.16

                    11.45.52
                
                		
                    °   ′   ″

                    ♌   29.51.22

                    ♍   3.24.32

                    15.33. 2

                    ♎   8.16.45

                    18.52.15

                    28.10.36

                    ♏   13.22.42

                    ♑   6.31.20

                    ♒   5. 6.14

                    18.47.30

                    28.21.42

                    ♓   13.11.14

                    17.38.27

                    ♈   8.48.51

                    18.43.51

                    20.40.23

                    26. 0. 8

                    ♉   9.34.11

                    13.18.25

                    15.11.59

                    16.59.17

                    26.16.59

                    27.51.47

                    29.20.11

                    ♊   0.42.43
                
                		
                    °   ′   ″

                    1.17.32    N

                    1. 6. 9

                    0.25. 7

                    0.53. 7    S

                    1.26.54

                    1.53.35

                    2.29. 0

                    8.29. 6    N

                    21.44.42

                    25.23.35

                    27. 2. 1

                    28.10.38

                    28.11.37

                    26.14.57

                    24.12.17

                    23.43.25

                    22.16.32

                    17.56. 6

                    16.40. 5

                    16. 2.17

                    15.27. 0

                    12.45.22

                    12.22.28

                    12. 2.50

                    11.45.35
                
                		
                    ′   ″

                    +0.22

                    +1.32

                    +1.2

                    

                    

                    

                    

                    -1.10

                    -1.58

                    -1.53

                    -2.31

                    +0,33

                    +0.7

                    -0.2

                    -0.13

                    -0.27

                    +0.20

                    -0,49

                    -1.23

                    -1.54

                    +0.11

                    -1.36

                    -0.55

                    +2.11

                    -0.21
                
                		
                    ′   ″

                    -0.13

                    +0.9

                    -1.53

                    

                    

                    

                    

                    +1.6

                    +2.29

                    +0.30

                    +1.9

                    +0.40

                    -0.16

                    -0.10

                    +0.21

                    -0.7

                    -0.56

                    -0.24

                    -2.13

                    -1.54

                    -0.3

                    -1.24

                    -1.12

                    -0.26

                    -0.17
                
            


        
    


    
        The observations of this comet from the beginning to the end agree at
        perfectly with the motion of the comet in the orbit just now described
        as the motions of the planets do with the theories from whence they are
        calculated; and by this agreement plainly evince that it was one and the
        same comet that appeared all that time, and also that the orbit of that
        comet is here rightly defined.
    


    
        In the foregoing table we have omitted the observations of Nov.
        16, 18, 20. and 23, as not sufficiently accurate, for at those times
        several persons had observed the comet. Nov. 17, O. S. Ponthaeus
        and his companions, at 6h. in the morning at Rome
        (that is, 5h.10′ at London], by threads directed to
        the fixed stars, observed the comet in ♎
        8° 30′, with latitude 0° 40 south. Their observations may be seen in a
        treatise which Ponthaeus published concerning this comet. Cellius,
        who was present, and communicated his observations in a letter to Cassini
        saw the comet at the same hour in ♎
        8° 30′, with latitude 0° 30 south. It was likewise seen by Galletius
        at the same hour at Avignon (that is, at 5h.42′
        morning at London) in ♎
        8° without latitude. But by the theory the comet was at that time in
        ♎ 8° 16′ 45″, and its latitude was 0°
        53′ 7″ south.
    


    
        Nov. 18, at 6h.30′ in the morning at Rome
        (that is, at 5h.40′ at London), Ponthaeus
        observed the comet in ♎ 13° 30,
        with latitude 1° 20′ south; and Cellius
        in ♎ 13° 30′, with latitude 1° 00
        south. But at 5h.30′ in the morning at Avignon, Galletius
        saw it in ♎ 13° 00′, with latitude
        1° 00 south. In the University of La Fleche, in France,
        at 5h. in the morning (that is, at 5h.9 at London),
        it was seen by P. Ango, in the middle between two small stars,
        one of which is the middle of the three which lie in a right line in the
        southern hand of Virgo, Bayers ψ; and the other is the outmost
        of the wing, Bayer's θ. Whence the comet was then in ♎ 12° 46′ with latitude 50′ south. And I was
        informed by Dr. Halley, that on the same day at Boston
        in New England, in the latitude of 42½ deg. at 5h.
        in the morning (that is, at 9h.44′ in the morning at London),
        the comet was seen near ♎ 14°,
        with latitude 1° 30 south.
    


    
        Nov. 19, at 4½h. at Cambridge, the comet
        (by the observation of a young man) was distant from Spica
        ♍ about 2° towards the north west. Now
        the spike was at that time in ♎
        19° 23′ 47″, with latitude 2° 1′ 59″ south. The same day, at 5h.
        in the morning, at Boston in New England, the comet
        was distant from Spica ♍ 1°, with
        the difference of 40′ in latitude. The same day, in the island of Jamaica,
        it was about 1° distant from Spica ♍.
        The same day, Mr. Arthur Storer, at the river Patuxent,
        near Hunting Creek, in Maryland, in the confines of
        Virginia, in lat. 38½°, at 5 in the morning (that is, at 10h.
        at London), saw the comet above Spica ♍, and very nearly joined with it, the distance
        between them being about ¾ of one deg. And from these observations
        compared. I conclude, that at 9h.44′ at London the
        comet was in ♎ 18° 50′, with about
        1° 25′ latitude south. Now by the theory the comet was at that time in
        ♎ 18° 52′ 15″, with 1° 26′ 54″ lat.
        south.
    


    
        Nov. 20, Montenari, professor of astronomy at Padua,
        at 6h. in the morning at Venice (that is, 5h.10
        at London), saw the comet in ♎
        23°, with latitude 1° 30′ south. The same day, at Boston, it was distant
        from Spica ♍ by about 4° of
        longitude east, and therefore was in ♎
        23° 24′ nearly.
    


    
        Nov. 21, Ponthaeus and his companions, at 7¼h.
        in the morning, observed the comet in ♎
        27° 50′, with latitude 1° 16′ south; Cellius, in ♎ 28°; P. Ango at 5h. in the
        morning, in ♎ 27° 45′; Montenari
        in ♎ 27° 51′. The same day, in the
        island of Jamaica, it was seen near the beginning of ♏, and of about the same latitude with Spica
        ♍, that is, 2° 2′. The same day, at
        5h. morning, at Ballasore, in the East Indies
        (that is, at 11h.20′ of the night preceding at London),
        the distance of the comet from Spica ♍
        was taken 7° 35′ to the east. It was in a right line between the spike
        and the balance, and therefore was then in ♎
        26° 58′, with about 1° 11′ lat. south; and after 5h.40′ (that
        is, at 5h. morning at London), it was in ♎ 28° 12′, with 1° 16′ lat. south. Now by the
        theory the comet was then in ♎ 28°
        10′ 36″, with 1° 53′ 35″ lat. south.
    


    
        Nov. 22, the comet was seen by Montenari in ♏ 2° 33′; but at Boston in
        New England, it was found in about ♏
        3°, and with almost the same latitude as before, that is, 1° 30′. The
        same day, at 5h. morning at Ballasore,ihe comet was
        observed in ♏ 1° 50′; and
        therefore at 5h. morning at London, the comet was
        ♏ 3° 5′ nearly. The same day, at 6½h.
        in the morning at London, Dr. Hook observed it in
        about ♏ 3° 30′, and that in the
        right line which passeth through Spica ♍
        and Cor Leonis; not, indeed, exactly, but deviating a little
        from that line towards the north. Montenari likewise observed,
        that this day, and some days after, a right line drawn from the comet
        through Spica passed by the south side of Cor Leonis
        at a very small distance therefrom. The right line through Cor
        Leonis and Spica ♍
        did cut the ecliptic in ♍ 3° 46′
        at an angle of 2° 51′; and if the comet had been in this line and in
        ♏ 3°, its latitude would have been 2°
        26′; but since Hook and Montenari agree that the
        comet was at some small distance from this line towards the north, its
        latitude must have been something less. On the 20th, by the observation
        of Montenari, its latitude was almost the same with that of Spica
        ♍, that is, about 1° 30′. But by
        the agreement of Hook, Montenari, and Ango,
        the latitude was continually increasing, and therefore must now, on the
        22d, be sensibly greater than 1° 30′; and, taking a mean between the
        extreme limits but now stated, 2° 26′ and 1° 30′, the latitude will be
        about 1° 58′. Hook and Montenari agree that the tail
        of the comet was directed towards Spica ♍,
        declining a little from that star towards the south according to Hook,
        but towards the north according to Montenari; and, therefore,
        that declination was scarcely sensible; and the tail, lying nearly
        parallel to the equator, deviated a little from the opposition of the
        sun towards the north.
    


    
        Nov. 23, O. S. at 5h. morning, at Nuremberg
        (that is, at 4½h. at London), Mr. Zimmerman
        saw the comet in ♏ 8° 8′, with
        2° 31′ south lat. its place being collected by taking its distances from
        fixed stars.
    


    
        Nov. 24, before sun-rising, the comet was seen by Montenari
        in ♏ 12° 52′ on the north side
        of the right line through Cor Leonis and Spica
        ♍, and therefore its latitude was
        something less than 2° 38′; and since the latitude, as we said, by the
        concurring observations of Montenari, Ango, and Hook,
        was continually increasing, therefore, it was now, on the 24th,
        something greater than 1° 58′; and, taking the mean quantity, may be
        reckoned 2° 18′, without any considerable error. Ponthaeus and
        Galletius will have it that the latitude was now decreasing;
        and Cellius, and the observer in New England, that
        it continued the same, viz., of about 1°, or 1½°. The observations of Ponthaeus
        and Cellius are more rude, especially those which were made by
        taking the azimuths and altitudes; as are also the observations of Galletius.
        Those are better which were made by taking the position of the comet to
        the fixed stars by Montenari, Hook, Ango,
        and the observer in New England, and sometimes by Ponthaeus
        and Cellius. The same day, at 5h. morning, at Ballasore,
        the comet was observed in ♏ 11°
        45′; and, therefore, at 5h. morning at London, was
        in ♏ 13° nearly. And, by the
        theory, the comet was at that time in ♏
        13° 22′ 2″.
    


    
        Nov. 25, before sunrise, Montenari observed the
        comet in ♏ 17¾ nearly; and Cellius
        observed at the same time that the comet was in a right line between the
        bright star in the right thigh of Virgo and the southern scale of Libra;
        and this right line cuts the comet's way in ♏
        18° 36′. And, by the theory, the comet was in ♏
        18⅓° nearly.
    


    
        From all this it is plain that these observations agree with the
        theory, so far as they agree with one another; and by this agreement it
        is made clear that it was one and the same comet that appeared all the
        time from Nov. 4 to Mar. 9. The path of this comet
        did twice cut the plane of the ecliptic, and therefore was not a right
        line. It did cut the ecliptic not in opposite parts of the heavens, but
        in the end of Virgo and beginning of Capricorn, including an arc of
        about 98°; and therefore the way of the comet did very much deviate from
        the path of a great circle; for in the month of Nov. it
        declined at least 3° from the ecliptic towards the south; and in the
        month of Dec. following it declined 29° from the ecliptic towards the
        north; the two parts of the orbit in which the comet descended towards
        the sun, and ascended again from the sun, declining one from the other
        by an apparent angle of above 30°, as observed by Montenari.
        This comet travelled over 9 signs, to wit, from the last deg. of
        ♌ to the beginning of ♓,
        beside the sign of ♌, through which
        it passed before it began to be seen; and there is no other theory by
        which a comet can go over so great a part of the heavens with a regular
        motion. The motion of this comet was very unequable; for about the 20th
        of Nov. it described about 5° a day. Then its motion being
        retarded between Nov. 26 and Dec. 12, to wit, in the space of 15½ days,
        it described only 40°. But the motion thereof being afterwards
        accelerated, it described near 5° a day, till its motion began to be
        again retarded. And the theory which justly corresponds with a motion so
        unequable, and through so great a part of the heavens, which observes
        the same laws with the theory of the planets, and which accurately
        agrees with accurate astronomical observations, cannot be otherwise than
        true.
    


    
        And, thinking it would not be improper, I have given a true
        representation of the orbit which this comet described, and of the tail
        which it emitted in several places, in the annexed figure; protracted in
        the plane of the trajectory. In this scheme ABC represents the
        trajectory of the comet, D the sun DE the axis of the trajectory, DF the
        line of the nodes, GH the intersection of the sphere of the orbis
        magnus with the plane of the trajectory, I the place of the comet
        Nov. 4, Ann. 1680; K the place of the same Nov.
        11; L the place of the same Nov. 19; M its place Dec. 12; N
        
        [image: Mathematical Principles of Natural Philosophy figure: 484]
        its place Dec.
        21; O its place Dec. 29; P its place Jan. 5
        following; Q its place Jan. 25; R its place Feb. 5;
        S its place Feb. 25; T its place March 5; and V its
        place March 9. In determining the length of the tail, I made
        the following observations.
    


    
        Nov. 4 and 6, the tail did not appear; Nov. 11, the
        tail just begun to shew itself, but did not appear above ½ deg. long
        through a 10 feet telescope; Nov. 17, the tail was seen by Ponthaeus
        more than 15° long; Nov. 18, in New-England, the tail appeared
        30° long, and directly opposite to the sun, extending itself to the
        planet Mars, which was then in ♍,
        9° 54′: Nov. 19. in Maryland, the tail was found 15°
        or 20° long; Dec. 10 (by the
        observation of Mr. Flamsted), the tail passed through the
        middle of the distance intercepted between the tail of the Serpent of Ophiuchus
        and the star δ in the south wing of Aquila, and did
        terminate near the stars A, ω, b, in Bayer's tables.
        Therefore the end of the tail was in ♑
        19½°, with latitude about 34¼° north; Dec 11, it ascended to
        the head of Sagitta (Bayer's α, β), terminating in
        ♑ 26° 43′, with latitude 38° 34′
        north; Dec. 12, it passed through the middle of Sagitta,
        nor did it reach much farther; terminating in ♒
        4°, with latitude 42½° north nearly. But these things are to be
        understood of the length of the brighter part of the tail; for with a
        more faint light, observed, too, perhaps, in a serener sky, at Rome,
        Dec. 12, 5h.40′, by the observation of Ponthaeus,
        the tail arose to 10° above the rump of the Swan, and the side thereof
        towards the west and towards the north was 45′ distant from this star.
        But about that time the tail was 3° broad towards the upper end; and
        therefore the middle thereof was 2° 15 distant from that star towards
        the south, and the upper end was ♓
        in 22°, with latitude 61° north; and thence the tail was about 70° long;
        Dec. 21, it extended almost to Cassiopeia's chair,
        equally distant from β and from Schedir, so as its
        distance from either of the two was equal to the distance of the one
        from the other, and therefore did terminate in ♈
        24°, with latitude 47½°; Dec. 29, it reached to a contact with
        Scheat on its left, and exactly filled up the space between the
        two stars in the northern foot of Andromeda, being 54° in
        length; and therefore terminated in ♉
        19°, with 35° of latitude; Jan. 5, it touched the star π
        in the breast of Andromeda on its right side, and the star μ
        of the girdle on its left; and, according to our observations, was 40°
        long; but it was curved, and the convex side thereof lay to the south;
        and near the head of the comet it made an angle of 4° with the circle
        which passed through the sun and the comet's head; but towards the other
        end it was inclined to that circle in an angle of about 10° or 11°; and
        the chord of the tail contained with that circle an angle of 8°. Jan.
        13, the tail terminated between Alamech and Algol,
        with a light that was sensible enough: but with a faint light it ended
        over against the star κ in Perseus's side. The
        distance of the end of the tail from the circle passing through the sun
        and the comet was 3° 50′; and the inclination of the chord of the tail
        to that circle was 8½°. Jan. 25 and 26. it shone with a faint
        light to the length of 6° or 7°; and for a night or two after, when
        there was a very clear sky, it extended to the length of 12°, or
        something more, with a light that was very faint and very hardly to be
        seen; but the axis thereof was exactly directed to the bright star in
        the eastern shoulder of Auriga, and therefore deviated from
        the opposition of the sun towards the north by an angle of 10°. Lastly,
        Feb. 10, with a telescope I observed the tail 2° long; for that
        fainter light which I spoke of did not appear through the glasses. But Ponthaeus
        writes, that, on Feb. 7, he saw the tail 12° long. Feb.
        25, the comet was without a tail, and so continued till it disappeared.
    


    
        Now if one reflects upon the orbit described,
        and duly considers the other appearances of this comet, he will be
        easily satisfied that the bodies of comets are solid, compact, fixed,
        and durable, like the bodies of the planets; for if they were nothing
        else but the vapours or exhalations of the earth, of the sun, and other
        planets, this comet, in its passage by the neighbourhood of the sun,
        would have been immediately dissipated; for the heat of the sun is as
        the density of its rays, that is, reciprocally as the square of the
        distance of the places from the sun. Therefore, since on Dec.
        8, when the comet was in its perihelion, the distance thereof from the
        centre of the sun was to the distance of the earth from the same as
        about 6 to 1000, the sun's heat on the comet was at that time to the
        heat of the summer-sun with us as 1000000 to 36, or as 28000 to 1. But
        the heat of boiling water is about 3 times greater than the heat which
        dry earth acquires from the summer-sun, as I have tried; and the heat of
        red-hot iron (if my conjecture is right) is about three or four times
        greater than the heat of boiling water. And therefore the heat which dry
        earth on the comet, while in its perihelion, might have conceived from
        the rays of the sun, was about 2000 times greater than the heat of
        red-hot iron. But by so fierce a heat, vapours and exhalations, and
        every volatile matter, must have been immediately consumed and
        dissipated.
    


    
        This comet, therefore, must have conceived an immense heat from the
        sun, and retained that heat for an exceeding long time; for a globe of
        iron of an inch in diameter, exposed red-hot to the open air, will
        scarcely lose all its heat in an hour's time; but a greater globe would
        retain its heat longer in the proportion of its diameter, because the
        surface (in proportion to which it is cooled by the contact of the
        ambient air) is in that proportion less in respect of the quantity of
        the included hot matter; and therefore a globe of red hot iron equal to
        our earth, that is, about 40000000 feet in diameter, would scarcely cool
        in an equal number of days, or in above 50000 years. But I suspect that
        the duration of heat may, on account of some latent causes, increase in
        a yet less proportion than that of the diameter; and I should be glad
        that the true proportion was investigated by experiments.
    


    
        It is farther to be observed, that the comet in the month of December,
        just after it had been heated by the sun, did emit a much longer tail,
        and much more splendid, than in the month of November before,
        when it had not yet arrived at its perihelion; and, universally, the
        greatest and most fulgent tails always arise from comets immediately
        after their passing by the neighbourhood of the sun. Therefore the heat
        received by the comet conduces to the greatness of the tail: from
        whence, I think I may infer, that the tail is nothing else but a very
        fine vapour, which the head or nucleus of the comet emits by its heat.
    


    
        But we have had three several opinions about the tails of comets; for
        some will have it that they are nothing else but the
        beams of the sun's light transmitted through the comets heads, which
        they suppose to be transparent; others, that they proceed from the
        refraction which light suffers in passing from the comet's head to the
        earth; and, lastly, others, that they are a sort of clouds or vapour
        constantly rising from the comets heads, and tending towards the parts
        opposite to the sun. The first is the opinion of such as are yet
        unacquainted with optics; for the beams of the sun are seen in a
        darkened room only in consequence of the light that is reflected from
        them by the little particles of dust and smoke which are always flying
        about in the air; and, for that reason, in air impregnated with thick
        smoke, those beams appear with great brightness, and move the sense
        vigorously; in a yet finer air they appear more faint, and are less
        easily discerned; but in the heavens, where there is no matter to
        reflect the light they can never be seen at all. Light is not seen as it
        is in the beam, but as it is thence reflected to our eyes; for vision
        can be no other wise produced than by rays falling upon the eyes; and,
        therefore, there must be some reflecting matter in those parts where the
        tails of the comets are seen: for otherwise, since all the celestial
        spaces are equally illuminated by the sun's light, no part of the
        heavens could appear with more splendor than another. The second opinion
        is liable to many difficulties. The tails of comets are never seen
        variegated with those colours which commonly are inseparable from
        refraction; and the distinct transmission of the light of the fixed
        stars and planets to us is a demonstration that the aether or celestial
        medium is not endowed with any refractive power: for as to what is
        alleged, that the fixed stars have been sometimes seen by the Egyptians
        environed with a Coma or Capitlitium, because that
        has but rarely happened, it is rather to be ascribed to a casual
        refraction of clouds; and so the radiation and scintillation of the
        fixed stars to tin refractions both of the eyes and air; for upon laying
        a telescope to the eye, those radiations and scintillations immediately
        disappear. By the tremulous agitation of the air and ascending vapours,
        it happens that the rays of light are alternately turned aside from the
        narrow space of the pupil of the eye; but no such thing can have place
        in the much wider aperture of the object-glass of a telescope; and hence
        it is that a scintillation is occasioned in the former case, which
        ceases in the latter; and this cessation in the latter case is a
        demonstration of the regular transmission of light through the heavens,
        without any sensible refraction. But, to obviate an objection that may
        be made from the appearing of no tail in such comets as shine but with a
        faint light, as if the secondary rays were then too weak to affect the
        eyes, and for that reason it is that the tails of the fixed stars do not
        appear, we are to consider, that by the means of telescopes the light of
        the fixed stars may be augmented above an hundred fold, and yet no tails
        are seen; that the light of the planets is yet more copious without any
        tail; but that comets are seen sometimes with
        huge tails, when the light of their heads is but faint and dull. For so
        it happened in the comet of the year 1680, when in the month of December
        it was scarcely equal in light to the stars of the second magnitude, and
        yet emitted a notable tail, extending to the length of 40°, 50°, 60°, or
        70°, and upwards; and afterwards, on the 27th and 28th of January,
        when the head appeared but us a star of the 7th magnitude, yet the tail
        (as we said above), with a light that was sensible enough, though faint,
        was stretched out to 6 or 7 degrees in length, and with a languishing
        light that was more difficultly seen, even to 12°, and upwards. But on
        the 9th and 10th of February, when to the naked eye the head
        appeared no more, through a telescope I viewed the tail of 2° in length.
        But farther; if the tail was owing to the refraction of the celestial
        matter, and did deviate from the opposition of the sun, according to the
        figure of the heavens, that deviation in the same places of the heavens
        should be always directed towards the same parts. But the comet of the
        year 1680, December 28d.8½h. P. M. at London,
        was seen in ♓ 8° 41′, with
        latitude north 28° 6′; while the sun was in ♑
        18° 26′. And the comet of the year 1577, December 29d.
        was in ♓ 8° 41′, with latitude
        north 28° 40′, and the sun, as before, in about ♑
        18° 26′. In both cases the situation of the earth was the same, and the
        comet appeared in the same place of the heavens; yet in the former case
        the tail of the comet (as well by my observations as by the observations
        of others) deviated from the opposition of the sun towards the north by
        an angle of 4½ degrees; whereas in the latter there was (according to
        the observations of Tycho) a deviation of 21 degrees towards
        the south. The refraction, therefore, of the heavens being thus
        disproved, it remains that the phaenomena of the tails of
        comets must be derived from some reflecting matter.
    


    
        And that the tails of comets do arise from their heads, and tend
        towards the parts opposite to the sun, is farther confirmed from the
        laws which the tails observe. As that, lying in the planes of the comets
        orbits which pass through the sun, they constantly deviate from the
        opposition of the sun towards the parts which the comets heads in their
        progress along these orbits have left. That to a spectator, placed in
        those planes, they appear in the parts directly opposite to the sun;
        but, as the spectator recedes from those planes, their deviation begins
        to appear, and daily be comes greater. That the deviation, caeteris
        paribus, appears less when the tail is more oblique to the orbit
        of the comet, as well as when the head of the comet approaches nearer to
        the sun, especially if the angle of deviation is estimated near the head
        of the comet. That the tails which have no deviation appear straight,
        but the tails which deviate are like wise bended into a certain
        curvature. That this curvature is greater when the deviation is greater;
        and is more sensible when the tail, caeteris paribus, is
        longer; for in the shorter tails the curvature is hardly to be
        perceived. That the angle of deviation is less
        near the comet's head, but greater towards the other end of the tail;
        and that because the convex side of the tail regards the parts from
        which the deviation is made, and which lie in a right line drawn out
        infinitely from the sun through the comet's head. And that the tails
        that are long and broad, and shine with a stronger light, appear more
        resplendent and more exactly defined on the convex than on the concave
        side. Upon which accounts it is plain that the phaenomena of
        the tails of comets depend upon the motions of their heads, and by no
        means upon the places of the heavens in which their heads are seen; and
        that, therefore, the tails of comets do not proceed from the refraction
        of the heavens, but from their own heads, which furnish the matter that
        forms the tail. For, as in our air, the smoke of a heated body ascends
        either perpendicularly if the body is at rest, or obliquely if the body
        is moved obliquely, so in the heavens, where all bodies gravitate
        towards the sun, smoke and vapour must (as we have already said) ascend
        from the sun, and either rise perpendicularly if the smoking body is at
        rest, or obliquely if the body, in all the progress of its motion, is
        always leaving those places from which the upper or higher parts of the
        vapour had risen before; and that obliquity will be least where the
        vapour ascends with most velocity, to wit, near the smoking body, when
        that is near the sun. But, because the obliquity varies, the column of
        vapour will be incurvated; and because the vapour in the preceding sides
        is something more recent, that is, has ascended something more late from
        the body, it will therefore be something more dense on that side, and
        must on that account reflect more light, as well as be better defined. I
        add nothing concerning the sudden uncertain agitation of the tails of
        comets, and their irregular figures, which authors sometimes describe,
        because they may arise from the mutations of our air, and the motions of
        our clouds, in part obscuring those tails; or, perhaps, from parts of
        the Via Lactea, which might have been confounded with and
        mistaken for parts of the tails of the comets as they passed by.
    


    
        But that the atmospheres of comets may furnish a supply of vapour great
        enough to fill so immense spaces, we may easily understand from the
        rarity of our own air; for the air near the surface of our earth
        possesses a space 850 times greater than water of the same weight; and
        therefore a cylinder of air 850 feet high is of equal weight with a
        cylinder of water of the same breadth, and but one foot high. But a
        cylinder of air reaching to the top of the atmosphere is of equal weight
        with a cylinder of water about 33 feet high: and, therefore, if from the
        whole cylinder of air the lower part of 850 feet high is taken away, the
        remaining upper part will be of equal weight with a cylinder of water 32
        feet high: and from thence (and by the hypothesis, confirmed by many
        experiments, that the compression of air is as the weight of the
        incumbent atmosphere, and that the force of
        gravity is reciprocally as the square of the distance from the centre of
        the earth) raising a calculus, by Cor. Prop. XXII, Book II, I found,
        that, at the height of one semi-diameter of the earth, reckoned from the
        earth's surface, the air is more rare than with us in a far greater
        proportion than of the whole space within the orb of Saturn to a
        spherical space of one inch in diameter; and therefore if a sphere of
        our air of but one inch in thickness was equally rarefied with the air
        at the height of one semi-diameter of the earth from the earth's
        surface, it would fill all the regions of the planets to the orb of
        Saturn, and far beyond it. Wherefore since the air at greater distances
        is immensely rarefied, and the coma or atmosphere of comets is
        ordinarily about ten times higher, reckoning from their centres, than
        the surface of the nucleus, and the tails rise yet higher, they must
        therefore be exceedingly rare; and though, on account of the much
        thicker atmospheres of comets, and the great gravitation of their bodies
        towards the sun, as well as of the particles of their air and vapours
        mutually one towards another, it may happen that the air in the
        celestial spaces and in the tails of comets is not so vastly rarefied,
        yet from this computation it is plain that a very small quantity of air
        and vapour is abundantly sufficient to produce all the appearances of
        the tails of comets; for that they are, indeed, of a very notable rarity
        appears from the shining of the stars through them. The atmosphere of
        the earth, illuminated by the sun's light, though but of a few miles in
        thickness, quite obscures and extinguishes the light not only of all the
        stars, but even of the moon itself; whereas the smallest stars are seen
        to shine through the immense thickness of the tails of comets, likewise
        illuminated by the sun, without the least diminution of their splendor.
        Nor is the brightness of the tails of most comets ordinarily greater
        than that of our air, an inch or two in thickness, reflecting in a
        darkened room the light of the sun-beams let in by a hole of the
        window-shutter.
    


    
        And we may pretty nearly determine the time spent during the ascent of
        the vapour from the comet's head to the extremity of the tail, by
        drawing a right line from the extremity of the tail to the sun, and
        marking the place where that right line intersects the comet's orbit:
        for the vapour that is now in the extremity of the tail, if it has
        ascended in a right line from the sun, must have begun to rise from the
        head at the time when the head was in the point of intersection. It is
        true, the vapour does not rise in a right line from the sun, but,
        retaining the motion which it had from the comet before its ascent, and
        compounding that motion with its motion of ascent, arises obliquely;
        and, therefore, the solution of the Problem will be more exact, if we
        draw the line which intersects the orbit parallel to the length of the
        tail; or rather (because of the curvilinear motion of the comet)
        diverging a little from the line or length of the tail. And by means of
        this principle I found that the vapour which, January 25, was
        in the extremity of the tail, had begun to rise
        from the head before December 11, and therefore had spent in
        its whole ascent 45 days; but that the whole tail which appeared on December
        10 had finished its ascent in the space of the two days then elapsed
        from the time of the comet's being in its perihelion. The vapour,
        therefore, about the beginning and in the neighbourhood of the sun rose
        with the greatest velocity, and afterwards continued to ascend with a
        motion constantly retarded by its own gravity; and the higher it
        ascended, the more it added to the length of the tail; and while the
        tail continued to be seen, it was made up of almost all that vapour
        which had risen since the time of the comet's being in its perihelion;
        nor did that part of the vapour which had risen first, and which formed
        the extremity of the tail, cease to appear, till its too great distance,
        as well from the sun, from which it received its light, as from our
        eyes, rendered it invisible. Whence also it is that the tails of other
        comets which are short do not rise from their heads with a swift and
        continued motion, and soon after disappear, but are permanent and
        lasting columns of vapours and exhalations, which, ascending from the
        heads with a slow motion of many days, and partaking of the motion of
        the heads which they had from the beginning, continue to go along
        together with them through the heavens. From whence again we have
        another argument proving the celestial spaces to be free, and without
        resistance, since in them not only the solid bodies of the planets and
        comets, but also the extremely rare vapours of comets tails, maintain
        their rapid motions with great freedom, and for an exceeding long time.
    


    
        Kepler ascribes the ascent of the tails of the comets to the
        atmospheres of their heads; and their direction towards the parts
        opposite to the sun to the action of the rays of light carrying along
        with them the matter of the comets tails; and without any great
        incongruity we may suppose, that, in so free spaces, so fine a matter as
        that of the aether may yield to the action of the rays of the sun's
        light, though those rays are not able sensibly to move the gross
        substances in our parts, which are clogged with so palpable a
        resistance. Another author thinks that there may be a sort of particles
        of matter endowed with a principle of levity, as well as others are with
        a power of gravity; that the matter of the tails of comets may be of the
        former sort, and that its ascent from the sun may be owing to its
        levity; but, considering that the gravity of terrestrial bodies is as
        the matter of the bodies, and therefore can be neither more nor less in
        the same quantity of matter, I am inclined to believe that this ascent
        may rather proceed from the rarefaction of the matter of the comets
        tails. The ascent of smoke in a chimney is owing to the impulse of the
        air with which it is entangled. The air rarefied by heat ascends,
        because its specific gravity is diminished, and in its ascent carries
        along with it the smoke with which it is engaged; and why may not the
        tail of a comet rise from the sun after the same manner? For
        the sun's rays do not act upon the mediums which they pervade otherwise
        than by reflection and refraction; and those reflecting particles heated
        by this action, heat the matter of the aether which is involved with
        them. That matter is rarefied by the heat which it acquires, and be
        cause, by this rarefaction, the specific gravity with which it tended
        towards the sun before is diminished, it will ascend therefrom, and
        carry along with it the reflecting particles of which the tail of the
        comet is composed. But the ascent of the vapours is further promoted by
        their circumgyration about the sun, in consequence whereof they
        endeavour to recede from the sun, while the sun's atmosphere and the
        other matter of the heavens are either altogether quiescent, or are only
        moved with a slower circumgyration derived from the rotation of the sun.
        And these are the causes of the ascent of the tails of the comets in the
        neighbourhood of the sun, where their orbits are bent into a greater
        curvature, and the comets themselves are plunged into the denser and
        therefore heavier parts of the sun's atmosphere: upon which account they
        do then emit tails of an huge length; for the tails which then arise,
        retaining their own proper motion, and in the mean time gravitating
        towards the sun, must be revolved in ellipses about the sun in like
        manner as the heads are, and by that motion must always accompany the
        heads, and freely adhere to them. For the gravitation of the vapours
        towards the sun can no more force the tails to abandon the heads, and
        descend to the sun, than the gravitation of the heads can oblige them to
        fall from the tails. They must by their common gravity either fall
        together towards the sun, or be retarded together in their common ascent
        therefrom; and, therefore (whether from the causes already described, or
        from any others), the tails and heads of comets may easily acquire and
        freely retain any position one to the other, without disturbance or
        impediment from that common gravitation.
    


    
        The tails, therefore, that rise in the perihelion positions of the
        comets will go along with their heads into far remote parts, and
        together with the heads will either return again from thence to us,
        after a long course of years, or rather will be there rarefied, and by
        degrees quite vanish away; for afterwards, in the descent of the heads
        towards the sun, new short tails will be emitted from the heads with a
        slow motion; and those tails by degrees will be augmented immensely,
        especially in such comets as in their perihelion distances descend as
        low as the sun's atmosphere; for all vapour in those free spaces is in a
        perpetual state of rarefaction and dilatation; and from hence it is that
        the tails of all comets are broader at their upper extremity than near
        their heads. And it is not unlikely but that the vapour, thus
        perpetually rarefied and dilated, may be at last dissipated and
        scattered through the whole heavens, and by little and little be
        attracted towards the planets by its gravity, and mixed with their
        atmosphere; for as the seas are absolutely necessary to the constitution
        of our earth, that from them, the sun, by its
        heat, may exhale a sufficient quantity of vapours, which, being gathered
        together into clouds, may drop down in rain, for watering of the earth,
        and for the production and nourishment of vegetables; or, being
        condensed with cold on the tops of mountains (as some philosophers with
        reason judge), may run down in springs and rivers; so for the
        conservation of the seas, and fluids of the planets, comets seem to be
        required, that, from their exhalations and vapours condensed, the wastes
        of the planetary fluids spent upon vegetation and putrefaction, and
        converted into dry earth, may be continually supplied and made up; for
        all vegetables entirely derive their growths from fluids, and
        afterwards, in great measure, are turned into dry earth by putrefaction;
        and a sort of slime is always found to settle at the bottom of putrefied
        fluids; and hence it is that the bulk of the solid earth is continually
        increased; and the fluids, if they are not supplied from without, must
        be in a continual decrease, and quite fail at last. I suspect, moreover,
        that it is chiefly from the comets that spirit comes, which is indeed
        the smallest but the most subtle and useful part of our air, and so much
        required to sustain the life of all things with us.
    


    
        The atmospheres of comets, in their descent towards the sun, by running
        out into the tails, are spent and diminished, and become narrower, at
        least on that side which regards the sun; and in receding from the sun,
        when they less run out into the tails, they are again enlarged, if Hevelius
        has justly marked their appearances. But they are seen least of all just
        after they have been most heated by the sun, and on that account then
        emit the longest and most resplendent tails; and, perhaps, at the same
        time, the nuclei are environed with a denser and blacker smoke in the
        lowermost parts of their atmosphere; for smoke that is raised by a great
        and intense heat is commonly the denser and blacker. Thus the head of
        that comet which we have been describing, at equal distances both from
        the sun and from the earth, appeared darker after it had passed by its
        perihelion than it did before; for in the month of December it
        was commonly compared with the stars of the third magnitude, but in November
        with those of the first or second; and such as saw both appearances have
        described the first as of another and greater comet than the second.
        For, November 19, this comet appeared to a young man at Cambridge,
        though with a pale and dull light, yet equal to Spica Virginis;
        and at that time it shone with greater brightness than it did
        afterwards. And Montenari, November 20, st. vet.
        observed it larger than the stars of the first magnitude, its tail being
        then 2 degrees long. And Mr. Storer (by letters which have
        come into my hands) writes, that in the month of December,
        when the tail appeared of the greatest bulk and splendor, the head was
        but small, and far less than that which was seen in the month of November
        before sun-rising; and, conjecturing at the cause of the appearance, he
        judged it to proceed from there being a greater
        quantity of matter in the head at first, which was afterwards gradually
        spent.
    


    
        And, which farther makes for the same purpose, I find, that the heads
        of other comets, which did put forth tails of the greatest bulk and
        splendor, have appeared but obscure and small. For in Brazil, March
        5, 1668, 7h. P. M., St. N. P. Valentinus Estancius
        saw a comet near the horizon, and towards the south west, with a head so
        small as scarcely to be discerned, but with a tail above measure
        splendid, so that the reflection thereof from the sea was easily seen by
        those who stood upon the shore; and it looked like a fiery beam extended
        23° in length from the west to south, almost parallel to the horizon.
        But this excessive splendor continued only three days, decreasing apace
        afterwards; and while the splendor was decreasing, the bulk of the tail
        increased: whence in Portugal it is said to have taken up one
        quarter of the heavens, that is, 45 degrees, extending from west to east
        with a very notable splendor, though the whole tail was not seen in
        chose parts, because the head was always hid under the horizon: and from
        the increase of the bulk and decrease of the splendor of the tail, it
        appears that the head was then in its recess from the sun, and had been
        very near to it in its perihelion, as the comet of 1680 was. And we
        read, in the Saxon Chronicle, of a like comet appearing in the
        year 1106, the star whereof was small and obscure (as that of
        1680), but the splendour of its tail was very bright, and like a
        huge fiery beam stretched out in a direction between the east and
        north, as Hevelius has it also from Simeon,
        the monk of Durham. This comet appeared in the beginning of February,
        about the evening, and towards the south west part of heaven; from
        whence, and from the position of the tail, we infer that the head was
        near the sun. Matthew Paris says, It was distant from the
        sun by about a cubit, from, three of the clock (rather six) till
        nine, putting forth a long tail. Such also was that most
        resplendent comet described by Aristotle, lib. 1, Meteor.
        6. The head whereof could not be seen, because it had set before
        the sun, or at least was hid under the sun's rays; but next day it was
        seen as well as might be; for, having left the sun but a very little
        way, it set immediately after it. And the scattered light of the
        head,, obscured by the too great splendour (of the tail) did
        not yet appear. But afterwards (as Aristotle says) when
        the splendour (of the tail) was now diminished (the
        head of), the comet recovered its native brightness; and the
        splendour (of its tail) reached now to a third part of the
        heavens (that is, to 60°). This appearance was in the winter
        season (an. 4, Olymp. 101), and, rising to Orion's girdle,
        it there vanished away.
                 It is true that the comet of 1618, which
        came out directly from under the sun's rays with a very large tail,
        seemed to equal, if not to exceed, the stars of the first magnitude;
        but, then, abundance of other comets have appeared yet greater than
        this, that put forth shorter tails; some of which are said to
        have appeared as big as Jupiter, others as big as Venus, or even as the
        moon.
    


    
        We have said, that comets are a sort of planets revolved in very
        eccentric orbits about the sun; and as, in the planets which are without
        tails, those are commonly less which are revolved in lesser orbits, and
        nearer to the sun, so in comets it is probable that those which in their
        perihelion approach nearer to the sun ate generally of less magnitude,
        that they may not agitate the sun too much by their attractions. But as
        to the transverse diameters of their orbits, and the periodic times of
        their revolutions, I leave them to be determined by comparing comets
        together which after long intervals of time return again in the same
        orbit. In the mean time, the following Proposition may give some light
        in that inquiry.
    





    
        Proposition xlii. Problem xxii.


        To correct a comet's trajectory found as above.


    

    
        Operation 1. Assume that position of the plane
        of the trajectory which was determined according to the preceding
        proposition; and select three places of the comet, deduced from very
        accurate observations, and at great distances one from the other. Then
        suppose A to represent the time between the first observation and the
        second, and B the time between the second and the third; but it will be
        convenient that in one of those times the comet be in its perigeon, or
        at least not far from it. From those apparent places find, by
        trigonometric operations, the three true places of the comet in that
        assumed plane of the trajectory; then through the places found, and
        about the centre of the sun as the focus, describe a conic section by
        arithmetical operations, according to Prop. XXI., Book 1. Let the areas
        of this figure which are terminated by radii drawn from the sun to the
        places found be D and E; to wit, D the area between the first
        observation and the second, and E the area between the second and third;
        and let T represent the whole time in which the whole area D + E should
        be described with the velocity of the comet found by Prop. XVI., Book 1.
    


    
        Oper. 2. Retaining the inclination of the plane
        of the trajectory to the plane of the ecliptic, let the longitude of the
        nodes of the plane of the trajectory be increased by the addition of 20
        or 30 minutes, which call P. Then from the aforesaid three observed
        places of the comet let the three true places be found (as before) in
        this new plane; as also the orbit passing through those places, and the
        two areas of the same described between the two observations, which call
        d and e; and let t be the whole time in
        which the whole area d + e should be described.
    


    
        Oper. 3. Retaining the longitude of the nodes
        in the first operation, let the inclination of the plane of the
        trajectory to the plane of the ecliptic be increased by adding thereto
        20′ or 30′, which call Q. Then from the aforesaid
        three observed apparent places of the comet let the three true places be
        found in this new plane, as well as the orbit passing through them, and
        the two areas of the same described between the observation, which call
        δ and ε; and let τ be the whole time in
        which the whole area δ + ε should be described.
    


    
        Then taking C to 1 as A to B; and G to 1 as D to E; and g to
        1 as d to e; and γ to 1 as δ to
        ε; let S be the true time between the first observation and the
        third; and, observing well the signs + and −, let such numbers m
        and n be found out as will make 2G − 2C, =
        mG − mg + nG − nγ; and
        2T − 2S = mT − mt + nT − nτ.
        And if, in the first operation, I represents the inclination of the
        plane of the trajectory to the plane of the ecliptic, and K the
        longitude of either node, then I + nQ will be the true
        inclination of the plane of the trajectory to the plane of the ecliptic,
        and K + mP the true longitude of the node. And, lastly, if in
        the first, second, and third operations, the quantities R, r,
        and ρ, represent the parameters of the trajectory, and the
        quantities 1⁄L,
        1⁄l, 1⁄λ,
        the transverse diameters of the same, then R + mr
        − mR + nρ − nR will be the true
        parameter, and 1

        L + ml − mL + nλ − nL
        will be the true transverse diameter of the trajectory which the comet
        describes; and from the transverse diameter given the periodic time of
        the comet is also given.   Q.E.I.   But the periodic
        times of the revolutions of comets, and the transverse diameters of
        their orbits, cannot be accurately enough determined but by comparing
        comets together which appear at different times. If, after equal
        intervals of time, several comets are found to have described the same
        orbit, we may thence conclude that they are all but one and the same
        comet revolved in the same orbit; and then from the times of their
        revolutions the transverse diameters of their orbits will be given, and
        from those diameters the elliptic orbits themselves will be determined.
    


    
        To this purpose the trajectories of many comets ought to be computed,
        supposing those trajectories to be parabolic; for such trajectories will
        always nearly agree with the phaenomena, as appears not only
        from the parabolic trajectory of the comet of the year 1680, which I
        compared above with the observations, but likewise from that of the
        notable comet which appeared in the year 1664 and 1665, and was observed
        by Hevelius, who, from his own observations, calculated the
        longitudes and latitudes thereof, though with little accuracy. But from
        the same observations Dr. Halley did again compute its places;
        and from those new places determined its trajectory, finding its
        ascending node in ♊ 21° 13′ 55″;
        the inclination of the orbit to the plane of the ecliptic 21° 18′ 40″;
        the distance of its perihelion from the node, estimated in the comet's
        orbit, 49° 27′ 30°, its perihelion in ♌
        8° 40′ 30″, with heliocentric latitude south 16°
        01′ 45″; the comet to have been in its perihelion November 24d.1h.52′
        P.M. equal time at London, or 13h.8′ at Dantzick,
        O. S.; and that the latus rectum of the parabola was 410286
        such parts as the sun's mean distance from the earth is supposed to
        contain 100000. And how nearly the places of the comet computed in this
        orbit agree with the observations, will appear from the annexed table,
        calculated by Dr. Halley.
    


    
        
            
                		Appar. Time
at Dantzick.
                		The observed Distances of the Comet from
                		The observed Places.
                		The Places
computed in
the orb.
            


            
                		
                    December

                    d. h. ′

                    3.18.29½
                
                		
                    

                    The Lion's heart

                    The Virgin's spike
                
                		
                    °    ′    ″

                    46.24.20

                    22.52.10
                
                		
                    

                    Long. ♎

                    Lat. S.
                
                		
                    °    ′    ″

                    7.01.00

                    21.39.0
                
                		
                    ♎ 
                		
                    °    ′    ″

                    7.1.29

                    21.38.50
                
            


            
                		4.18.1½
                		The Lion's heart
The Virgin's spike
                		
                    46.2.45

                    23.52.40
                
                		
                    Long. ♎

                    Lat. S.
                
                		
                    6.15.0

                    22.24.0
                
                		♎ 
                		
                    6.16.5

                    22.24.0
                
            


            
                		
                    7.17.48
                		
                    The Lion's heart

                    The Virgin's spike
                
                		
                    44.48.0

                    27.53.40
                
                		
                    Long. ♎

                    Lat. S.
                
                		
                    3.6.0

                    25.22.0
                
                		
                    ♎ 
                		
                    3.7.33

                    25.21.40
                
            


            
                		7.17.48
                		
                    The Lion's heart

                    Orion's right shoulder
                
                		
                    53.15.15

                    45.43.30
                
                		
                    Long. ♌

                    Lat. S.
                
                		
                    2.56.0

                    49.25.0
                
                		
                    ♌ 
                		
                    2.56.0

                    49.25.0
                
            


            
                		19.9.25
                		
                    Procyon

                    Bright star of Whale's jaw
                
                		
                    35.13.50

                    52.56.0
                
                		
                    Long. ♊

                    Lat. S.
                
                		
                    28.40.30

                    45.48.0
                
                		♊ 
                		
                    28.43.0

                    45.46.0
                
            


            
                		20.9.53½
                		
                    Procyon

                    Bright star of Whale's jaw
                
                		
                    40.49.0

                    40.04.0
                
                		
                    Long. ♊

                    Lat. S.
                
                		
                    13.03.0

                    39.54.0
                
                		♊ 
                		
                    13.5.0

                    39.5.0
                
            


            
                		21.9.9½
                		
                    Orion's right shoulder

                    Bright star of Whale's jaw
                
                		
                    26.21.25

                    29.28.0
                
                		
                    Long. ♊

                    Lat. S.
                
                		
                    2.16.0

                    33.41.0
                
                		
                    ♊ 
                		
                    2.18.30

                    33.39.40
                
            


            
                		22.9.0
                		
                    Orion's right shoulder

                    Bright star of Whale's jaw
                
                		
                    29.47.0

                    20.29.30
                
                		
                    Long. ♉

                    Lat. S.
                
                		
                    24.24.0

                    27.45.0
                
                		♉ 
                		
                    24.27.0

                    27.46.0
                
            


            
                		26.7.58
                		
                    The bright star of Aries

                    Aldebaran
                
                		
                    20.20.0

                    26.44.0
                
                		
                    Long. ♉

                    Lat. S.
                
                		
                    9.0.0

                    12.36.0
                
                		♉ 
                		
                    9.2.28

                    12.34.13
                
            


            
                		27.6.45
                		
                    The bright star of Aries

                    Aldebaran
                
                		
                    20.45.0

                    28.10.0
                
                		
                    Long. ♉

                    Lat. S.
                
                		
                    7.5.40

                    10.23.0
                
                		♉ 
                		
                    7.8.45

                    10.23.13
                
            


            
                		28.7.39
                		
                    The bright star of Aries

                    Palilicium
                
                		
                    18.29.0

                    29.37.0
                
                		
                    Long. ♉

                    Lat. S.
                
                		
                    5.24.45

                    8.22.50
                
                		♉ 
                		
                    5.27.52

                    8.23.37
                
            


            
                		31.6.45
                		
                    Andromeda's girdle

                    Palilicium
                
                		
                    30.48.10

                    32.53.30
                
                		
                    Long. ♉

                    Lat. S.
                
                		
                    2.7.40

                    4.13.0
                
                		♉ 
                		
                    2.8.20

                    4.16.25
                
            


            
                		
                    Jan. 1665

                    7.7.37½
                
                		
                    Andromeda's girdle

                    Palilicium
                
                		
                    25.11.0

                    37.12.25
                
                		
                    Long. ♈

                    Lat. N.
                
                		
                    28.24.47

                    0.54.0
                
                		♈ 
                		
                    28.24.0

                    0.53.0
                
            


            
                		13.7.0
                		
                    Andromeda's head

                    Palilicium
                
                		
                    28.7.10

                    38.55.20
                
                		
                    Long. ♈

                    Lat. N.
                
                		
                    27.6.54

                    3.6.50
                
                		♈ 
                		
                    27.6.39

                    3.7.40
                
            


            
                		24.7.29
                		
                    Andromeda's girdle

                    Palilicium
                
                		
                    20.32.15

                    40.5.0
                
                		
                    Long. ♈

                    Lat. N.
                
                		
                    26.29.15

                    5.25.50
                
                		♈ 
                		
                    26.28.50

                    5.26.0
                
            


            
                		Feb.
7.8.37
                		 
 
                		 
 
                		Long. ♈
Lat. N.
                		27.4.46
7.3.29
                		♈ 
                		27.24.55
7.3.15
            


            
                		22.8.46
                		 
 
                		 
 
                		Long. ♈
Lat. N.
                		28.29.46
8.12.36
                		♈ 
                		28.29.58
8.10.25
            


            
                		March
1.8.16
                		 
 
                		 
 
                		Long. ♈
Lat. N.
                		29.18.15
8.36.26
                		♈ 
                		29.18.20
8.36.12
            


            
                		7.8.37
                		 
 
                		 
 
                		Long. ♉
Lat. N.
                		0.2.48
8.56.30
                		♉ 
                		0.2.42
8.56.56
            


        
    


    
        In February, the beginning of the year 1665, the first star
        of Aries, which I shall hereafter call γ, was in
        ♈ 28° 30′ 15″, with 7° 8′ 58″ north lat.;
        the second star of Aries was in ♈
        29° 17′ 18″, with 8° 28′ 16″ north lat.; and another star of the seventh
        magnitude, which I call A, was in ♈
        28° 24′ 45″, with 8° 28′ 33″ north lat. The comet Feb. 7d.7h.30′
        at Paris (that is, Feb. 7d.8h.30′
        at Dantzick) O. S. made a triangle with those stars γ and A,
        which was right-angled in γ; and the distance of the comet
        from the star γ was equal to the distance of the stars γ
        and A, that is, 1° 19′ 46″ of a great circle; and therefore in the
        parallel of the latitude of the star γ it was 1° 20′ 26″.
        Therefore if from the longitude of the star γ there be
        subducted the longitude 1° 20′ 26″, there will remain the longitude of
        the comet ♈ 27° 9′ 49″. M. Auzout,
        from this observation of his, placed the comet in ♈
        27° 0′, nearly; and, by the scheme in which Dr. Hooke
        delineated its motion, it was then in ♈
        26° 59′ 24″. I place it in ♈ 27°
        4′ 46″, taking the middle between the two extremes.
    


    
        From the same observations, M. Auzout made the latitude of
        the comet at that time 7° and 4′ or 5′ to the north; but he had done
        better to have made it 7° 3′ 29″, the difference of the latitudes of the
        comet and the star γ being equal to the difference of the
        longitude of the stars γ and A.
    


    
        February 22d.7h.30′ at London,
        that is, February 22d. 8h.46′ at Dantzick,
        the distance of the comet from the star A, according to Dr. Hooke's
        observation, as was delineated by himself in a scheme, and also by the
        observations of M. Auzout, delineated in like manner by M. Petit,
        was a fifth part of the distance between the star A and the first star
        of Aries, or 15′ 57″; and the distance of the comet from a right line
        joining the star A and the first of Aries was a fourth part of the same
        fifth part, that is, 4′; and therefore the comet was in ♈ 28° 29′ 46″, with 8° 12′ 36″ north lat.
    


    
        March 1, 7h at London, that is, March
        1, 8h.16′ at Dantzick. the comet was observed near
        the second star in Aries, the distance between them being to the
        distance between the first and second stars in Aries, that is, to 1°
        33′, as 4 to 45 according to Dr. Hooke, or as 2 to 23 according to M. Gottignies.
        And, therefore, the distance of the comet from the second star in Aries
        was 8′ 16″ according to Dr. Hooke, or 8′ 5″ according to M. Gottignies;
        or, taking a mean between both, 8′ 10″. But, according to M. Gottignies,
        the comet had gone beyond the second star of Aries about a fourth or a
        fifth part of the space that it commonly went over in a day, to wit,
        about 1′ 35″ (in which he agrees very well with M. Auzout);
        or, according to Dr. Hooke, not quite so much, as perhaps only
        1′. Wherefore if to the longitude of the first star in Aries we add 1′,
        and 8′ 10″ to its latitude, we shall have the longitude of the comet
        ♈ 29° 18′, with 8° 36′ 26″ north lat.
    


    
        March 7, 7h.30′ at Paris (that is, March
        7, 8h.37′ at Dantzick), from the observations of M.
        Auzout, the distance of the comet from the second star in Aries
        was equal to the distance of that star from the star A,
        that is, 52.′29″; and the difference of the longitude of the comet and
        the second star in Aries was 45′ or 46′, or, taking a mean quantity, 45′
        30″; and therefore the comet was in ♉
        0° 2′ 48″. From the scheme of the observations of M. Auzout,
        constructed by M. Petit, Hevelius collected the latitude of
        the comet 8° 54′. But the engraver did not rightly trace the curvature
        of the comet's way towards the end of the motion; and Hevelius,
        in the scheme of M. Auzout's observations which he constructed
        himself, corrected this irregular curvature, and so made the latitude of
        the comet 8° 55′ 30″. And, by farther correcting this irregularity, the
        latitude may become 8° 56, or 8° 57′.
    


    
        This comet was also seen March 9, and at that time its place
        must have been in ♉ 0° 18′, with
        9° 3½′ north lat. nearly.
    


    
        This comet appeared three months together, in which space of time it
        travelled over almost six signs, and in one of the days thereof
        described almost 20 deg. Its course did very much deviate from a great
        circle, bending towards the north, and its motion towards the end from
        retrograde became direct; and, notwithstanding its course was so
        uncommon, yet by the table it appears that the theory, from beginning to
        end, agrees with the observations no less accurately than the theories
        of the planets usually do with the observations of them: but we are to
        subduct about 2′ when the comet was swiftest, which we may effect by
        taking off 12″ from the angle between the ascending node and the
        perihelion, or by making that angle 49° 27′ 18″. The annual parallax of
        both these comets (this and the preceding) was very conspicuous, and by
        its quantity demonstrates the annual motion of the earth in the orbis
        magnus.
    


    
        This theory is likewise confirmed by the motion of that comet, which in
        the year 1683 appeared retrograde, in an orbit whose plane contained
        almost a right angle with the plane of the ecliptic, and whose ascending
        node (by the computation of Dr. Halley) was in
        ♍ 23° 23′; the inclination of its orbit to the
        ecliptic 83° 11′; its perihelion in ♊
        25° 29′ 30″; its perihelion distance from the sun 56020 of such parts as
        the radius of the orbis magnus contains 100000; and the time
        of its perihelion July 2d.3h.50′. And
        the places thereof, computed by Dr. Halley in this orbit, are
        compared with the places of the same observed by Mr. Flamsted,
        in the following table:— 
    


    
        
            
                		1683
Eq. time.
                		sun's place
                		Comet's
Long. com.
                		Lat. Nor.
comput.
                		Comet's
Long. obs'd
                		Lat.Nor.
observ'd
                		Diff.
Long.
                		Diff.
Lat.
            


            
                		
                    d.    h.    ′

                    
                    July 13.12.55

                    15.11.15

                    17.10.20

                    23.13.40

                    25.14.5

                    31.9.42

                    31.14.55

                    
                    Aug. 2.14.56

                    4.10.49

                    6.10.9

                    9.10.26

                    15.14.1

                    16.15.10

                    18.15.44

                    

                    22.14.44

                    23.15.52

                    26.16. 2
                
                		
                    °    ′    ″

                    ♌ 1.02.30

                    2.53.12

                    4.45.45

                    10.38.21

                    12.35.28

                    18.09.22

                    18.21.53

                    20.17.16

                    22.02.50

                    23.56.45

                    26.50.52

                    ♍ 2.47.13

                    3.48. 2

                    5.45.33

                    

                    9.35.49

                    10.36.48

                    13.31.10
                
                		
                    °    ′    ″

                    ♋ 13.05.42

                    11.37.48

                    10. 7. 6

                    5.10.27

                    3.27.53

                    ♊ 27.55. 3

                    27.41. 7

                    25.29.32

                    23.18.20

                    20.42.23

                    16 7.57

                    3.30.48

                    0.43. 7

                    ♉ 24.52.53

                    

                    11. 7.14

                    7. 2.18

                    ♈ 24.45.31
                
                		
                    °    ′    ″

                    29.28.13

                    29.34. 0

                    29.33.30

                    28.51.42

                    24.24.47

                    26.22.52

                    26.16.57

                    25.16.19

                    24.10.49

                    22.17. 5

                    20. 6.37

                    11.37.33

                    9.34.16

                    5.11.15

                    South.

                    5.16.58

                    8.17. 9

                    16.38. 0
                
                		
                    °    ′    ″

                    ♋ 13. 6.42

                    11.39.43

                    10. 8.40

                    5.11.30

                    3.27. 0

                    ♊ 27.54.24

                    27.41. 8

                    25.28.46

                    23.16.55

                    20.40.32

                    16. 5.55

                    3.26.18

                    0.41.55

                    ♉ 24.49. 5

                    

                    11.07.12

                    7. 1.17

                    ♈ 24.44.00
                
                		
                    °    ′    ″

                    29.28.20

                    29.34.50

                    29.34. 0

                    28.50.28

                    28.23.40

                    26.22.25

                    26.14.50

                    25.17.28

                    24.12.19

                    22.49. 5

                    20. 6.10

                    11.32. 1

                    9.34.13

                    5. 9.11

                    South

                    5.16.58

                    8.16.41

                    16.38.20
                
                		
                    ′    ″

                    + 1.00

                    + 1.55

                    + 1.34

                    + 1.03

                    - 0.53

                    - 0.39

                    + 0. 1

                    - 0.46

                    - 1.25

                    - 1.51

                    - 2. 2

                    - 4.30

                    - 1.12

                    - 3.48

                    

                    - 0. 2

                    - 1. 1

                    - 1.31
                
                		
                    ′    ″

                    + 0.07

                    + 0.50

                    + 0.30

                    - 1.14

                    -1. 7

                    - 0.27

                    - 2. 7

                    + 1. 9

                    + 1.30

                    + 2. 0

                    - 0.27

                    - 5.32

                    - 0. 3

                    - 2. 4

                    

                    -0. 3

                    - 0.28

                    + 0.20
                
            


        
    


    
        This theory is yet farther confirmed by the motion of that retrograde
        comet which appeared in the year 1682. The ascending node of this (by
        Dr. Halley's computation) was in ♉
        21° 16′ 30″; the inclination of its orbit to the plane of the ecliptic
        17° 56′ 00″; its perihelion in ♒
        2° 52′ 50″; its perihelion distance from the sun 58328 parts, of which
        the radius of the orbis magnus contains 100000; the equal time
        of the comet's being in its perihelion Sept. 4d.7h.39′.
        And its places, collected from Mr. Flamsted's observations,
        are compared with its places computed from our theory in the following
        table:—
    


    
        
            
                		1682
App. Time.
                		sun's place
                		Comet's
Long. comp.
                		Lat. Nor.
comp.
                		Com. Long.
observed.
                		Lat.Nor.
observ.
                		Diff.
Long.
                		Diff.
Lat.
            


            
                		
                    d.    h.    ′

                    
                    Aug. 19.16.38

                    20.15.38

                    21. 8.21

                    22. 8. 8

                    29.08.20

                    30. 7.45

                    
                    Sept. 1. 7.33

                    4. 7.22

                    5. 7.32

                    8. 7.16

                    9. 7.26
                
                		
                    °    ′    ″

                    ♍ 7. 0. 7

                    7.55 52

                    8.36.14

                    9.33.55

                    16.22.40

                    17.19.41

                    19.16. 9

                    22.11.28

                    23.10.29

                    26. 5.58

                    27. 5. 9
                
                		
                    °    ′    ″

                    ♌ 18.14 28

                    24.46.23

                    29.37.15

                    ♍ 6.29.53

                    ♎ 12.37.54

                    15 36. 1

                    20.30.53

                    25.42. 0

                    27. 0.46

                    29.58.44

                    ♏ 0.44.10
                
                		
                    °    ′    ″

                    25.50. 7

                    26.14.42

                    26.20. 3

                    26. 8.42

                    18.37.47

                    17.26.43

                    15.13. 0

                    12.23.48

                    11.33.08

                    9.26.46

                    8.49.10
                
                		
                    °    ′    ″

                    ♌ 18.14.40

                    24.46.22

                    29.38.02

                    ♍ 6.30. 3

                    ♎ 12.37.49

                    15.35.18

                    20.27. 4

                    25.40.58

                    26.59.24

                    29.58.45

                    ♏ 0.44. 4
                
                		
                    °    ′    ″

                    25.49.55

                    26.12.52

                    26.17.37

                    26. 7.12

                    18.34. 5

                    17.27.17

                    15. 9.49

                    12.22. 0

                    11.33.51

                    9.26.43

                    8.48.25
                
                		
                    ′    ″

                    - 0.12

                    + 0. 1

                    - 0.47

                    - 0.10

                    + 0. 5

                    + 0.43

                    + 3.49

                    + 1. 2

                    + 1.22

                    - 0.1

                    + 0. 6
                
                		
                    ′    ″

                    + 0.12

                    + 1.50

                    + 2.26

                    + 1.30

                    + 3.42

                    - 0.34

                    + 3.11

                    + 1.48

                    - 0.43

                    + 0. 3

                    + 0.45
                
            


        
    


    
        This theory is also confirmed by the retrograde motion of the comet
        that appeared in the year 1723. The ascending node of this comet
        (according to the computation of Mr. Bradley, Savilian
        Professor of Astronomy at Oxford) was in ♈
        14° 16′. The inclination of the orbit to the plane of the ecliptic 49°
        59′. Its perihelion was in ♉ 12°
        15′ 20″. Its perihelion distance from the sun 998651 parts, of which the
        radius of the orbis magnus contains 1000000, and the equal
        time of its perihelion September 16d 16h.10′.
        The places of this comet computed in this orbit by Mr. Bradley,
        and compared with the places observed by himself, his uncle Mr. Pound,
        and Dr. Halley, may be seen in the following table.
    


    
        
            
                		1723
Eq. Time.
                		Comet's
Long. obs.
                		Lat. Nor.
obs.
                		Comet's
Lon. com.
                		Lat.Nor.
comp.
                		Diff.
Lon.
                		Diff.
Lat.
            


            
                		
                    d.    h.    ′

                    
                    Oct. 9.8. 5

                    10.6.21

                    12.7.22

                    14.8.57

                    15.6.35

                    21.6.22

                    22. 6.24

                    24.8. 2

                    29.8.56

                    30.6.20

                    
                    Nov. 5.5.53

                    8.7. 6

                    14.6.20

                    20.7.45

                    
                    Dec. 7.6.45
                
                		
                    °    ′    ″

                    ♒ 7.22.15

                    6.41.12

                    5.39.58

                    4.59.49

                    4.47.41

                    4. 2.32

                    3.59. 2

                    3.55.29

                    3.56.17

                    3.58. 9

                    4.16.30

                    4.29.36

                    5. 2.16

                    5.42.20

                    8. 4.13
                
                		
                    °    ′    ″

                    5. 2. 0

                    7.44.13

                    11.55. 0

                    14.43.50

                    15.40.51

                    19.41.49

                    20. 8.12

                    20.55.18

                    22.20.27

                    22.32.28

                    23.38 33

                    24. 4.30

                    24.48.46

                    25.24.45

                    26.54.18
                
                		
                    °    ′    ″

                    ♒7.21.26

                    6.41.42

                    5.40.19

                    5. 0.37

                    4.47.45

                    4. 2.21

                    3.59.10

                    3.55.11

                    3.56.42

                    3.58.17

                    4.16.23

                    4.29.54

                    5. 2.51

                    5.43.13

                    8. 3.55
                
                		
                    °    ′    ″

                    5. 2 47

                    7.43.18

                    11.54.55

                    14.44. 1

                    15.40.55

                    19.42. 3

                    20. 8.17

                    20.55. 9

                    22.20.10

                    22.32.12

                    23.38. 7

                    24. 4.40

                    24.48.16

                    25.25.17

                    26.53.42
                
                		
                    ″

                    + 49

                    - 50

                    - 21

                    - 48

                    - 4

                    + 11

                    - 8

                    + 18

                    - 25

                    - 8

                    + 7

                    - 18

                    - 35

                    - 53

                    + 18
                
                		
                    ″

                    - 47

                    + 55

                    + 5

                    - 11

                    - 4

                    - 14

                    - 5

                    + 9

                    + 17

                    + 16

                    + 26

                    - 10

                    + 30

                    - 32

                    + 36
                
            


        
    


    
        From these examples it is abundantly evident that the motions of comets
        are no less accurately represented by our theory than the motions of the
        planets commonly are by the theories of them; and, therefore, by means
        of this theory, we may enumerate the orbits of comets, and so discover
        the periodic time of a comet's revolution in any orbit; whence, at last,
        we shall have the transverse diameters of their elliptic orbits and
        their aphelion distances.
    


    
        That retrograde comet which appeared in the year 1607 described an
        orbit whose ascending node (according to Dr. Halley's
        computation) was in ♉ 20° 21′;
        and the inclination of the plane of the orbit to the plane of the
        ecliptic 17° 2′; whose perihelion was in ♒
        2° 16′; and its perihelion distance from the sun 58680 of such parts as
        the radius of the orbis magnus contains 100000; and the comet
        was in its perihelion October 16d.3h.50′;
        which orbit agrees very nearly with the orbit of the comet which was
        seen in 1682. If these were not two different comets, but one and the
        same, that comet will finish one revolution in the space of 75 years;
        and the greater axis of its orbit will be to the greater axis of the orbis
        magnus as ∛752 to 1, or as
        1778 to 100, nearly. And the aphelion distance of this comet from the
        sun will be to the mean distance of the earth from the sun as about 35
        to 1; from which data it will be no hard matter to determine the
        elliptic orbit of this comet. But these things are to be supposed on
        condition, that, after the space of 75 years, the same comet shall
        return again in the same orbit. The other comets seem to ascend to
        greater heights, and to require a longer time to perform their
        revolutions.
    


    
        But, because of the great number of comets, of the great distance of
        their aphelions from the sun, and of the
        slowness of their motions in the aphelions, they will, by their mutual
        gravitations, disturb each other; so that their eccentricities and the
        times of their revolutions will be sometimes a little increased, and
        sometimes diminished. Therefore we are not to expect that the same comet
        will return exactly in the same orbit, and in the same periodic times:
        it will be sufficient if we find the changes no greater than may arise
        from the causes just spoken of.
    


    
        And hence a reason may be assigned why comets are not comprehended
        within the limits of a zodiac, as the planets are; but, being confined
        to no bounds, are with various motions dispersed all over the heavens;
        namely, to this purpose, that in their aphelions, where their motions
        are exceedingly slow, receding to greater distances one from another,
        they may suffer less disturbance from their mutual gravitations: and
        hence it is that the comets which descend the lowest, and therefore move
        the slowest in their aphelions, ought also to ascend the highest.
    


    
        The comet which appeared in the year 1680 was in its perihelion less
        distant from the sun than by a sixth part of the sun's diameter; and
        because of its extreme velocity in that proximity to the sun, and some
        density of the sun's atmosphere, it must have suffered some resistance
        and retardation; and therefore, being attracted something nearer to the
        sun in every revolution, will at last fall down upon the body of the
        sun. Nay, in its aphelion, where it moves the slowest, it may sometimes
        happen to be yet farther retarded by the attractions of other comets,
        and in consequence of this retardation descend to the sun. So fixed
        stars, that have been gradually wasted by the light and vapours emitted
        from them for a long time, may be recruited by comets that fall upon
        them; and from this fresh supply of new fuel those old stars, acquiring
        new splendor, may pass for new stars. Of this kind are such fixed stars
        as appear on a sudden, and shine with a wonderful brightness at first,
        and afterwards vanish by little and little. Such was that star which
        appeared in Cassiopeia's chair; which Cornelius Gemma
        did not see upon the 8th of November, 1572, though he was
        observing that part of the heavens upon that very night, and the sky was
        perfectly serene; but the next night (November 9) he saw it
        shining much brighter than any of the fixed stars, and scarcely inferior
        to Venus in splendor. Tycho Brahe saw it upon the
        11th of the same month, when it shone with the greatest lustre; and from
        that time he observed it to decay by little and little; and in 16
        months' time it entirely disappeared. In the month of November,
        when it first appeared, its light was equal to that of Venus.
        In the month of December its light was a little diminished,
        and was now become equal to that of Jupiter. In January 1573
        it was less than Jupiter, and greater than Sirius;
        and about the end of February and the beginning of March
        became equal to that star. In the months of April and May
        it was equal to a star of the second magnitude; in
        June, July, and August, to a star of the third
        magnitude; in September, October, and November, to
        those of the fourth magnitude; in December and January
        1574 to those of the fifth; in February to those of the sixth
        magnitude; and in March it entirely vanished. Its colour at
        the beginning was clear, bright, and inclining to white; afterwards it
        turned a little yellow; and in March 1573 it became ruddy,
        like Mars or Aldebaran: in May it turned
        to a kind of dusky whiteness, like that we observe in Saturn;
        and that colour it retained ever after, but growing always more and more
        obscure. Such also was the star in the right foot of Serpentarius,
        which Kepler's scholars first observed September 30,
        O.S. 1604, with a light exceeding that of Jupiter, though the
        night before it was not to be seen; and from that time it decreased by
        little and little, and in 15 or 16 months entirely disappeared. Such a
        new star appearing with an unusual splendor is said to have moved Hipparchus
        to observe, and make a catalogue of, the fixed stars. As to those fixed
        stars that appear and disappear by turns, and increase slowly and by
        degrees, and scarcely ever exceed the stars of the third magnitude, they
        seem to be of another kind, which revolve about their axes, and, having
        a light and a dark side, shew those two different sides by turns. The
        vapours which arise from the sun, the fixed stars, and the tails of the
        comets, may meet at last with, and fall into, the atmospheres of the
        planets by their gravity, and there be condensed and turned into water
        and humid spirits; and from thence, by a slow heat, pass gradually into
        the form of salts, and sulphurs, and tinctures, and mud, and clay, and
        sand, and stones, and coral, and other terrestrial substances.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 3.2




    Phaenomena, or Appearances.



    
        Phaenomenon I.


            
                
                    That the circumjovial planets, by radii drawn to Jupiter's
                    centre, describe areas proportional to the times of description;
                    and that their periodic times, the fixed stars being at rest, are
                    in the sesquiplicate proportion of their distances from, its centre.
                
            


        

        
            This we know from astronomical observations. For the orbits of these
            planets differ but insensibly from circles concentric to Jupiter; and
            their motions in those circles are found to be uniform. And all
            astronomers agree that their periodic times are in the sesquiplicate
            proportion of the semi-diameters of their orbits; and so it manifestly
            appears from the following table.
        


        The periodic times of the satellites of Jupiter.


        
            1d.18h.27′.34″. 3d.13h.13′42″.
            7d.3h.42′36″. 16d.16h.32′9″.
        


        The distances of the satellites from Jupiter's centre. 


        
            
                
                    		From the observations of 
                    		1
                    		2
                    		3
                    		4
                    		  
                


                
                    		
                        Borelli

                        Townly by the Microm.

                        Cassini by the Telescope

                        Cassini by the eclip. of the satel.
                    
                    		
                        5⅔

                        5,52

                        5

                        5⅔
                    
                    		
                        8⅔

                        8,78

                        8

                        9
                    
                    		
                        14

                        13,47

                        13

                        1423/60
                    
                    		
                        24⅔

                        24,72

                        23

                        253/10
                    
                    		semi-diameter of Jupiter. 
                


                
                    		From the periodic times

                    		5,667
                    		9,017
                    		14,384
                    		25,299
                    		 
 
                


            
        


        
            Mr. Pound has determined, by the help of excellent
            micrometers, the diameters of Jupiter and the elongation of its
            satellites after the following manner. The greatest heliocentric
            elongation of the fourth satellite from Jupiter's centre was taken
            with a micrometer in a 15 feet telescope, and at the mean distance of
            Jupiter from the earth was found about 8′ 16″. The elongation of the
            third satellite was taken with a micrometer in a telescope of 123
            feet, and at the same distance of Jupiter from the earth was found 4′
            42″. The greatest elongations of the other satellites, at the same
            distance of Jupiter from the earth, are found from the periodic times
            to be 2′ 56″ 47‴, and 1′ 51″ 6‴.
        


        
            The diameter of Jupiter taken with the micrometer in a 123 feet
            telescope several times, and reduced to Jupiter's mean distance from
            the earth, proved always less than 40″, never less than 38″, generally
            39″. This diameter in shorter telescopes is 40″, or 41″; for Jupiter's
            light is a little dilated by the unequal refrangibility of the rays,
            and this dilatation bears less ratio to the diameter of Jupiter in the
            longer and more perfect telescopes than in those which are shorter and
            less perfect. The times in which two
            satellites, the first and the third, passed over Jupiter's body, were
            observed, from the beginning of the ingress to the beginning of the
            egress, and from the complete ingress to the complete egress, with the
            long telescope. And from the transit of the first satellite, the
            diameter of Jupiter at its mean distance from the earth came forth 37
            1

            8 “. and from the transit of the third
            37 3

            8 “. There was observed also the time
            in which the shadow of the first satellite passed over Jupiter's body,
            and thence the diameter of Jupiter at its mean distance from the earth
            came out about 37″. Let us suppose its diameter to be 37¼″ very
            nearly, and then the greatest elongations of the first, second, third,
            and fourth satellite will be respectively equal to 5,965, 9,494,
            15,141, and 26,63 semi-diameters of Jupiter.
        


    

    
        Phaenomenon ii.


            
                
                    That the circumsaturnal planets, by radii drawn to Saturn's
                    centre, describe areas proportional to the times of description;
                    and that their periodic times, the fixed stars being at rest, are
                    in the sesquiplicate proportion of their distances from its  centre.
                
            


        

        
            For, as Cassini from his own observations has determined,
            their distances from Saturn's centre and their periodic times are as
            follow.
        


        The periodic times of the satellites of Saturn. 


        
            1d.21h.18′27″. 2d.17h.41′22″.
            4d.12h.25′12″. 15d.22h.41′14″. 79d.7h.48′00″.
        


        The distances of the satellites from Saturn's centre, in semi-diameters of its ring.


        
            
                
                    		From observations 
                    		1 19
 20. 
                    		2½.
                    		3½.
                    		8.
                    		24.
                


                
                    		From the periodic times 
                    		1,93.
                    		2,47.
                    		3,45.
                    		8.
                    		23,35.
                


            
        


        
            The greatest elongation of the fourth satellite from Saturn's centre
            is commonly determined from the observations to be eight of those
            semi-diameters very nearly. But the greatest elongation of this
            satellite from Saturn's centre, when taken with an excellent
            micrometer in Mr. Huygens' telescope of 123 feet, appeared
            to be eight semi-diameters and 7

            10 of a semi-diameter. And from this
            observation and the periodic times the distances of the satellites
            from Saturn's centre in semi-diameters of the ring are 2.1. 2,69.
            3,75. 8,7. and 25,35. The diameter of Saturn observed in the same
            telescope was found to be to the diameter of the ring as 3 to 7; and
            the diameter of the ring, May 28-29, 1719, was found to be
            43″; and thence the diameter of the ring when Saturn is at its mean
            distance from the earth is 42″, and the diameter of Saturn 18″. These
            things appear so in very long and excellent telescopes, because in
            such telescopes the apparent magnitudes of the heavenly bodies bear a
            greater proportion to the dilatation of light in the extremities of
            those bodies than in shorter telescopes. If
            we, then, reject all the spurious light, the diameter of Saturn will
            not amount to more than 16″.
        


    

    
        Phaenomenon iii.


            
                
                    That the five primary planets, Mercury, Venus, Mars, Jupiter,
                    and Saturn, with their several orbits, encompass the sun.
                
            


        

        
            That Mercury and Venus revolve about the sun, is evident from their
            moon-like appearances. When they shine out with a full face, they are,
            in respect of us, beyond or above the sun; when they appear half full,
            they are about the same height on one side or other of the sun; when
            horned, they are below or between us and the sun; and they are
            sometimes, when directly under, seen like spots traversing
            the sun's disk. That Mars surrounds the sun, is as plain from its full
            face when near its conjunction with the sun, and from the gibbous
            figure which it shews in its quadratures. And the same thing is
            demonstrable of Jupiter and Saturn, from their appearing full in all
            situations; for the shadows of their satellites that appear sometimes
            upon their disks make it plain that the light they shine with is not
            their own, but borrowed from the sun.
        


    

    
        Phaenomenon iv.


            
                
                    That the fixed stars being at rest, the periodic times of the
                    five primary planets, and (whether of the sun, about the earth,
                    or) of the earth about the sun, are in the sesquiplicate
                    proportion of their mean distances from the sun.
                
            


        

        
            This proportion, first observed by Kepler, is now received
            by all astronomers; for the periodic times are the same, and the
            dimensions of the orbits are the same, whether the sun revolves about
            the earth, or the earth about the sun. And as to the measures of the
            periodic times, all astronomers are agreed about them. But for the
            dimensions of the orbits, Kepler and Bullialdus,
            above all others, have determined them from observations with the
            greatest accuracy; and the mean distances corresponding to the
            periodic times differ but insensibly from those which they have
            assigned, and for the most part fall in between them; as we may see
            from the following table.
        


        
            The periodic times with respect to the fixed stars, of the
            planets and earth revolving about the sun, in days and
            decimal parts of a day.
        


        
            
                
                    		♄
                    		♃
                    		♂
                    		♁
                    		♀
                    		☿
                


                
                    		10759,275.
                    		4332,514.
                    		686,9785.
                    		365,2565.
                    		224,6176.
                    		87,9692.
                


            
        


        The mean distances of the planets and of the earth from the sun. 


        
            
                
                    		 
 
                    		♄
                    		♃
                    		♂
                


                
                    		According to Kepler
                    		951000.
                    		519650.
                    		152350.
                


                
                    		According to Bullialdus
                    		954198.
                    		522520.
                    		152350.
                


                
                    		According to the periodic times
                    		954006.
                    		520096.
                    		152369
                


            
        


          


        
            
                
                    		 
 
                    		♁
                    		♀
                    		☿
                


                
                    		According to Kepler
                    		100000.
                    		72400.
                    		38806.
                


                
                    		According to Bullialdus
                    		100000.
                    		72398.
                    		38585.
                


                
                    		According to the periodic times
                    		100000.
                    		72333.
                    		38710
                


            
        


        
            As to Mercury and Venus, there can be no doubt about their distances
            from the sun; for they are determined by the elongations of those
            planets from the sun; and for the distances of the superior planets,
            all dispute is cut off by the eclipses of the satellites of Jupiter.
            For by those eclipses the position of the shadow which Jupiter
            projects is determined; whence we have the heliocentric longitude of
            Jupiter. And from its heliocentric and geocentric longitudes compared
            together, we determine its distance.
        


    

    
        Phaenomenon V.


            
                
                    Then the primary planets, by radii drawn to the earth, describe
                    areas no wise proportional to the times; but that the areas which
                    they describe by radii drawn to the sun are proportional to the
                    times of description.
                
            


        

        
            For to the earth they appear sometimes direct, sometimes stationary,
            nay, and sometimes retrograde. But from the sun they are always seen
            direct, and to proceed with a motion nearly uniform, that is to say, a
            little swifter in the perihelion and a little slower in the aphelion
            distances, so as to maintain an equality in the description of the
            areas. This a noted proposition among astronomers, and particularly
            demonstrable in Jupiter, from the eclipses of his satellites; by the
            help of which eclipses, as we have said, the heliocentric longitudes
            of that planet, and its distances from the sun, are determined.
        


    

    
        Phaenomenon vi.


            
                
                    That the moon, by a radius drawn to the earth's centre,
                    describes an area proportional to the time of description.
                
            


        

        
            This we gather from the apparent motion of the moon, compared with
            its apparent diameter. It is true that the motion of the moon is a
            little disturbed by the action of the sun: but in laying down these
            Phenomena I neglect those small and inconsiderable errors.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.5




    
        Section V.


        How the orbits are to be found when neither focus is given.



    

    
        Lemma xvii.


            
                If from any point P of a given conic section, to the
                four produced sides AB, CD, AC, DB, of any trapezium
                ABDC inscribed in that section, as many right lines PQ,
                PR, PS, PT are drawn in given angles, each line to each side;
                the rectangle PQ x PR of those on the opposite sides
                AB, CD, will be to the rectangle PS x PT of those on
                the other two opposite sides AC, BD, in a given ratio.
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            Case 1. Let us suppose, first, that the lines
            drawn to one pair of opposite sides are parallel to either of the
            other sides; as PQ and PR to the side AC, and PS and PT to the side
            AB. And farther, that one pair of the opposite sides, as AC and BD,
            are parallel betwixt themselves; then the right line which bisects
            those parallel sides will be one of the diameters of the conic
            section, and will likewise bisect RQ. Let O be the point in which RQ
            is bisected, and PO will be an ordinate to that diameter. Produce PO
            to K, so that OK may be equal to PO, and OK will be an ordinate on the
            other side of that diameter. Since, therefore, the points A, B, P and
            K are placed in the conic section, and PK cuts AB in a given angle,
            the rectangle PQK (by Prop. XVII., XIX., XXI. and XXIII., Book III.,
            of Apollonius's Conics) will be to the rectangle AQB in a given ratio.
            But QK and PR are equal, as being the differences of the equal lines
            OK, OP, and OQ, OR; whence the rectangles PQK and PQ x PR are equal;
            and therefore the rectangle PQ x PR is to the rectangle A B, that is,
            to the rectangle PS x PT in a given ratio.   Q.E.D
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            Case 2. Let us next suppose that the opposite
            sides AC and BD of the trapezium are not parallel. Draw Bd
            parallel to AC, and meeting as well the right line ST in t,
            as the conic section in d. Join Cd cutting PQ in r,
            and draw DM parallel to PQ, cutting Cd in M, and AB in N.
            Then (because of the similar triangles BTt, DBN), Bt
            or PQ is to Tt as DN to NB. And so Rr is to AQ or PS
            as DM to AN. Wherefore, by multiplying the antecedents by the
            antecedents, and the consequents by the consequents, as the rectangle
            PQ x Rr is to the rectangle PS x Tt, so will the
            rectangle NDM be to the rectangle ANB; and (by Case 1) so is the
            rectangle PQ x Pr to the rectangle PS x Pt; and by
            division, so is the rectangle PQ x PR to the rectangle PS x PT.
              Q.E.D.
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            Case 3. Let us suppose, lastly, the four
            lines PQ, PR, PS, PT, not to be parallel to the sides AC, AB, but any
            way inclined to them. In their place draw Pq, Pr,
            parallel to AC; and Ps, Pt parallel to AB; and
            because the angles of the triangles PQq, PRr, PSs,
            PTt are given, the ratios of PQ to Pq, PR to Pr,
            PS to Ps, PT to Pt will be also given; and therefore
            the compounded ratios PQ x PR to Pq x Pr, and PS x
            PT to Ps x Pt are given. But from what we have
            demonstrated before, the ratio of Pq x Pr to Ps
            x Pt is given; and therefore also the ratio of PQ x PR to PS
            x PT.   Q.E.D.
        


    

    
        Lemma xviii.


            
                The same things supposed, if the rectangle PQ x PR of
                the lines drawn to the two opposite sides of the trapezium is to
                the rectangle PS x PT of those drawn to the other two
                sides in a given ratio, the point P, from whence those
                lines are drawn, will be placed in a conic section described about
                the trapezium.
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            Conceive a conic section to be described passing through the points A,
            B, C, D, and any one of the infinite number of points P, as for
            example p; I say, the point P will be always placed in this
            section. If you deny the thing, join AP cutting this conic section
            somewhere else, if possible, than in P, as in b. Therefore
            if from those points p and b, in the given angles
            to the sides of the trapezium, we draw the right lines pq, pr,
            ps, pt, and bk, bn, bf, bd, we shall have, as bk
            x bn to bf x bd, so (by Lem.
            XVII) pq x pr to ps x pt; and so (by supposition)
            PQ x PR to PS x PT. And because of the similar trapezia bkAf,
            PQAS, as bk to bf, so PQ to PS. Wherefore by
            dividing the terms of the preceding proportion by the correspondent
            terms of this, we shall have bn to bd as PR to PT.
            And therefore the equiangular trapezia Dnbd, DRPT, are
            similar, and consequently their diagonals Db, DP do coincide.
            Wherefore b falls in the intersection of the right lines AP,
            DP, and consequently coincides with the point P. And therefore the
            point P, wherever it is taken, falls to be in the assigned conic
            section.   Q.E.D.
        


        
            Cor. Hence if three right lines PQ, PR, PS,
            are drawn from a common point P, to as many other right lines given in
            position, AB, CD, AC, each to each, in as many angles respectively
            given, and the rectangle PQ x PR under any two of the lines drawn be
            to the square of the third PS in a given ratio; the point P, from
            which the right lines are drawn, will be placed in a conic section
            that touches the lines AB, CD in A and C; and the contrary. For the
            position of the three right lines AB, CD, AC remaining the same, let
            the line BD approach to and coincide with the line AC; then let the
            line PT come likewise to coincide with the line PS; and the rectangle
            PS x PT will become PS², and the right lines AB, CD, which before did
            cut the curve in the points A and B, C and D, can no longer cut, but
            only touch, the curve in those coinciding points.
        


    

    
        Scholium.
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            In this Lemma, the name of conic section is to be understood in a
            large sense, comprehending as well the rectilinear section through the
            vertex of the cone, as the circular one parallel to the base. For if
            the point p happens to be in a right line, by which the
            points A and D, or C and B are joined, the conic section will be
            changed into two right lines, one of which is that right line upon
            which the point p falls, and the other is a right line that
            joins the other two of the four points. If the two opposite angles of
            the trapezium taken together are equal to two right angles, and if the
            four lines PQ, PR, PS, PT, are drawn to the sides thereof at right
            angles, or any other equal angles, and the rectangle PQ x PR under two
            of the lines drawn PQ and PR, is equal to the rectangle PS x PT under
            the other two PS and PT, the conic section will become a circle. And
            the same thing will happen if the four lines are drawn in any angles,
            and the rectangle PQ x PR, under one pair of the lines drawn, is to
            the rectangle PS x PT under the other pair as the rectangle under the
            sines of the angles S, T, in which the two last lines PS, PT are drawn
            to the rectangle under the sines of the angles Q, R, in which the
            first two PQ, PR are drawn. In all other
            cases the locus of the point P will be one of the three figures which
            pass commonly by the name of the conic sections. But in room of the
            trapezium ABCD, we may substitute a quadrilateral figure whose two
            opposite sides cross one another like diagonals. And one or two of the
            four points A, B, C, D may be supposed to be removed to an infinite
            distance, by which means the sides of the figure which converge to
            those points, will become parallel; and in this case the conic section
            will pass through the other points, and will go the same way as the
            parallels in infinitum.
        


    

    
        Lemma xix.


            
                To find a point P from which if four right lines
                PQ, PR, PS, PT are drawn to as many other right lines AB,
                CD, AC, BD, given by position, each to each, at given angles,
                the rectangle PQ x PR, under any two of the lines drawn,
                shall be to the rectangle PS x PT, under the other two,
                in a given ratio.
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            Suppose the lines AB, CD, to which the two right lines PQ, PR,
            containing one of the rectangles, are drawn to meet two other lines,
            given by position, in the points A, B, C, D. From one of those, as A,
            draw any right line AH, in which you would find the point P. Let this
            cut the opposite lines BD, CD, in H and I; and, because all the angles
            of the figure are given, the ratio of PQ to PA, and PA to PS, and
            therefore of PQ to PS, will be also given. Subducting this ratio from
            the given ratio of PQ x PR to PS x PT, the ratio of PR to PT will be
            given; and adding the given ratios of PI to PR, and PT to PH, the
            ratio of PI to PH, and therefore the point P will be given.
              Q.E.I.
        


        
            Cor. 1. Hence also a tangent may be drawn to
            any point D of the locus of all the points P. For the chord PD, where
            the points P and D meet, that is, where AH is drawn through the point
            D, becomes a tangent. In which case the ultimate ratio of the
            evanescent lines IP and PH will be found as above. Therefore draw CF
            parallel to AD, meeting BD in F, and cut it in E in the same ultimate
            ratio, then DE will be the tangent; because CF and the evanescent IH
            are parallel, and similarly cut in E and P.
        


        
            Cor. 2. Hence also the locus of all the
            points P may be determined. Through any of the points A, B, C, D, as
            A, draw AE touching the locus, and through any other point B parallel
            to the tangent, draw BF meeting the locus in F; and find the point F
            by this Lemma. Bisect BF in G, and, drawing the indefinite line AG,
            this will be the position of the diameter to which BG and FG are
            ordinates. Let this AG meet the locus 
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            in H, and AH will be its diameter or latus transversum, to which the
            latus rectum will be as BG² to AG x GH. If AG nowhere meets the locus,
            the line AH being infinite, the locus will be a parabola; and its
            latus rectum corresponding to the diameter AG will be 
            BG2

            AG. But if it does meet it anywhere,
            the locus will be an hyperbola, when the points A and H are placed on
            the same side the point G; and an ellipsis, if the point G falls
            between the points A and H; unless, perhaps, the angle AGB is a right
            angle, and at the same time BG² equal to the rectangle AGH, in which
            case the locus will be a circle.
        


        
            And so we have given in this Corollary a solution of that famous
            Problem of the ancients concerning four lines, begun by Euclid, and
            carried on by Apollonius; and this not an analytical calculus, but a
            geometrical composition, such as the ancients required.
        


    

    
        Lemma xx.


            
                If the two opposite angular points A and P of
                any parallelogram ASPQ touch any conic section in the
                points A and P; and the sides AQ, AS of
                one of those angles, indefinitely produced, meet the same conic
                section in B and C; and from the points of
                concourse B and C to any fifth point D of
                the conic section, two right lines BD, CD are drawn
                meeting the two other sides PS, PQ of the parallelogram,
                indefinitely produced in T and R; the parts
                PR and PT, cut off from the sides, will always be one
                to the other in a given ratio. And vice versa, if those
                parts cut off are one to the other in a given ratio, the locus of
                the point D will be a conic section passing through the
                four points A, B, C, P.
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            Case 1. Join BP, CP, and from the point D
            draw the two right lines DG, DE, of which the first DG shall be
            parallel to AB, and meet PB, PQ, CA in H, I, G; and the other DE shall
            be parallel to AC, and meet PC, PS, AB, in F, K, E; and (by Lem. XVII)
            the rectangle DE x DF will be to the rectangle DG x DH in a given
            ratio. But PQ is to DE (or IQ) as PB to HB, and consequently as PT to
            DH; and by permutation PQ is to PT as DE to DH. Likewise PR is to DF
            as RC to DC, and therefore as (IG or) PS to DG; and by permutation PR
            is to PS as DF to DG; and, by compounding those ratios, the rectangle
            PQ x PR will be to the rectangle PS x PT as the rectangle DE x DF is
            to the rectangle DG x DH, and consequently in a given ratio. But PQ
            and PS are given, and therefore the ratio of PR to PT is given.
              Q.E.D.
        


        
            Case 2. But if PR and
            PT are supposed to be in a given ratio one to the other, then by going
            back again, by a like reasoning, it will follow that the rectangle DE
            x DF is to the rectangle DG x DH in a given ratio; and so the point D
            (by Lem. XVIII) will lie in a conic section passing through the points
            A, B, C, P, as its locus.   Q.E.D.
        


        
            Cor. 1. Hence if we draw BC cutting PQ in r
            and in PT take Pt to Pr in the same ratio which PT
            has to PR; then Bt will touch the conic section in the point
            B. For suppose the point D to coalesce with the point B, so that the
            chord BD vanishing, BT shall become a tangent, and CD and BT will
            coincide with CB and Bt.
        


        
            Cor. 2. And, vice versa, if Bt is a
            tangent, and the lines BD, CD meet in any point D of a conic section,
            PR will be to PT as Pr to Pt. And, on the contrary,
            if PR is to PT as Pr to Pt, then BD and CD will meet
            in some point D of a conic section.
        


        
            Cor. 3. One conic section cannot cut another
            conic section in more than four points. For, if it is possible, let
            two conic sections pass through the five points A, B, C, P, O; and let
            the right line BD cut them in the points D, d, and the right
            line Cd cut the right line PQ in q. Therefore PR is
            to PT as Pq to PT: whence PR and Pq are equal one to
            the other, against the supposition.
        


    

    
        Lemma xxi.


            
                If two moveable and indefinite right lines BM, CM drawn
                through given points B, C, as poles, do by their point of
                concourse M describe a third right line MN given
                by position; and other two indefinite right lines BD, CD are
                drawn, making with the former two at those given points B, C,
                given angles, MBD, MCD: I say, that those two right lines
                BD, CD will by their point of concourse D describe a
                conic section passing through the points B, C. And,
                vice versa, if the right lines BD, CD do by their
                point of concourse D describe a conic section passing
                through the given points B, C, A, and the angle DBM
                Is always equal to the given angle ABC, as well as the
                angle DCM always equal to the given angle ACB,
                the point M will lie in a right line given by position,as its locus.
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            For in the right line MN let a point N be given, and when
            the moveable point M falls on the immoveable point N. let the moveable
            point D fall on an immovable point P. Join CN, BN, CP, BP, and from
            the point P draw the right lines PT, PR meeting BD, CD in T and R, and
            making the angle BPT equal to the given angle BNM, and the angle CPR
            equal to the given angle CNM. Wherefore since (by
            supposition) the angles MBD, NBP are equal, as also the angles MCD,
            NCP, take away the angles NBD and NCD that are common, and there will
            remain the angles NBM and PBT, NCM and PCR equal; and therefore the
            triangles NBM, PBT are similar, as also the triangles NCM, PCR.
            Wherefore PT is to NM as PB to NB; and PR to NM as PC to NC. But the
            points, B, C, N, P are immovable: wherefore PT and PR have a given
            ratio to NM, and consequently a given ratio between themselves; and
            therefore, (by Lemma XX) the point D wherein the moveable right lines
            BT and CR perpetually concur, will be placed in a conic section
            passing through the points B, C, P.   Q.E.D.
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            And, vice versa, if the moveable point D lies in a conic
            section passing through the given points B, C, A; and the angle DBM is
            always equal to the given angle ABC, and the angle DCM always equal to
            the given angle ACB, and when the point D falls successively on any
            two immovable points p, P, of the conic section, the
            moveable point M falls successively on two immovable points n,
            N. Through these points n, N, draw the right line nN:
            this line nN will be the perpetual locus of that moveable
            point M. For, if possible, let the point M be placed in any curve
            line. Therefore the point D will be placed in a conic section passing
            through the five points B, C, A, p, P, when the point M is
            perpetually placed in a curve line. But from what was demonstrated
            before, the point D will be also placed in a conic section passing
            through the same five points B, C, A, p, when the point M is
            perpetually placed in a right line. Wherefore the two conic sections
            will both pass through the same five points, against Corol. 3, Lem.
            XX. It is therefore absurd to suppose that the point M is placed in a
            curve line.   Q.E.D.
        


    

    
        Proposition xxii. Problem xiv.


            To describe a trajectory that shall pass through five given points.
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            Let the five given points be A, B, C, P, D. From any one of them, as
            A, to any other two as B, C, which may be called the poles, draw the
            right lines AB, AC, and parallel to those the lines TPS, PRQ, through
            the fourth point P. Then from the two poles B, C, draw through the
            fifth point D two indefinite lines BDT, CRD, meeting with the last
            drawn lines TPS, PRQ (the former with the
            former, and the latter with the latter) in T and R. Then drawing the
            right line tr parallel to TR, cutting off from the right
            lines PT, PR, any segments Pt, Pr, proportional to
            PT, PR; and if through their extremities, t, r, and the
            poles B, C, the right lines Bt, Cr are drawn,
            meeting in d, that point d will be placed in the
            trajectory required. For (by Lem. XX) that point d is placed
            in a conic section passing through the four points A, B, C, P; and the
            lines Rr, Tt vanishing, the point d comes
            to coincide with the point D. Wherefore the conic section passes
            through the five points A, B, C, P, D.   Q.E.D.
        


        The same otherwise.
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            Of the given points join any three, as A, B, C; and about two of them
            B, C, as poles, making the angles ABC, ACB of a given magnitude to
            revolve, apply the legs BA, CA, first to the point D, then to the
            point P, and mark the points M, N, in which the other legs BL, CL
            intersect each other in both cases. Draw the indefinite right line MN,
            and let those moveable angles revolve about their poles B, C, in such
            manner that the intersection, which is now supposed to be d,
            of the legs BL, CL, or BM, CM, may always fall in that indefinite
            right line MN; and the intersection, which is now supposed to be m,
            of the legs BA, CA, or BD, CD, will describe the trajectory required,
            PADdB. For (by Lem. XXI) the point d will be placed
            in a conic section passing through the points B, C; and when the point
            m comes to coincide with the points L, M, N, the point d
            will (by construction) come to coincide with the points A, D, P.
            Wherefore a conic section will be described that shall pass through
            the five points A, B. C, P, D.   Q.E.F.
        


        
            Cor. 1. Hence a right line may be readily
            drawn which shall be a tangent to the trajectory in any given point B.
            Let the point d come to coincide with the point B, and the
            right line Bd will become the tangent required.
        


        
            Cor. 2. Hence also may be found the centres,
            diameters, and latera recta of the trajectories, as in Cor. 2, Lem. XIX.
        


    

    
        Scholium.
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            The former of these constructions will become something more simple
            by joining BP, and in that line, produced, if need be, taking Bp
            to BP as PR is to PT; and through p draw the indefinite
            right line pe parallel to SPT, and in that line pe
            taking always pe equal to Pr, and draw the right
            lines Be, Cr to meet in d.
            For since Pr to Pt, PR to PT, pB to PB, pe
            to Pt, are all in the same ratio, pe and Pr will be
            always equal. After this manner the points of the trajectory are most
            readily found, unless you would rather describe the curve
            mechanically, as in the second construction.
        


    

    
        Proposition xxiii. Problem xv.


            
                
                    To describe a trajectory that shall pass through four given
                    points, and touch a right line given by position.
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            Case 1. Suppose that HB is the given tangent,
            B the point of contact, and C, D, P, the three other given points.
            Join BC, and draw PS parallel to BH, and PQ parallel to BC; complete
            the parallelogram BSPQ. Draw BD cutting SP in T, and CD cutting PQ in
            R. Lastly, draw any line tr parallel to TR, cutting off from
            PQ, PS, the segments Pr, Pt proportional to PR, PT
            respectively; and draw Cr, Bt their point of
            concourse d will (by Lem. XX) always fall on the trajectory
            to be described.
        


        The same otherwise.
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            Let the angle CBH of a given magnitude revolve about the pole B; as
            also the rectilinear radius BC, both ways produced, about the pole C.
            Mark the points M, N, on which the leg BC of the angle cuts that
            radius when BH, the other leg thereof, meets the same radius in the
            points P and D. Then drawing the indefinite line MN, let that radius
            CP or CD and the leg BC of the angle perpetually meet in this line;
            and the point of concourse of the other leg BH with the radius will
            delineate the trajectory required.
        


        
            For if in the constructions of the preceding Problem the point A
            comes to a coincidence with the point B, the lines CA and CB will
            coincide, and the line AB, in its last situation, will become the
            tangent BH; and therefore the constructions there set down will become
            the same with the constructions here described. Wherefore the
            concourse of the leg BH with the radius will describe a conic section
            passing through the points C, D, P, and touching the line BH in the
            point B.   Q.E.F.
        


        
            Case 2. Suppose the four points B, C, D, P,
            given, being situated with out the tangent HI. Join each two by the
            lines BD, CP meeting in G, and cutting the tangent in H and I. Cut the
            tangent in A in such manner 
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            that HA may be to IA as the rectangle under a mean proportional
            between CG and GP, and a mean proportional between BH and HD is to a
            rectangle under a mean proportional between GD and GB, and a mean
            proportional between PI and IC, and A will be the point of contact.
            For if HX, a parallel to the right line PI, cuts the trajectory in any
            points X and Y, the point A (by the properties of the conic sections)
            will come to be so placed, that HA² will become to AI² in a ratio that
            is compounded out of the ratio of the rectangle XHY to the rectangle
            BHD, or of the rectangle CGP to the rectangle DGB; and the ratio of
            the rectangle BHD to the rectangle PIC. But after the point of contact
            A is found, the trajectory will be described as in the first Case.
              Q.E.F.   But the point A may be taken either
            between or without the points H and I, upon which account a twofold
            trajectory may be described.
        


    

    
        Proposition xxiv. Problem xvi.


            
                
                    To describe a trajectory that shall pass through three given
                    points, and touch two right lines given by position.
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            Suppose HI, KL to be the given tangents and B, C, D, the given
            points. Through any two of those points, as B, D, draw the indefinite
            right line BD meeting the tangents in the points H, K. Then likewise
            through any other two of these points, as C, D, draw the indefinite
            right line CD meeting the tangents in the points I, L. Cut the lines
            drawn in R and S, so that HR may be to KR as the mean proportional
            between BH and HD is to the mean proportional between BK and KD; and
            IS to LS as the mean proportional between CI and ID is to the mean
            proportional between CL and LD. But you may cut, at pleasure, either
            within or between the points K and H, I and L, or without them; then
            draw RS cutting the tangents in A and P, and A and P will be the
            points of contact. For if A and P are supposed to be the points of
            contact, situated anywhere else in the tangents, and through any of
            the points H, I, K, L, as I, situated in either tangent HI, a right
            line IY is drawn parallel to the other tangent KL, and meeting the
            curve in X and Y, and in that right line there be taken IZ equal to a
            mean proportional between IX and IY, the rectangle XIY or IZ², will
            (by the properties of the conic sections) be to LP² as the rectangle
            CID is to the rectangle CLD, that is (by the construction), as SI is
            to SL², and therefore IZ is to LP as SI to
            SL. Wherefore the points S, P, Z, are in one right line. Moreover,
            since the tangents meet in G, the rectangle XIY or IZ² will (by the
            properties of the conic sections) be to IA² as GP² is to GA², and
            consequently IZ will be to IA as GP to GA. Wherefore the points P, Z,
            A, lie in one right line, and therefore the points S, P, and A are in
            one right line. And the same argument will prove that the points R, P,
            and A are in one right line. Wherefore the points of contact A and P
            lie in the right line RS. But after these points are found, the
            trajectory may be described, as in the first Case of the preceding
            Problem.   Q.E.F.
        


        
            In this Proposition, and Case 2 of the foregoing, the constructions
            are the same, whether the right line XY cut the trajectory in X and Y,
            or not; neither do they depend upon that section. But the
            constructions being demonstrated where that right line does cut the
            trajectory, the constructions where it does not are also known; and
            therefore, for brevity's sake, I omit any farther demonstration of
            them.
        


    

    
        Lemma xxii.


            To transform figures into other figures of the same kind.
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            Suppose that any figure HGI is to be transformed. Draw, at pleasure,
            two parallel lines AO, BL, cutting any third line AB, given by
            position, in A and B, and from any point G of the figure, draw out any
            right line GD, parallel to OA, till it meet the right line AB. Then
            from any given point O in the line OA, draw to the point D the right
            line OD, meeting BL in d; and from the point of concourse
            raise the right line dg containing any given angle with the
            right line BL, and having such ratio to Od as DG has to OD;
            and g will be the point in the new figure hgi,
            corresponding to the point G. And in like manner the several points of
            the first figure will give as many correspondent points of the new
            figure. If we therefore conceive the point G to be carried along by a
            continual motion through all the points of the first figure, the point
            g will be likewise carried along by a continual motion
            through all the points of the new figure, and describe the same. For
            distraction's sake, let us call DG the first ordinate, dg
            the new ordinate, AD the first abscissa, ad the new
            abscissa; O the pole, OD the abscinding radius, OA the first ordinate
            radius, and Oa (by which the parallelogram OABa is
            completed) the new ordinate radius.
        


        
            I say, then, that if the point G is placed in a right line given by
            position, the point g will be also placed in a right line
            given by position. If the point G is placed in a conic section, the
            point g will be likewise placed in
            a conic section. And here I understand the circle as one of the conic
            sections. But farther, if the point G is placed in a line of the third
            analytical order, the point g will also be placed in a line
            of the third order, and so on in curve lines of higher orders. The two
            lines in which the points G, g, are placed, will be always
            of the same analytical order. For as ad is to OA, so are Od
            to OD, dg to DG, and AB to AD; and therefore AD is equal to
            OA x AB

            ad, and DG equal to 
            OA x dg

            ad. Now if the point G is placed in a
            right line, and therefore, in any equation by which the relation
            between the abscissa AD and the ordinate GD is expressed, those
            indetermined lines AD and DG rise no higher than to one dimension, by
            writing this equation OA x AB

            ad in place of AD, and 
            OA x dg

            ad in place of DG, a new equation will
            be produced, in which the new abscissa ad and new ordinate dg
            rise only to one dimension; and which therefore must denote a right
            line. But if AD and DG (or either of them) had risen to two dimensions
            in the first equation, ad and dg would likewise
            have risen to two dimensions in the second equation. And so on in
            three or more dimensions. The indetermined lines, ad, dg in
            the second equation, and AD, DG, in the first, will always rise to the
            same number of dimensions; and therefore the lines in which the points
            G, g, are placed are of the same analytical order.
        


        
            I say farther, that if any right line touches the curve line in the
            first figure, the same right line transferred the same way with the
            curve into the new figure will touch that curve line in the new
            figure, and vice versa. For if any two points of the curve
            in the first figure are supposed to approach one the other till they
            come to coincide, the same points transferred will approach one the
            other till they come to coincide in the new figure; and therefore the
            right lines with which those points are joined will be come together
            tangents of the curves in both figures. I might have given
            demonstrations of these assertions in a more geometrical form; but I
            study to be brief.
        


        
            Wherefore if one rectilinear figure is to be transformed into
            another, we need only transfer the intersections of the right lines of
            which the first figure consists, and through the transferred
            intersections to draw right lines in the new figure. But if a
            curvilinear figure is to be transformed, we must transfer the points,
            the tangents, and other right lines, by means of which the curve line
            is defined. This Lemma is of use in the solution of the more difficult
            Problems; for thereby we may transform the proposed figures, if they
            are intricate, into others that are more simple. Thus any right lines
            converging to a point are transformed into parallels, by taking for
            the first ordinate radius any right line that passes through the point
            of concourse of the converging lines, and that because their point of
            concourse is by this means made to go off in
            infinitum; and parallel lines are such as tend to a point
            infinitely remote. And after the problem is solved in the new figure,
            if by the inverse operations we transform the new into the first
            figure, we shall have the solution required.
        


        
            This Lemma is also of use in the solution of solid problems. For as
            often as two conic sections occur, by the intersection of which a
            problem may be solved, any one of them may be transformed, if it is an
            hyperbola or a parabola, into an ellipsis, and then this ellipsis may
            be easily changed into a circle. So also a right line and a conic
            section, in the construction of plane problems, may be transformed
            into a right line and a circle
        


    

    
        Proposition xxv. Problem xvii.


            
                
                    To describe a trajectory that shall pass through two given
                    points, and touch three right lines given by position.
                
            


        

        
            Through the concourse of any two of the tangents one with the other,
            and the concourse of the third tangent with the right line which
            passes through the two given points, draw an indefinite right line;
            and, taking this line for the first ordinate radius, transform the
            figure by the preceding Lemma into a new figure. In this figure those
            two tangents will become parallel to each other, and the third tangent
            will be parallel to the right line that passes through the two given
            points.
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            Suppose hi, kl to be
            those two parallel tangents, ik the third tangent, and hl
            a right line parallel thereto, passing through those points a, b,
            through which the conic section ought to pass in this new figure; and
            completing the parallelogram hikl, let the right lines hi,
            ik, kl be so cut in c, d, e, that hc may be
            to the square root of the rectangle ahb, ic, to id,
            and ke to kd, as the sum of the right lines hi
            and kl is to the sum of the three lines, the first whereof
            is the right line ik, and the other two are the square roots
            of the rectangles ahb and alb; and c, d, e,
            will be the points of contact. For by the properties of the conic
            sections, hc² to the rectangle ahb, and ic²
            to id², and ke² to kd², and el²
            to the rectangle alb, are all in the same ratio; and
            therefore hc to the square root of ahb, ic to id,
            ke to kd, and el to the square root of alb,
            are in the subduplicate of that ratio; and by composition, in the
            given ratio of the sum of all the antecedents hi + kl, to
            the sum of all the consequents √(ahb)+ik+√(alb).
            Wherefore from that given ratio we have the points of contact c,
            d, e, in the new figure. By the inverted operations of the last
            Lemma, let those points be transferred into the first figure, and the
            trajectory will be there described by Prob. XIV.   Q.E.F.
               But according as the points a, b, fall between
            the points h, l, or without them, the points c, d, e,
            must be taken either between the points, h,
            i, k, l, or without them. If one of the points a, b,
            falls between the points h, i, and the other without the
            points h, l, the Problem is impossible.
        


    

    
        Proposition xxvi. Problem xviii.


            
                
                    To describe a trajectory that shall pass through a given point,
                    and touch four right lines given by position.
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            From the common intersections, of any two of the tangents to the
            common intersection of the other two, draw an indefinite right line;
            and taking this line for the first ordinate radius; transform the
            figure (by Lem. XXII) into a new figure, and the two pairs of
            tangents, each of which before concurred in the first ordinate radius,
            will now become parallel. Let hi and kl, ik
            and hl, be those pairs of parallels completing the
            parallelogram hikl. And let p be the point in this
            new figure corresponding to the given point in the first figure.
            Through O the centre of the figure draw pq: and Oq
            being equal to Op, q will be the other point
            through which the conic section must pass in this new figure. Let this
            point be transferred, by the inverse operation of Lem. XXII into the
            first figure, and there we shall have the two points through which the
            trajectory is to be described. But through those points that
            trajectory may be described by Prop. XVII.
        


    

    
        Lemma xxiii.


            
                If two right lines, as AC, BD given by position, and
                terminating in given points A, B, are in a given ratio
                one to the other, and the right line CD, by which the
                indetermined points C, D are joined is cut in K in
                a given ratio; I say, that the point K will be placed in
                a right line given by position.
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            For let the right lines AC, BD meet in E, and in BE take BG to AE as
            BD is to AC, and let FD be always equal to the given line EG; and, by
            construction, EC will be to GD, that is, to EF, as AC to BD, and
            therefore in a given ratio; and therefore the triangle EFC will be
            given in kind. Let CF be cut in L so as CL may be to CF in the ratio
            of CK to CD; and because that is a given ratio, the triangle EFL will
            be given in kind, and therefore the point L will be placed in the
            right line EL given by position. Join LK, and the triangles CLK, CFD
            will be similar; and because FD is a given line, and LK is to FD in a
            given ratio, LK will be also given. To this
            let EH be taken equal, and ELKH will be always a parallelogram. And
            therefore the point K is always placed in the side HK (given by
            position) of that parallelogram.   Q.E.D.
        


        
            Cor. Because the figure EFLC is given in
            kind, the three right lines EF, EL, and EC, that is, GD, HK, and EC,
            will have given ratios to each other.
        


    

    
        Lemma xxiv.


            
                
                    If three right lines, two whereof are parallel, and given by
                    position, touch any conic section; I say, that the semi-diameter
                    of the section which is parallel to those two is a mean
                    proportional between the segments of those two that are
                    intercepted between the points of contact and the third tangent.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 145]

        
            Let AF, GB be the two parallels touching the conic section ADB in A
            and B; EF the third right line touching the conic section in I, and
            meeting the two former tangents in F and G, and let CD be the
            semi-diameter of the figure parallel to those tangents; I say, that
            AF, CD, BG are continually proportional.
        


        
            For if the conjugate diameters AB, DM meet the tangent FG in E and H,
            and cut one the other in C, and the parallelogram IKCL be completed;
            from the nature of the conic sections, EC will be to CA as CA to CL;
            and so by division, EC − CA to CA − CL, or EA to AL; and by
            composition, EA to EA + AL or EL, as EC to EC + CA or EB; and
            therefore (because of the similitude of the triangles EAF, ELI, ECH,
            EBG) AF is to LI as CH to BG. Likewise, from the nature of the conic
            sections, LI (or CK) is to CD as CD to CH; and therefore (ex aequo
            perturbatè) AF is to CD as CD to BG.   Q.E.D.
        


        
            Cor. 1. Hence if two tangents FG, PQ, meet
            two parallel tangents AF, BG in F and G, P and Q, and cut one the
            other in O; AF (ex aequo perturbatè) will be to BQ as AP to
            BG, and by division, as FP to GQ, and therefore as FO to OG.
        


        
            Cor. 2. Whence also the two right lines PG,
            FQ drawn through the points P and G, F and Q, will meet in the right
            line ACB passing through the centre of the figure and the points of
            contact A, B.
        


    

    
        Lemma xxv.


            
                
                    If four sides of a parallelogram indefinitely produced touch
                    any conic section, and are cut by a fifth tangent; I say, that,
                    taking those segments of any two conterminous sides that terminate
                    in opposite angles of the parallelogram, either segment is to the
                    side from which it is cut off as that part of the other
                    conterminous side which is intercepted between the point of
                    contact and the third side is to the other segment.
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            Let the four sides ML, IK, KL, MI, of the parallelogram MLIK touch
            the F conic section in A, B, C, D; and let the fifth tangent FQ cut
            those sides in F, Q, H, and E; and taking the segments ME, KQ of the
            sides MI, KI, or the segments KH, MF of the sides KL, ML; I say, that
            ME is to MI as BK to KQ; and KH to KL as AM to MF. For, by Cor. 1 of
            the preceding Lemma, ME is to EI as (AM or) BK to BQ; and, by
            composition, ME is to MI as BK to KQ.   Q.E.D.
              Also KH is to HL as (BK or) AM to AF; and by division, KH
            to KL as AM to MF.   Q.E.D.
        


        
            Cor. 1. Hence if a parallelogram IKLM
            described about a given conic section is given, the rectangle KQ x ME,
            as also the rectangle KH x MF equal thereto, will be given. For, by
            reason of the similar triangles KQH, MFE, those rectangles are equal.
        


        
            Cor. 2. And if a sixth tangent eq
            is drawn meeting the tangents KI, MI in q and e,
            the rectangle KQ x ME will be equal to the rectangle Kq x Me,
            and KQ will be to Me as Kq to ME, and by division as
            Qq to Ee.
        


        
            Cor. 3. Hence, also, if Eq, eQ,
            are joined and bisected, and a right line is drawn through the points
            of bisection, this right line will pass through the centre of the
            conic section. For since Qq is to Ee as KQ to Me,
            the same right line will pass through the middle of all the lines Eq,
            eQ, MK (by Lem. XXIII), and the middle point of the right
            line MK is the centre of the section.
        


    

    
        Proposition xxvii. Problem xix.


            To describe a trajectory that may touch five right lines given by position.
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            Supposing ABG, BCF, GCD, FDE, EA to be the tangents given by
            position. Bisect in M and N, AF, BE, the diagonals of the
            quadrilateral figure ABFE contained under any four of them; and (by
            Cor. 3, Lem. XXV) the right line MN drawn through the points of
            bisection will pass through the centre of the
            trajectory. Again, bisect in P and Q, the diagonals (if I may so call
            them) BD, GF of the quadrilateral figure BGDF contained under any
            other four tangents, and the right line PQ, drawn through the points
            of bisection will pass through the centre of the trajectory; and
            therefore the centre will be given in the con course of the bisecting
            lines. Suppose it to be O. Parallel to any tangent BC draw KL at such
            distance that the centre O may be placed in the middle between the
            parallels; this KL will touch the trajectory to be described. Let this
            cut any other two tangents GCD, FDE, in L and K. Through the points C
            and K, F and L, where the tangents not parallel, GL, FK meet the
            parallel tangents OF, KL, draw OK, FL meeting in R; and the right line
            OR drawn and produced, will cut the parallel tangents CF, KL, in the
            points of contact. This appears from Cor. 2, Lem. XXIV. And by the
            same method the other points of contact may be found, and then the
            trajectory may be described by Prob. XIV.   Q.E.F.
        


    

    
        Scholium.



        
            Under the preceding Propositions are comprehended those Problems
            wherein either the centres or asymptotes of the trajectories are
            given. For when points and tangents and the centre are given, as many
            other points and as many other tangents are given at an equal distance
            on the other side of the centre. And an asymptote is to be considered
            as a tangent, and its infinitely remote extremity (if we may say so)
            is a point of contact. Conceive the point of contact of any tangent
            removed in infinitum, and the tangent will degenerate into
            an asymptote, and the constructions of the preceding Problems will be
            changed into the constructions of those Problems wherein the asymptote
            is given.
        


        [image: Mathematical Principles of Natural Philosophy figure: 147]

        
            After the trajectory is described, we may find its axes and foci in
            this manner. In the construction and figure of Lem. XXI, let those
            legs BP, CP, of the moveable angles PBN, PCN, by the concourse of
            which the trajectory was described, be made parallel one to the other;
            and retaining that position, let them revolve about their poles B, C,
            in that figure. In the mean while let the other legs CN, BN, of those
            angles, by their concourse K or k, describe the circle BKGC.
            Let O be the centre of this circle; and from this centre upon the
            ruler MN, wherein those legs CN, BN did concur while the trajectory
            was described, let fall the perpendicular OH meeting the circle in K
            and L. And when those other legs CK, BK meet in the point K that is
            nearest to the ruler, the first legs CP, BP will be parallel to the
            greater axis, and perpendicular on the lesser; and the contrary
            will happen if those legs meet in the remotest
            point L. Whence if the centre of the trajectory is given; the axes
            will be given; and those being given, the foci will be readily found.
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            But the squares of the axes are one to the other as KH to LH, and
            thence it is easy to describe a trajectory given in kind through four
            given points. For if two of the given points are made the poles C, B,
            the third will give the moveable angles PCK, PBK; but those being
            given, the circle BGKC may be described. Then, because the trajectory
            is given in kind, the ratio of OH to OK, and therefore OH itself, will
            be given. About the centre O, with the interval OH, describe another
            circle, and the right line that touches this circle, and passes
            through the concourse of the legs CK, BK, when the first legs CK, BP
            meet in the fourth given point, will be the ruler MN, by means of
            which the trajectory may be described. Whence also on the other hand a
            trapezium given in kind (excepting a few cases that are impossible)
            may be inscribed in a given conic section.
        


        
            There are also other Lemmas, by the help of which trajectories given
            in kind may be described through given points, and touching given
            lines. Of such a sort is this, that if a right line is drawn through
            any point given by position, that may cut a given conic section in two
            points, and the distance of the intersections is bisected, the point
            of bisection will touch another conic section of the same kind with
            the former, and having its axes parallel to the axes of the former.
            But I hasten to things of greater use.
        


    

    
        Lemma xxvi.


            
                
                    To place the three angles of a triangle, given both in kind and
                    magnitude, in respect of as many rigid lines given by position,
                    provided they are not all parallel among themselves, in such
                    manner that the several angles may touch the several lines.
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            Three indefinite right lines AB, AC, BC, are given by position, and
            it is required so to place the triangle DEF that its angle D may touch
            the line AB, its angle E the line AC, and its angle F the line BC.
            Upon DE, DF, and EF, describe three segments of circles DRE, DGF, EMF,
            capable of angles equal to the angles BAC, ABC, ACB respectively. But
            those segments are to be described towards such sides of the lines DE,
            DF, EF, that the letters DRED may turn round
            about in the same order with the letters BACB; the letters DGFD in the
            same order with the letters ABCA; and the letters EMFE in the same
            order with the letters ACBA; then; completing those segments into
            entire circles let the two former circles cut one the other in G, and
            suppose P and Q, to be their centres. Then joining GP, PQ, take Ga
            to AB as GP is to PQ; and about the centre G, with the interval Ga,
            describe a circle that may cut the first circle DGE in a.
            Join aD cutting the second circle DFG in b, as
            well as aE cutting the third circle EMF in c.
            Complete the figure ABCdef similar and equal to the figure abcDEF:
            I say, the thing is done.
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            For drawing Fc meeting aD in n, and
            joining aG, bG, QG, QD, PD, by construction the
            angle EaD is equal to the angle CAB, and the angle acF
            equal to the angle ACB; and therefore the triangle anc
            equiangular to the triangle ABC. Wherefore the angle anc or
            FnD is equal to the angle ABC, and consequently to the angle
            FbD; and therefore the point n falls on the point b.
            Moreover the angle GPQ, which is half the angle GPD at the centre, is
            equal to the angle GaD at the circumference; and the angle
            GQP, which is half the angle GQD at the centre, is equal to the
            complement to two right angles of the angle GbD at the
            circumference, and therefore equal to the angle Gba. Upon
            which account the triangles GPQ, Gab, are similar, and Ga
            is to ab as GP to PQ; that is (by construction), as Ga
            to AB. Wherefore ab and AB are equal; and consequently the
            triangles abc, ABC, which we have now proved to be similar,
            are also equal. And therefore since the angles D, E, F, of the
            triangle DEF do respectively touch the sides ab, ac, bc of
            the triangle abc, the figure ABCdef may be
            completed similar and equal to the figure abcDEF, and by
            completing it the Problem will be solved.   Q.E.F.
        


        
            Cor. Hence a right line may be drawn whose
            parts given in length may be intercepted between three right lines
            given by position. Suppose the triangle DEF, by the access of its
            point D to the side EF, and by having the sides DE, DF placed in
            directum to be changed into a right line whose given part DE is
            to be interposed between the right lines AB, AC given by position; and
            its given part DF is to be interposed between the right lines AB, BC,
            given by position; then, by applying the preceding construction to
            this case; the Problem will be solved.
        


    

    
        
            Proposition xxviii. Problem xx.


            
                
                    To describe a trajectory given both in kind and magnitude,
                    given parts of which shall be interposed between three right lines given by position.
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            Suppose a trajectory is to be described that may be similar and equal
            to the curve line DEF, and may be cut by three right lines AB, AC, BC,
            given by position, into parts DE and EF, similar and equal to the
            given parts of this curve line.
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            Draw the right lines DE, EP, DF: and place the angles D, E, F, of
            this triangle DEF, so as to touch those right lines given by position
            (by Lem. XXVI). Then about the triangle describe the trajectory,
            similar and equal to the curve DEF.   Q.E.F.
        


    

    
        Lemma xxvii.


            
                
                    To describe a trapezium given in kind, the angles whereof may
                    be so placed, in respect of four right lines given by position,
                    that are neither all parallel among themselves, nor converge to
                    one common point, that the several angles may touch the several lines.
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            Let the four right lines ABC, AD, BD, CE, be given by position; the
            first cutting the second in A, the third in B, and the fourth in C;
            and suppose a trapezium fghi is to be described that may be
            similar to the trapezium FGHI, and whose angle f, equal to
            the given angle F, may touch the right line ABC; and the other angles
            g, h, i, equal to the other given angles, G, H, I, may touch
            the other lines AD, BD, CE, respectively. Join FH, and upon FG, FH, FI
            describe as many segments of circles FSG, FTH, FVI, the first of which
            FSG may be capable of an angle equal to the angle BAD; the second FTH
            capable of an angle equal to the angle CBD; and the third FVI of an
            angle equal to the angle ACE. But the segments are to be described
            towards those sides of the lines FG, FH, FI, that the circular order
            of the letters FSGF may be the same as of the letters BADB, and that
            the letters FTHF may turn about in the same order as the letters CBDC
            and the letters FVIF in the game order as the letters ACEA. Complete
            the segments into entire circles, and let P be the centre of the first
            circle FSG, Q the centre of the second FTH. Join and produce both ways
            the line PQ, and in it take QR in the same ratio to PQ as BC has to
            AB. But QR is to be taken towards that side of the point Q, that the
            order of the letters P, Q, R 
            [image: Mathematical Principles of Natural Philosophy figure: 151a]
            may be the same as of the letters A, B, C; and about the centre R with
            the interval RF describe a fourth circle FNc cutting the
            third circle FVI in c. Join Fc cutting the first
            circle in a, and the second in b. Draw aG,
            bH, cI, and let the figure ABCfghi be made
            similar to the figure abcFGHI; and the trapezium fghi
            will be that which was required to be described.
        


        
            For let the two first circles FSG, FTH cut one the other in K; join
            PK, QK, RK, aK, bK, cK, and produce QP
            to L. The angles FaK, FbK, FcK at the
            circumferences are the halves of the angles FPK, FQK, FRK, at the
            centres, and therefore equal to LPK, LQK, LRK, the halves of those
            angles. Wherefore the figure PQRK is equiangular and similar to the
            figure abcK, and consequently ab is to bc
            as PQ to QR, that is, as AB to BC. But by construction, the angles fAg,
            fBh, fCi, are equal to the angles
            FaG, FbH, FcI. And therefore the figure ABCfghi
            may be completed similar to the figure abcFGHI. Which done a
            trapezium fghi will be constructed similar to the trapezium
            FGHI, and which by its angles f, g, h, i will touch the
            right lines ABC, AD, BD, CE.   Q.E.F.
        


        
            Cor. Hence a right line may be drawn whose
            parts intercepted in a given order, between four right lines given by
            position, shall have a given proportion among themselves. Let the
            angles FGH, GHI, be so far increased that the right lines FG, GH, HI,
            may lie in directum; and by constructing the Problem in this
            case, a right line fghi will be drawn, whose parts fg,
            gh, hi, intercepted between the four right lines given by
            position, AB and AD, AD and BD, BD and CE, will be one to another as
            the lines FG, GH, HI, and will observe the same order among them
            selves. But the same thing may be more readily done in this manner.
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            Produce AB to K and BD to L, so as BK may be to AB as HI to GH; and
            DL to BD as GI to FG; and join KL meeting the right line CE in i.
            Produce iL to M, so as LM may be to iL as GH to
            HI; then draw MQ parallel to LB, and meeting the right line AD in g,
            and join gi cutting AB, BD in f, h; I say, the
            thing is done.
        


        
            For let Mg cut the right line AB in Q, and AD the right line
            KL in S, and draw AP parallel to BD, and
            meeting iL in P, and gM to Lh (gi
            to hi, Mi to Li, GI to HI, AK to BK) and
            AP to BL, will be in the same ratio. Cut DL in R, so as DL to RL may
            be in that same ratio; and because gS to gM, AS to
            AP, and DS to DL are proportional; therefore (ex aequo) as gS
            to Lh, so will AS be to BL, and DS to RL; and mixtly, BL − RL
            to Lh − BL, as AS − DS to gS − AS. That is, BR is
            to Bh as AD is to Ag, and therefore as BD to gQ.
            And alternately BR is to BD as Bh to gQ, or as fh
            to fg. But by construction the line BL was cut in D and R in
            the same ratio as the line FI in G and H; and therefore BR is to BD as
            FH to FG. Wherefore fh is to fg as FH to FG.
            Since, therefore, gi to hi likewise is as Mi
            to Li, that is, as GI to HI, it is manifest that the lines
            FI, fi, are similarly cut in G and H, g and h.
              Q.E.F.
        


        
            In the construction of this Corollary, after the line LK is drawn
            cutting CE in i, we may produce iE to V, so as EV
            may be to Ei as FH to HI, and then draw Vf parallel
            to BD. It will come to the same, if about the centre i with
            an interval IH, we describe a circle cutting BD in X, and produce iX
            to Y so as iY may be equal to IF, and then draw Yf
            parallel to BD.
        


        
            Sir Christopher Wren and Dr. Wallis have long ago given other
            solutions of this Problem.
        


    

    
        Proposition xxix. Problem xxi.


            
                
                    To describe a trajectory given in kind, that may be cut by four
                    right lines given by position, into parts given in order, kind, and proportion.
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            Suppose a trajectory is to be described that may be similar to the
            curve line FGHI, and whose parts, similar and proportional to the
            parts FG, GH, HI of the other, may be intercepted between the right
            lines AB and AD, AD, and BD, BD and CE given by position, viz., the
            first between the first pair of those lines, the second between the
            second, and the third between the third. Draw the right lines FG, GH,
            HI, FI; and (by Lem. XXVII) describe a trapezium fghi that
            may be similar to the trapezium FGHI, and whose angles f, g, h, i,
            may touch the right lines given by position AB, AD, BD, CE, severally
            according to their order. And then about this trapezium describe a
            trajectory, that trajectory will be similar to the curve line FGHI.
        


    

    
        Scholium.



        
            This problem may be likewise constructed in the following manner.
            Joining FG, GH, HI, FI, produce GF to V, and join FH, IG, and make
            
            [image: Mathematical Principles of Natural Philosophy figure: 153a]
            the angles CAK, DAL equal to the
            angles FGH, VFH. Let AK, AL meet the right line BD in K and L, and
            thence draw KM, LN, of which let KM make the angle AKM equal to the
            angle GHI, and be itself to AK as HI is to GH; and let LN make the
            angle ALN equal to the angle FHI, and be itself to AL as HI to FH.
            [image: Mathematical Principles of Natural Philosophy figure: 153b]
            But AK, KM. AL, LN are to be drawn towards
            those sides of the lines AD, AK, AL, that the letters CAKMC, ALKA,
            DALND may be carried round in the same order as the letters FGHIF; and
            draw MN meeting the right line CE in i. Make the angle iEP
            equal to the angle IGF, and let PE be to Ei as FG to GI; and
            through P draw PQf that may with the right line ADE contain
            an angle PQE equal to the angle FIG, and may meet the right line AB in
            f, and join fi. But PE and PQ are to be drawn
            towards those sides of the lines CE, PE, that the circular order of
            the letters PEiP and PEQP may be the same as of the letters
            FGHIF; and if upon the line fi, in the same order of
            letters, and similar to the trapezium FGHI, a trapezium fghi
            is constructed, and a trajectory given in kind is circumscribed about
            it, the Problem will be solved.
        


        
            So far concerning the finding of the orbits. It remains that we
            determine the motions of bodies in the orbits so found.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 2.9




    
        Section ix.


        Of the circular motion of fluids. 


    

    
        Hypothesis.


            
                
                    The resistance arising from the want of lubricity in the parts
                    of a fluid, is, caeteris paribus, proportional to the
                    velocity with which the parts of the fluid are separated from each other.
                
            


        

    

    
        Proposition li. Theorem xxxix.


            
                
                    If a solid cylinder infinitely long, in an uniform and infinite
                    fluid, revolve with an uniform motion about an axis given in
                    position, and the fluid be forced round by only this impulse of
                    the cylinder, and every part of the fluid persevere uniformly in
                    its motion; I say, that the periodic times of the parts of the
                    fluid are as their distances from the axis of the cylinder.
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            Let AFL be a cylinder turning uniformly about the axis S, and let the
            concentric circles BGM, CHN, DIO, EKP, &c., divide the fluid into
            innumerable concentric cylindric solid orbs of the same thickness.
            Then, because the fluid is homogeneous, the impressions which the
            contiguous orbs make upon each other mutually will be (by the
            Hypothesis) as their translations from each other, and as the
            contiguous superficies upon which the impressions are made. If the
            impression made upon any orb be greater or less on its concave than on
            its convex side, the stronger impression will prevail, and will either
            accelerate or retard the motion of the orb, according as it agrees
            with, or is contrary to, the motion of the same. Therefore, that every
            orb may persevere uniformly in its motion, the impressions made on
            both sides must be equal and their directions contrary. Therefore
            since the impressions are as the contiguous superficies, and as their
            translations from one another, the translations will be inversely as
            the superficies, that is, inversely as the distances of the
            superficies from the axis. But the differences of the
            angular motions about the axis are as those translations applied to
            the distances, or as the translations directly and the distances
            inversely; that is, joining these ratios together, as the squares of
            the distances inversely. Therefore if there be erected the lines Aa,
            Bb, Cc, Dd, Ee, &c.,
            perpendicular to the several parts of he infinite right line SABCDEQ,
            and reciprocally proportional to the squares of SA, SB, SC, SD, SE,
            &c., and through the extremities of those perpendiculars there be
            supposed to pass an hyperbolic curve, the sums of the differences,
            that is, the whole angular motions, will be as the correspondent sums
            of the lines Aa, Bb, Cc, Dd, Ee,
            that is (if to constitute a medium uniformly fluid the number of the
            orbs be increased and their breadth diminished in infinitum),
            as the hyperbolic areas AaQ, BbQ, CcQ, DdQ,
            EeQ, &c., analogous to the sums; and the times,
            reciprocally proportional to the angular motions, will be also
            reciprocally proportional to those areas. Therefore the periodic time
            of any particle as D, is reciprocally as the area DdQ, that
            is (as appears from the known methods of quadratures of curves),
            directly as the distance SD.   Q.E.D.
        


        
            Cor. 1. Hence the angular motions of the
            particles of the fluid are reciprocally as their distances from the
            axis of the cylinder, and the absolute velocities are equal.
        


        
            Cor. 2. If a fluid be contained in a
            cylindric vessel of an infinite length, and contain another cylinder
            within, and both the cylinders revolve about one common axis, and the
            times of their revolutions be as their semi-diameters, and every part
            of the fluid perseveres in its motion, the periodic times of the
            several parts will be as the distances from the axis of the cylinders.
        


        
            Cor. 3. If there be added or taken away any
            common quantity of angular motion from the cylinder and fluid moving
            in this manner; yet because this new motion will not alter the mutual
            attrition of the parts of the fluid, the motion of the parts among
            themselves will not be changed; for the translations of the parts from
            one another depend upon the attrition. Any part will persevere in that
            motion, which, by the attrition made on both sides with contrary
            directions, is no more accelerated than it is retarded.
        


        
            Cor. 4. Therefore if there be taken away from
            this whole system of the cylinders and the fluid all the angular
            motion of the outward cylinder, we shall have the motion of the fluid
            in a quiescent cylinder.
        


        
            Cor. 5. Therefore if the fluid and outward
            cylinder are at rest, and the inward cylinder revolve uniformly, there
            will be communicated a circular motion to the fluid, which will be
            propagated by degrees through the whole fluid; and will go on
            continually increasing, till such time as the several parts of the
            fluid acquire the motion determined in Cor. 4.
        


        
            Cor. 6. And because the fluid endeavours to
            propagate its motion still farther, its
            impulse will carry the outmost cylinder also about with it, unless the
            cylinder be violently detained; and accelerate its motion till the
            periodic times of both cylinders become equal among themselves. But if
            the outward cylinder be violently detained, it will make an effort to
            retard the motion of the fluid; and unless the inward cylinder
            preserve that motion by means of some external force impressed
            thereon, it will make it cease by degrees.
        


        
            All these things will be found true by making the experiment in deep
            standing water.
        


    

    
        Proposition lii. Theorem xl.


            
                
                    If a solid sphere, in an uniform and infinite fluid, revolves
                    about an axis given in position, with an uniform motion, and the
                    fluid be forced round by only this impulse of the sphere; and
                    every part of the fluid perseveres uniformly in its motion; I say,
                    that the periodic times of the parts of the fluid are as the
                    squares of their distances from the centre of the sphere.
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            Case 1. Let AFL be a sphere turning uniformly
            about the axis S, and let the concentric circles BGM, CHN, DIO, EKP,
            &c., divide the fluid into innumerable concentric orbs of the same
            thickness. Suppose those orbs to be solid; and, because the fluid is
            homogeneous, the impressions which the contiguous orbs make one upon
            another will be (by the supposition) as their translations from one
            another, and the contiguous superficies upon which the impressions are
            made. If the impression upon any orb be greater or less upon its
            concave than upon its convex side, the more forcible impression will
            prevail, and will either accelerate or retard the velocity of the orb,
            according as it is directed with a conspiring or contrary motion to
            that of the orb. Therefore that every orb may persevere uniformly in
            its motion, it is necessary that the impressions made upon both sides
            of the orb should be equal, and have contrary directions. Therefore
            since the impressions are as the contiguous superficies, and as their
            translations from one another, the translations will be inversely as
            the superficies, that is, inversely as the squares of the distances of
            the superficies from the centre. But the differences of the angular
            motions about the axis are as those translations applied to the
            distances, or as the translations directly and the distances
            inversely; that is, by compounding those ratios, as the cubes of the
            distances inversely. Therefore if upon the several parts of the
            infinite right line SABCDEQ there be erected
            the perpendiculars Aa, Bb, Cc, Dd,
            Ee, &c., reciprocally proportional to the cubes of SA,
            SB, SC, SD, SE, &c., the sums of the differences, that is, the
            whole angular motions will be as the corresponding sums of the lines Aa,
            Bb, Cc, Dd, Ee, &c., that is
            (if to constitute an uniformly fluid medium the number of the orbs be
            increased and their thickness diminished in infinitum), as
            the hyperbolic areas AaQ, BbQ, CcQ, DdQ,
            EeQ, &c., analogous to the sums; and the periodic times
            being reciprocally proportional to the angular motions, will be also
            reciprocally proportional to those areas. Therefore the periodic time
            of any orb DIO is reciprocally as the area DdQ, that is (by
            the known methods of quadratures), directly as the square of the
            distance SD. Which was first to be demonstrated.
        


        
            Case 2. From the centre of the sphere let
            there be drawn a great number of indefinite right lines, making given
            angles with the axis, exceeding one another by equal differences; and,
            by these lines revolving about the axis, conceive the orbs to be cut
            into innumerable annuli; then will every annulus have four annuli
            contiguous to it, that is, one on its inside, one on its outside, and
            two on each hand. Now each of these annuli cannot be impelled equally
            and with contrary directions by the attrition of the interior and
            exterior annuli, unless the motion be communicated according to the
            law which we demonstrated in Case 1. This appears from that
            demonstration. And therefore any series of annuli, taken in any right
            line extending itself in infinitum from the globe, will move
            according to the law of Case 1, except we should imagine it hindered
            by the attrition of the annuli on each side of it. But now in a
            motion, according to this law, no such is, and therefore cannot be,
            any obstacle to the motions persevering according to that law. If
            annuli at equal distances from the centre revolve either more swiftly
            or more slowly near the poles than near the ecliptic, they will be
            accelerated if slow, and retarded if swift, by their mutual attrition;
            and so the periodic times will continually approach to equality,
            according to the law of Case 1. Therefore this attrition will not at
            all hinder the motion from going on according to the law of Case 1,
            and therefore that law will take place; that is, the periodic times of
            the several annuli will be as the squares of their distances from the
            centre of the globe. Which was to be demonstrated in the second place.
        


        
            Case 3. Let now every annulus be divided by
            transverse sections into innumerable particles constituting a
            substance absolutely and uniformly fluid; and because these sections
            do not at all respect the law of circular motion, but only serve to
            produce a fluid substance, the law of circular motion will continue
            the same as before. All the very small annuli will either not at all
            change their asperity and force of mutual attrition upon account of
            these sections, or else they will change the same equally. Therefore
            the proportion of the causes remaining the same, the proportion of the
            effects will remain the same also; that is,
            the proportion of the motions and the periodic times.
              Q.E.D.   But now as the circular motion, and the
            centrifugal force thence arising, is greater at the ecliptic than at
            the poles, there must be some cause operating to retain the several
            particles in their circles; otherwise the matter that is at the
            ecliptic will always recede from the centre, and come round about to
            the poles by the outside of the vortex, and from thence return by the
            axis to the ecliptic with a perpetual circulation.
        


        
            Cor. 1. Hence the angular motions of the
            parts of the fluid about the axis of the globe are reciprocally as the
            squares of the distances from the centre of the globe, and the
            absolute velocities are reciprocally as the same squares applied to
            the distances from the axis.
        


        
            Cor. 2. If a globe revolve with a uniform
            motion about an axis of a given position in a similar and infinite
            quiescent fluid with an uniform motion, it will communicate a whirling
            motion to the fluid like that of a vortex, and that motion will by
            degrees be propagated onward in infinitum; and this motion
            will be increased, continually in every part of the fluid, till the
            periodical times of the several parts become as the squares of the
            distances from the centre of the globe.
        


        
            Cor. 3. Because the inward parts of the
            vortex are by reason of their greater velocity continually pressing
            upon and driving forward the external parts, and by that action are
            perpetually communicating motion to them, and at the same time those
            exterior parts communicate the same quantity of motion to those that
            lie still beyond them, and by this action preserve the quantity of
            their motion continually unchanged, it is plain that the motion is
            perpetually transferred from the centre to the circumference of the
            vortex, till it is quite swallowed up and lost in the boundless extent
            of that circumference. The matter between any two spherical
            superficies concentrical to the vortex will never be accelerated;
            because that matter will be always transferring the motion it receives
            from the matter nearer the centre to that matter which lies nearer the
            circumference.
        


        
            Cor. 4. Therefore, in order to continue a
            vortex in the same state of motion, some active principle is required
            from which the globe may receive continually the same quantity of
            motion which it is always communicating to the matter of the vortex.
            Without such a principle it will undoubtedly come to pass that the
            globe and the inward parts of the vortex, being always propagating
            their motion to the outward parts, and not receiving any new motion,
            will gradually move slower and slower, and at last be carried round no
            longer.
        


        
            Cor. 5. If another globe should be swimming
            in the same vortex at a certain distance from its centre, and in the
            mean time by some force revolve constantly about an axis of a given
            inclination, the motion of this globe will drive the fluid round after
            the manner of a vortex; and at first this new
            and small vortex will revolve with its globe about the centre of the
            other; and in the mean time its motion will creep on farther and
            farther, and by degrees be propagated in infinitum, after
            the manner of the first vortex. And for the same reason that the globe
            of the new vortex was carried about before by the motion of the other
            vortex, the globe of this other will be carried about by the motion of
            this new vortex, so that the two globes will revolve about some
            intermediate point, and by reason of that circular motion mutually fly
            from each other, unless some force restrains them. Afterward, if the
            constantly impressed forces, by which the globes persevere in their
            motions, should cease, and every thing be left to act according to the
            laws of mechanics, the motion of the globes will languish by degrees
            (for the reason assigned in Cor. 3 and 4), and the vortices at last
            will quite stand still.
        


        
            Cor. 6. If several globes in given places
            should constantly revolve with determined velocities about axes given
            in position, there would arise from them as many vortices going on in
            infinitum. For upon the same account that any one globe
            propagates its motion in infinitum, each globe apart will
            propagate its own motion in infinitum also; so that every
            part of the infinite fluid will be agitated with a motion resulting
            from the actions of all the globes. Therefore the vortices will not be
            confined by any certain limits, but by degrees run mutually into each
            other; and by the mutual actions of the vortices on each other, the
            globes will be perpetually moved from their places, as was shewn in
            the last Corollary; neither can they possibly keep any certain
            position among themselves, unless some force restrains them. But if
            those forces, which are constantly impressed upon the globes to
            continue these motions, should cease, the matter (for the reason
            assigned in Cor. 3 and 4) will gradually stop, and cease to move in
            vortices.
        


        
            Cor. 7. If a similar fluid be inclosed in a
            spherical vessel, and, by the uniform rotation of a globe in its
            centre, is driven round in a vortex; and the globe and vessel revolve
            the same way about the same axis, and their periodical times be as the
            squares of the semi-diameters; the parts of the fluid will not go on
            in their motions without acceleration or retardation, till their
            periodical times are as the squares of their distances from the centre
            of the vortex. No constitution of a vortex can be permanent but this.
        


        
            Cor. 8. If the vessel, the inclosed fluid,
            and the globe, retain this motion, and revolve besides with a common
            angular motion about any given axis, because the mutual attrition of
            the parts of the fluid is not changed by this motion, the motions of
            the parts among each other will not be changed; for the translations
            of the parts among themselves depend upon this attrition. Any part
            will persevere in that motion in which its attrition on
            one side retards it just as much as its attrition on the other side
            accelerates it.
        


        
            Cor. 9. Therefore if the vessel be quiescent,
            and the motion of the globe be given, the motion of the fluid will be
            given. For conceive a plane to pass through the axis of the globe, and
            to revolve with a contrary motion; and suppose the sum of the time of
            this revolution and of the revolution of the globe to be to the time
            of the revolution of the globe as the square of the semi-diameter of
            the vessel to the square of the semi-diameter of the globe; and the
            periodic times of the parts of the fluid in respect of this plane will
            be as the squares of their distances from the centre of the globe.
        


        
            Cor. 10. Therefore if the vessel move about
            the same axis with the globe, or with a given velocity about a
            different one, the motion of the fluid will be given. For if from the
            whole system we take away the angular motion of the vessel, all the
            motions will remain the same among themselves as before, by Cor. 8,
            and those motions will be given by Cor. 9.
        


        
            Cor. 11. If the vessel and the fluid are
            quiescent, and the globe revolves with an uniform motion, that motion
            will be propagated by degrees through the whole fluid to the vessel,
            and the vessel will be carried round by it, unless violently detained;
            and the fluid and the vessel will be continually accelerated till
            their periodic times become equal to the periodic times of the globe.
            If the vessel be either withheld by some force, or revolve with any
            constant and uniform motion, the medium will come by little and little
            to the state of motion defined in Cor. 8, 9, 10, nor will it ever
            persevere in any other state. But if then the forces, by which the
            globe and vessel revolve with certain motions, should cease, and the
            whole system be left to act according to the mechanical laws, the
            vessel and globe, by means of the intervening fluid, will act upon
            each other, and will continue to propagate their motions through the
            fluid to each other, till their periodic times become equal among
            themselves, and the whole system revolves together like one solid
            body.
        


    

    
        Scholium.



        
            In all these reasonings I suppose the fluid to consist of matter of
            uniform density and fluidity; I mean, that the fluid is such, that a
            globe placed any where therein may propagate with the same motion of
            its own, at distances from itself continually equal, similar and equal
            motions in the fluid in the same interval of time. The matter by its
            circular motion endeavours to recede from the axis of the vortex, and
            therefore presses all the matter that lies beyond. This pressure makes
            the attrition greater, and the separation of the parts more difficult;
            and by consequence diminishes the fluidity of the matter. Again; if
            the parts of the fluid are in any one place denser or larger than in
            the others, the fluidity will be less in that place, because there are
            fewer superficies where the parts can be separated from
            each other. In these cases I suppose the defect of the fluidity to be
            supplied by the smoothness or softness of the parts, or some other
            condition; otherwise the matter where it is less fluid will cohere
            more, and be more sluggish, and therefore will receive the motion more
            slowly, and propagate it farther than agrees with the ratio above
            assigned. If the vessel be not spherical, the particles will move in
            lines not circular, but answering to the figure of the vessel; and the
            periodic times will be nearly as the squares of the mean distances
            from the centre. In the parts between the centre and the circumference
            the motions will be slower where the spaces are wide, and swifter
            where narrow; but yet the particles will not tend to the circumference
            at all the more for their greater swiftness; for they then describe
            arcs of less curvity, and the conatus of receding from the centre is
            as much diminished by the diminution of this curvature as it is
            augmented by the increase of the velocity. As they go out of narrow
            into wide spaces, they recede a little farther from the centre, but in
            doing so are retarded; and when they come out of wide into narrow
            spaces, they are again accelerated; and so each particle is retarded
            and accelerated by turns for ever. These things will come to pass in a
            rigid vessel; for the state of vortices in an infinite fluid is known
            by Cor. 6 of this Proposition.
        


        
            I have endeavoured in this Proposition to investigate the properties
            of vortices, that I might find whether the celestial phenomena can be
            explained by them; for the phenomenon is this, that the periodic times
            of the planets revolving about Jupiter are in the sesquiplicate ratio
            of their distances from Jupiter's centre; and the same rule obtains
            also among the planets that revolve about the sun. And these rules
            obtain also with the greatest accuracy, as far as has been yet
            discovered by astronomical observation. Therefore if those planets are
            carried round in vortices revolving about Jupiter and the sun, the
            vortices must revolve according to that law. But here we found the
            periodic times of the parts of the vortex to be in the duplicate ratio
            of the distances from the centre of motion; and this ratio cannot be
            diminished and reduced to the sesquiplicate, unless either the matter
            of the vortex be more fluid the farther it is from the centre, or the
            resistance arising from the want of lubricity in the parts of the
            fluid should, as the velocity with which the parts of the fluid are
            separated goes on increasing, be augmented with it in a greater ratio
            than that in which the velocity increases. But neither of these
            suppositions seem reasonable. The more gross and less fluid parts will
            tend to the circumference, unless they are heavy towards the centre.
            And though, for the sake of demonstration, I proposed, at the
            beginning of this Section, an Hypothesis that the resistance is
            proportional to the velocity, nevertheless, it is in truth probable
            that the resistance is in a less ratio than that of the velocity;
            which granted, the periodic times of the parts of the vortex will be
            in a greater than the duplicate ratio of the distances from its
            centre. If, as some think, the vortices move more swiftly near the
            centre, then slower to a certain limit, then
            again swifter near the circumference, certainty neither the
            sesquiplicate, nor any other certain and determinate ratio, can obtain
            in them. Let philosophers then see how that phenomenon of the
            sesquiplicate ratio can be accounted for by vortices.
        


    

    
        Proposition liii. Theorem xli.


            
                
                    Bodies carried about in a vortex, and returning in the same
                    orb, are of the same density with the vortex, and are moved
                    according to the same law with the parts of the vortex, as to
                    velocity and direction of motion.
                
            


        

        
            For if any small part of the vortex, whose particles or physical
            points preserve a given situation among each other, be supposed to be
            congealed, this particle will move according to the same law as
            before, since no change is made either in its density, vis insita,
            or figure. And again; if a congealed or solid part of the vortex be of
            the same density with the rest of the vortex, and be resolved into a
            fluid, this will move according to the same law as before, except in
            so far as its particles, now become fluid, may be moved among
            themselves. Neglect, therefore, the motion of the particles among
            themselves as not at all concerning the progressive motion of the
            whole, and the motion of the whole will be the same as before. But
            this motion will be the same with the motion of other parts of the
            vortex at equal distances from the centre; because the solid, now
            resolved into a fluid, is become perfectly like to the other parts of
            the vortex. Therefore a solid, if it be of the same density with the
            matter of the vortex, will move with the same motion as the parts
            thereof, being relatively at rest in the matter that surrounds it. If
            it be more dense, it will endeavour more than before to recede from
            the centre; and therefore overcoming that force of the vortex, by
            which, being, as it were, kept in equilibrio, it was retained in its
            orbit, it will recede from the centre, and in its revolution describe
            a spiral, returning no longer into the same orbit. And, by the same
            argument, if it be more rare, it will approach to the centre.
            Therefore it can never continually go round in the same orbit, unless
            it be of the same density with the fluid. But we have shewn in that
            case that it would revolve according to the same law with those parts
            of the fluid that are at the same or equal distances from the centre
            of the vortex.
        


        
            Cor. 1. Therefore a solid revolving in a
            vortex, and continually going round in the same orbit, is relatively
            quiescent in the fluid that carries it.
        


        
            Cor. 2. And if the vortex be of an uniform
            density, the same body may revolve at any distance from the centre of
            the vortex.
        


    

    
        Scholium.



        
            Hence it is manifest that the planets are not carried round in
            corporeal vortices; for, according to the Copernican
            hypothesis, the planets going
            [image: Mathematical Principles of Natural Philosophy figure: 379]
            round the sun revolve in ellipses, having the sun in their common
            focus; and by radii drawn to the sun describe areas proportional to
            the times. But now the parts of a vortex can never revolve with such a
            motion. Let AD, BE, CF, represent three orbits described about the sun
            S, of which let the utmost circle CF be concentric to the sun; and let
            the aphelia of the two innermost be A, B; and their perihelia D, E.
            Therefore a body revolving in the orb CF, describing, by a radius
            drawn to the sun, areas proportional to the times, will move with an
            uniform motion. And, according to the laws of astronomy, the body
            revolving in the orb BE will move slower in its aphelion B, and
            swifter in its perihelion E; whereas, according to the laws of
            mechanics, the matter of the vortex ought to move more swiftly in the
            narrow space between A and C than in the wide space between D and F;
            that is, more swiftly in the aphelion than in the perihelion. Now
            these two conclusions contradict each other. So at the beginning of
            the sign of Virgo, where the aphelion of Mars is at present, the
            distance between the orbits of Mars and Venus is to the distance
            between the same orbits, at the beginning of the sign of Pisces, as
            about 3 to 2; and therefore the matter of the vortex between those
            orbits ought to be swifter at the beginning of Pisces than at the
            beginning of Virgo in the ratio of 3 to 2; for the narrower the space
            is through which the same quantity of matter passes in the same time
            of one revolution, the greater will be the velocity with which it
            passes through it. Therefore if the earth being relatively at rest in
            this celestial matter should be carried round by it, and revolve
            together with it about the sun, the velocity of the earth at the
            beginning of Pisces would be to its velocity at the beginning of Virgo
            in a sesquialteral ratio. Therefore the sun's apparent diurnal motion
            at the beginning of Virgo ought to be above 70 minutes, and at the
            beginning of Pisces less than 48 minutes; whereas, on the contrary,
            that apparent motion of the sun is really greater at the beginning of
            Pisces than at the beginning of Virgo, as experience testifies; and
            therefore the earth is swifter at the beginning of Virgo than at the
            beginning of Pisces; so that the hypothesis of vortices is utterly
            irreconcileable with astronomical phaenomena, and rather serves to
            perplex than explain the heavenly motions. How these motions are
            performed in free spaces without vortices, may be understood by the
            first Book; and I shall now more fully treat of it in the following
            Book.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.4




    
        Section iv.


        Of the finding of elliptic, parabolic, and hyperbolic orbits, from the focus given.


    

    
        Lemma xv.


            
                If from the two foci S, H, of any ellipsis or
                hyberbola, we draw to any third point V the right lines
                SV, HV, whereof one HV is equal to the principal axis
                of the figure, that is, to the axis in which the foci are
                situated, the other, SV, is bisected in T by
                the perpendicular TR let fall upon it; that
                perpendicular TR will somewhere touch the conic section:
                and, vice versa, if it does touch it, HV will
                be equal to the principal axis of the figure.
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 125b]

        
            For, let the perpendicular TR cut the right line HV, produced, if
            need be, in R; and join SR. Because TS, TV are equal, therefore the
            right lines SR, VR, as well as the angles TRS, TRV, will be also
            equal. Whence the point R will be in the conic section, and the
            perpendicular TR, will touch the same; and the contrary.
              Q.E.D.
        


    

    
        
            Proposition xviii. Problem X.


            
                
                    From a focus and the principal axes given, to describe elliptic
                    and hyperbolic trajectories, which shall pass through given
                    points, and touch right lines given by position.
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            Let S be the common focus of the figures; AB the length of the
            principal axis of any trajectory; P a point through which the
            trajectory should pass; and TR a right line which it should touch.
            About the centre P, with the interval AB − SP, if the orbit is an
            ellipsis, or AB + SP, if the orbit is an hyperbola, describe the
            circle HG. On the tangent TR let fall the perpendicular ST, and
            produce the same to V, so that TV may be equal to ST; and about V as a
            centre with the interval AB describe the circle FH. In this manner,
            whether two points P, p, are given, or two tangents TR, tr,
            or a point P and a tangent TR, we are to describe two circles. Let H
            be their common intersection, and from the foci S, H, with the given
            axis describe the trajectory: I say, the thing is done. For (be cause
            PH + SP in the ellipsis, and PH − SP in the hyperbola, is equal to the
            axis) the described trajectory will pass through the point P, and (by
            the preceding Lemma) will touch the right line TR. And by the same
            argument it will either pass through the two points P, p, or
            touch the two right lines TR, tr.   Q.E.F.
        


    

    
        Proposition xix. Problem xi.


            
                
                    About a given focus, to describe a parabolic trajectory, which
                    shall pass through given points, and touch right lines given by position.
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            Let S be the focus, P a point, and TR a tangent of the trajectory to
            be described. About P as a centre, with the interval PS, describe the
            circle FG. From the focus let fall ST perpendicular on the tangent,
            and produce the same to V, so as TV may be equal to ST. After the same
            manner another circle fg is to be described, if another
            point p is given; or another point v is to be
            found, if another tangent tr is given; then draw the right
            line IF, which shall touch the two circles FG, fg, if two
            points P, p are given; or pass through the two points V, v,
            if two tangents TR, tr, are given: or touch the circle FG,
            and pass through the point V, if the point P and the tangent TR are
            given. On FI let fall the perpendicular SI, and bisect the same in K;
            and with the axis SK and principal vertex K describe a parabola: I say
            the thing is done. For this parabola (because SK is equal to IK, and
            SP to FP) will pass through the point P; and (by
            Cor. 3, Lem. XIV) because ST is equal to TV, and STR a right angle, it
            will touch the right line TR.   Q.E.F.
        


    

    
        Proposition xx. Problem xii.


            
                
                    About a given focus to describe any trajectory given in specie
                    which shall pass through given points, and touch right lines given by position.
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            Case 1. About the focus S it is required to
            describe a trajectory ABC, passing through two points B, C. Because
            the trajectory is given in specie, the ratio of the principal axis to
            the distance of the foci will be given. In that ratio take KB to BS,
            and LC to CS. About the centres B, C, with the intervals BK, CL,
            describe two circles; and on the right line KL, that touches the same
            in K and L, let fall the perpendicular SG; which cut in A and a,
            so that GA may be to AS, and Ga to aS, as KB to BS;
            and with the axis Aa, and vertices A, a, describe a
            trajectory: I say the thing is done. For let H be the other focus of
            the described figure, and seeing GA is to AS as Ga to aS,
            then by division we shall have Ga − GA, or Aa to aS
            − AS, or SH in the same ratio, and therefore in the ratio which the
            principal axis of the figure to be described has to the distance of
            its foci; and therefore the described figure is of the same species
            with the figure which was to be described. And since KB to BS, and LC
            to CS, are in the same ratio, this figure will pass through the points
            B, C, as is manifest from the conic sections.
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            Case 2. About the focus S it is required to
            describe a trajectory which shall somewhere touch two right lines TR,
            tr. From the focus on those tangents let fall the
            perpendiculars ST, St, which produce to V, v, so
            that TV, tv may be equal to TS, tS. Bisect Vv
            in O, and erect the indefinite perpendicular OH, and cut the right
            line VS infinitely produced in K and k, so that VK be to KS,
            and Vk to kS, as the principal axis of the
            trajectory to be described is to the distance of its foci. On the
            diameter Kk describe a circle cutting OH in H; and with the
            foci S, H, and principal axis equal to VH, describe a trajectory: I
            say, the thing is done. For bisecting Kk in X, and joining
            HX, HS, HV, Hv, because VK is to KS as Vk to kS;
            and by composition, as VK + Vk to KS + kS; and by
            division, as Vk − VK to kS − KS, that is, as 2VX to
            2KX, and 2KX to 2SX, and therefore as VX to HX and HX to SX, the
            triangles VXH, HXS will be similar; therefore VH will be to SH as VX
            to XH; and therefore as VK to KS. Wherefore VH, the principal axis of
            the described trajectory, has the same ratio to SH, the distance of
            the foci, as the principal axis of the
            trajectory which was to be described has to the distance of its foci;
            and is therefore of the same species. And seeing VH, vH are
            equal to the principal axis, and VS, vS are perpendicularly
            bisected by the right lines TR, tr, it is evident (by Lem.
            XV) that those right lines touch the described trajectory.
              Q.E.F.
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            Case. 3. About the focus S it is required to
            describe a trajectory, which shall touch a right line TR in a given
            Point R. On the right line TR let fall the perpendicular ST, which
            produce to V, so that TV may be equal to ST; join VR, and cut the
            right line VS indefinitely produced in K and k, so that VK
            may be to SK, and Vk to Sk, as the principal axis of
            the ellipsis to be described to the distance of its foci; and on the
            diameter Kk describing a circle, cut the right line VR
            produced in H; then with the foci S, H, and principal axis equal to
            VH, describe a trajectory: I say, the thing is done. For VH is to SH
            as VK to SK, and therefore as the principal axis of the trajectory
            which was to be described to the distance of its foci (as appears from
            what we have demonstrated in Case 2); and therefore the described
            trajectory is of the same species with that which was to be described;
            but that the right line TR, by which the angle VRS is bisected,
            touches the trajectory in the point R, is certain from the properties
            of the conic sections.   Q.E.F.
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            Case 4. About the focus S it is required to
            describe a trajectory APB that shall touch a right line TR, and pass
            through any given point P without the tangent, and shall be similar to
            the figure apb, described with the principal axis ab,
            and foci s, h. On the tangent TR let fall the perpendicular
            ST, which produce to V, so that TV may be equal to ST; and making the
            angles hsq, shq, equal to the angles VSP, SVP, about q
            as a centre, and with an interval which shall be to ab as SP
            to VS, describe a circle cutting the figure apb in p:
            [image: Mathematical Principles of Natural Philosophy figure: 128c]
            join sp, and draw SH such that it
            may be to sh as SP is to sp, and may make the
            angle PSH equal to the angle psh, and the angle VSH equal to
            the angle psq. Then with the foci S, H, and principal axis
            AB, equal to the distance VH, describe a conic section: I say, the
            thing is done; for if sv is drawn so that it shall be to
            sp as sh is to sq,
            and shall make the angle vsp equal to the angle hsq,
            and the angle vsh equal to the angle psq, the
            triangles svh, spq, will be similar, and therefore vh
            will be to pq as sh is to sq; that is
            (because of the similar triangles VSP, hsq), as VS is to SP,
            or as ab to pq. Wherefore vh and ab
            are equal. But, because of the similar triangles VSH, vsh,
            VH is to SH as vh to sh; that is, the axis of the
            conic section now described is to the distance of its foci as the axis
            ab to the distance of the foci sh; and therefore
            the figure now described is similar to the figure aph. But,
            because the triangle PSH is similar to the triangle psh,
            this figure passes through the point P; and because VH is equal to its
            axis, and VS is perpendicularly bisected by the right line TR, the
            said figure touches the right line TR.   Q.E.F
        


    

    
        Lemma xvi.


            
                
                    From three given points to draw to a fourth point that is not
                    given three right lines whose differences shall be either given, or none at all.
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            Case 1. Let the given points be A, B, C, and
            Z the fourth point which we are to find; because of the given
            difference of the lines AZ, BZ, the locus of the point Z will be an
            hyperbola whose foci are A and B, and whose principal axis is the
            given difference. Let that axis be MN. Taking PM to MA as MN is to AB,
            erect PR perpendicular to AB, and let fall ZR perpendicular to PR;
            then from the nature of the hyperbola, ZR will be to AZ as MN is to
            AB. And by the like argument, the locus of the point Z will be another
            hyperbola, whose foci are A, C, and whose principal axis is the
            difference between AZ and CZ; and QS a perpendicular on AC may be
            drawn, to which (QS) if from any point Z of this hyperbola a
            perpendicular ZS is let fall (this ZS), shall be to AZ as the
            difference between AZ and CZ is to AC. Wherefore the ratios of ZR and
            ZS to AZ are given, and consequently the ratio of ZR to ZS one to the
            other; and therefore if the right lines RP, SQ, meet in T, and TZ and
            TA are drawn, the figure TRZS will be given in specie, and the right
            line TZ, in which the point Z is somewhere placed, will be given in
            position. There will be given also the right line TA, and the angle
            ATZ; and because the ratios of AZ and TZ to ZS are given, their ratio
            to each other is given also; and thence will be given likewise the
            triangle ATZ, whose vertex is the point Z.   Q.E.I.
        


        
            Case 2. If two of the three lines, for
            example AZ and BZ, are equal, draw the right line TZ so as to bisect
            the right line AB; then find the triangle ATZ as above.
              Q.E.I.
        


        
            Case 3. If all the
            three are equal, the point Z will be placed in the centre of a circle
            that passes through the points A, B, C.   Q.E.I.
        


        
            This problematic Lemma is likewise solved in Apollonius's Book of
            Tactions restored by Vieta.
        


    

    
        Proposition xxi. Problem xiii.


            
                
                    About a given focus to describe a trajectory that shall pass
                    through given points and touch right lines given by position.
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            Let the focus S, the point P, and the tangent TR be given, and
            suppose that the other focus H is to be found. On the tangent let fall
            the perpendicular ST, which produce to Y, so that TY may be equal to
            ST, and YH will be equal to the principal axis. Join SP, HP, and SP
            will be the difference between HP and the principal axis. After this
            manner, if more tangents TR are given, or more points P, we shall
            always determine as many lines YH, or PH, drawn from the said points Y
            or P, to the focus H, which either shall be equal to the axes, or
            differ from the axes by given lengths SP; and therefore which shall
            either be equal among themselves, or shall have given differences;
            from whence (by the preceding Lemma), that other focus H is given. But
            having the foci and the length of the axis (which is either YH, or, if
            the trajectory be an ellipsis, PH + SP; or PH − SP, if it be an
            hyperbola), the trajectory is given.   Q.E.I.
        


    

    
        Scholium.



        
            When the trajectory is an hyperbola, I do not comprehend its
            conjugate hyperbola under the name of this trajectory. For a body
            going on with a continued motion can never pass out of one hyperbola
            into its conjugate hyperbola.
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            The case when three points are given is more readily solved thus. Let
            B, C, D, be the given points. Join BC, CD, and produce them to E, F,
            so as EB may be to EC as SB to SC; and FC to FD as SC to SD. On EF
            drawn and produced let fall the perpendiculars SG, BH, and in GS
            produced indefinitely take GA to AS, and Ga to aS,
            as HB is to BS; then A will be the vertex, and Aa the
            principal axis of the trajectory; which, according as GA is greater
            than, equal to, or less than AS. will be
            either an ellipsis, a parabola, or an hyperbola; the point a
            in the first case falling on the same side of the line GF as the point
            A; in the second, going off to an infinite distance; in the third,
            falling on the other side of the line GF. For if on GF the
            perpendiculars CI, DK are let fall, IC will be to HB as EC to EB; that
            is, as SC to SB; and by permutation, IC to SC as HB to SB, or as GA to
            SA. And, by the like argument, we may prove that KD is to SD in the
            same ratio. Wherefore the points B, C, D lie in a conic section
            described about the focus S, in such manner that all the right lines
            drawn from the focus S to the several points of the section, and the
            perpendiculars let fall from the same points on the right line GF, are
            in that given ratio.
        


        
            That excellent geometer M. De la Hire has solved this Problem much
            after the same way, in his Conics, Prop. XXV., Lib. VIII.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 2.8




    
        Section viii.


        Of motion propagated through fluids.



    

    
        Proposition xli. Theorem xxxii.


            
                
                    A pressure is not propagated through a fluid in rectilinear
                    directions unless where the particles of the fluid lie in a right line.
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            If the particles a, b, c, d, e, lie in a right line, the
            pressure may be indeed directly propagated from a to e;
            but then the particle e will urge the obliquely posited
            particles f and g obliquely, and those particles f
            and g will not sustain this pressure, unless they be
            supported by the particles h and k lying beyond
            them; but the particles that support them are also pressed by them;
            and those particles cannot sustain that pressure, without being
            supported by, and pressing upon, those particles that lie still
            farther, as l and m, and so on in infinitum.
            Therefore the pressure, as soon as it is propagated to particles that
            lie out of right lines, begins to deflect towards one hand and the
            other, and will be propagated obliquely in infinitum; and
            after it has begun to be propagated obliquely, if it reaches more
            distant particles lying out of the right line, it will deflect again
            on each hand and this it will do as often as it lights on particles
            that do not lie exactly in a right line.   Q.E.D.
        


        
            Cor. If any part of a pressure, propagated
            through a fluid from a given point, be intercepted by any obstacle,
            the remaining part, which is not intercepted, will deflect into the
            spaces behind the obstacle. This may be demonstrated also after the
            following manner. Let a pressure be propagated from the point A
            towards any part, and, if it be possible, in rectilinear
            [image: Mathematical Principles of Natural Philosophy figure: 357]
            directions; and the obstacle NBCK being perforated in BC, let all the
            pressure be intercepted but the coniform part APQ passing through the
            circular hole BC. Let the cone APQ be divided into frustums by the
            transverse plants, de, fg, hi. Then while the cone ABC,
            propagating the pressure, urges the conic frustum degf
            beyond it on the superficies de, and this frustum urges the
            next frustum fgih on the superficies fg, and that
            frustum urges a third frustum, and so in infinitum; it is
            manifest (by the third Law) that the first frustum defg is,
            by the re-action of the second frustum fghi, as much urged
            and pressed on the superficies fg, as it urges and presses
            that second frustum. Therefore the frustum degf is
            compressed on both sides, that is, between the cone Ade and
            the frustum fhig; and therefore (by Case 6, Prop. XIX)
            cannot preserve its figure, unless it be compressed with the same
            force on all sides. Therefore with the same force with which it is
            pressed on the superficies de, fg, it will endeavour to
            break forth at the sides df, eg; and there (being not in the
            least tenacious or hard, but perfectly fluid) it will run out,
            expanding itself, unless there be an ambient fluid opposing that
            endeavour. Therefore, by the effort it makes to run out, it will press
            the ambient fluid, at its sides df, eg, with the same force
            that it does the frustum fghi; and therefore, the pressure
            will be propagated as much from the sides df, eg, into the
            spaces NO, KL this way and that way, as it is propagated from the
            superficies fg towards PQ.   Q.E.D.
        


    

    
        Proposition xlii. Theorem xxxiii.


            
                
                    All motion propagated through a fluid diverges from a
                    rectilinear progress into the unmoved spaces.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 357-2]

        
            Case 1. Let a motion be propagated from the
            point A through the hole BC, and, if it be possible, let it proceed in
            the conic space BCQP according to right lines diverging from the point
            A. And let us first suppose this motion to be that of waves in the
            surface of standing water; and let de, fg, hi, kl, &c.,
            be the tops of the several waves, divided from each other by as many
            intermediate valleys or hollows. Then, because the water in the
            ridges of the waves is higher than in the unmoved
            parts of the fluid KL, NO, it will run down from off the tops of those
            ridges, e, g, i, l, &c., d, f, h, k, &c.,
            this way and that way towards KL and NO; and because the water is more
            depressed in the hollows of the waves than in the unmoved parts of the
            fluid KL, NO, it will run down into those hollows out of those unmoved
            parts. By the first deflux the ridges of the waves will dilate
            themselves this way and that way, and be propagated towards KL and NO.
            And because the motion of the waves from A towards PQ is carried on by
            a continual deflux from the ridges of the waves into the hollows next
            to them, and therefore cannot be swifter than in proportion to the
            celerity of the descent; and the descent of the water on each side
            towards KL and NO must be performed with the same velocity; it follows
            that the dilatation of the waves on each side towards KL and NO will
            be propagated with the same velocity as the waves themselves go
            forward with directly from A to PQ. And therefore the whole space this
            way and that way towards KL and NO will be filled by the dilated waves
            rfgr, shis, tklt, vmnv, &c.   Q.E.D.
              That these things are so, any one may find by making the
            experiment in still water.
        


        
            Case 2. Let us suppose that de, fg, hi,
            kl, mn, represent pulses successively propagated from the point
            A through an elastic medium. Conceive the pulses to be propagated by
            successive condensations and rarefactions of the medium, so that the
            densest part of every pulse may occupy a spherical superficies
            described about the centre A, and that equal intervals intervene
            between the successive pulses. Let the lines de, fg, hi, kl,
            &c., represent the densest parts of the pulses, propagated through
            the hole BC; and because the medium is denser there than in the spaces
            on either side towards KL and NO, it will dilate itself as well
            towards those spaces KL, NO, on each hand, as towards the rare
            intervals between the pulses; and thence the medium, becoming always
            more rare next the intervals, and more dense next the pulses, will
            partake of their motion. And because the progressive motion of the
            pulses arises from the perpetual relaxation of the denser parts
            towards the antecedent rare intervals; and since the pulses will relax
            themselves on each hand towards the quiescent parts of the medium KL,
            NO, with very near the same celerity; therefore the pulses will dilate
            themselves on all sides into the unmoved parts KL, NO, with almost the
            same celerity with which they are propagated directly from the centre
            A; and therefore will fill up the whole space KLON.   Q.E.D.
              And we find the same by experience also in sounds which
            are heard through a mountain interposed; and, if they come into a
            chamber through the window, dilate themselves into all the parts of
            the room, and are heard in every corner; and not as reflected from the
            opposite walls, but directly propagated from the window, as far as our
            sense can judge.
        


        
            Case 3 Let us suppose, lastly, that a motion
            of any kind is propagated from A through the
            hole BC. Then since the cause of this propagation is that the parts of
            the medium that are near the centre A disturb and agitate those which
            lie farther from it; and since the parts which are urged are fluid,
            and therefore recede every way towards those spaces where they are
            less pressed, they will by consequence recede towards all the parts of
            the quiescent medium; as well to the parts on each hand, as KL and NO,
            as to those right before, as PQ; and by this means all the motion, as
            soon as it has passed through the hole BC, will begin to dilate
            itself, and from thence, as from its principle and centre, will be
            propagated directly every way.   Q.E.D.
        


    

    
        Proposition xliii. Theorem xxxiv.


            
                
                    Every tremulous body in an elastic medium propagates the motion
                    of the pulses on every side right forward; but in a non-elastic
                    medium excites a circular motion.
                
            


        

        
            Case. 1. The parts of the tremulous body,
            alternately going and returning, do in going urge and drive before
            them those parts of the medium that lie nearest, and by that impulse
            compress and condense them; and in returning suffer those compressed
            parts to recede again, and expand themselves. Therefore the parts of
            the medium that lie nearest to the tremulous body move to and fro by
            turns, in like manner as the parts of the tremulous body itself do;
            and for the same cause that the parts of this body agitate these parts
            of the medium, these parts, being agitated by like tremors, will in
            their turn agitate others next to themselves; and these others,
            agitated in like manner, will agitate those that lie beyond them, and
            so on in infinitum. And in the same manner as the first
            parts of the medium were condensed in going, and relaxed in returning,
            so will the other parts be condensed every time they go, and expand
            themselves every time they re turn. And therefore they will not be all
            going and all returning at the same instant (for in that case they
            would always preserve determined distances from each other, and there
            could be no alternate condensation and rarefaction); but since, in the
            places where they are condensed, they approach to, and, in the places
            where they are rarefied, recede from each other, therefore some of
            them will be going while others are returning; and so on in
            infinitum. The parts so going, and in their going condensed,
            are pulses, by reason of the progressive motion with which they strike
            obstacles in their way; and therefore the successive pulses produced
            by a tremulous body will be propagated in rectilinear directions; and
            that at nearly equal distances from each other, because of the equal
            intervals of time in which the body, by its several tremors produces
            the several pulses. And though the parts of the tremulous body go and
            return in some certain and determinate direction, yet the pulses
            propagated from thence through the medium will dilate themselves
            towards the sides, by the foregoing Proposition; and will
            be propagated on all sides from that tremulous body, as from a common
            centre, in superficies nearly spherical and concentrical. An example
            of this we have in waves excited by shaking a finger in water, which
            proceed not only forward and backward agreeably to the motion of the
            finger, but spread themselves in the manner of concentrical circles
            all round the finger, and are propagated on every side. For the
            gravity of the water supplies the place of elastic force.
        


        
            Case 2. If the medium be not elastic, then, because its parts cannot
            be condensed by the pressure arising from the vibrating parts of the
            tremulous body, the motion will be propagated in an instant towards
            the parts where the medium yields most easily, that is, to the parts
            which the tremulous body would otherwise leave vacuous behind it. The
            case is the same with that of a body projected in any medium whatever.
            A medium yielding to projectiles does not recede in infinitum,
            but with a circular motion comes round to the spaces which the body
            leaves behind it. Therefore as often as a tremulous body tends to any
            part, the medium yielding to it comes round in a circle to the parts
            which the body leaves; and as often as the body returns to the first
            place, the medium will be driven from the place it came round to, and
            return to its original place. And though the tremulous body be not
            firm and hard, but every way flexible, yet if it continue of a given
            magnitude, since it cannot impel the medium by its tremors any where
            without yielding to it somewhere else, the medium receding from the
            parts of the body where it is pressed will always come round in a
            circle to the parts that yield to it.   Q.E.D.
        


        
            Cor. It is a mistake, therefore, to think, as
            some have done, that the agitation of the parts of flame conduces to
            the propagation of a pressure in rectilinear directions through an
            ambient medium. A pressure of that kind must be derived not from the
            agitation only of the parts of flame, but from the dilatation of the
            whole.
        


    

    
        Proposition xliv. Theorem xxxv.


            
                If water ascend and descend alternately in the erected legs
                KL, MN, of a canal or pipe; and a pendulum be constructed whose
                length between the point of suspension and the centre of
                oscillation is equal to half the length of the water in the canal;
                I say, that the water will ascend and descend in the same times in
                which the pendulum oscillates.
            


        

        
            I measure the length of the water along the axes of the canal and its
            legs, and make it equal to the sum of those axes; and take no notice
            of the resistance of the water arising from its attrition by the sides
            of the canal. Let, therefore, AB, CD, represent the mean height of the
            water in both legs; and when the water in the leg KL ascends to the
            height EF, the water will descend in the leg MN to the height GH. Let
            P be a pendulous body, VP the thread, V the
            point of suspension, RPQS the cycloid which
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            the pendulum describes, P its lowest point, PQ an arc equal to the
            height AE. The force with which the motion of the water is accelerated
            and retarded alternately is the excess of the weight of the water in
            one leg above the weight in the other; and, therefore, when the water
            in the leg KL ascends to EF, and in the other leg descends to GH, that
            force is double the weight of the water EABF, and therefore is to the
            weight of the whole water as AE or PQ to VP or PR. The force also with
            which the body P is accelerated or retarded in any place, as Q, of a
            cycloid, is (by Cor. Prop. LI) to its whole weight as its distance PQ
            from the lowest place P to the length PR of the cycloid. Therefore the
            motive forces of the water and pendulum, describing the equal spaces
            AE, PQ, are as the weights to be moved; and therefore if the water and
            pendulum are quiescent at first, those forces will move them in equal
            times, and will cause them to go and return together with a reciprocal
            motion.   Q.E.D.
        


        
            Cor. 1. Therefore the reciprocations of the
            water in ascending and descending are all performed in equal times,
            whether the motion be more or less intense or remiss.
        


        
            Cor. 2. If the length of the whole water in
            the canal be of 6 1

            9 feet of French measure, the
            water will descend in one second of time, and will ascend in another
            second, and so on by turns in infinitum; for a pendulum of 3
            1

            18 such feet in length will oscillate
            in one second of time.
        


        
            Cor. 3. But if the length of the water be
            increased or diminished, the time of the reciprocation will be
            increased or diminished in the subduplicate ratio of the length.
        


    

    
        
            Proposition xlv. Theorem xxxvi.


            The velocity of waves is in the subduplicate ratio of the  breadths.


        

        This follows from the construction of the following Proposition.


    

    
        Proposition xlvi. Problem X.

To find the velocity of waves. 



        
            Let a pendulum be constructed, whose length between the point of
            suspension and the centre of oscillation is equal to the breadth of
            the waves and in the time that the pendulum
            will perform one single oscillation the waves will advance forward
            nearly a space equal to their breadth.
        


        
            That which I call the breadth of the waves is the transverse measure
            lying between the deepest part of the hollows,
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            or the tops of the ridges. Let ABCDEF represent the surface of stagnant
            water ascending and descending in successive waves; and let A, C, E,
            &c., be the tops of the waves; and let B, D, F, &c., be the
            intermediate hollows. Because the motion of the waves is carried on by
            the successive ascent and descent of the water, so that the parts
            thereof, as A, C, E, &c., which are highest at one time become
            lowest immediately after; and because the motive force, by which the
            highest parts descend and the lowest ascend, is the weight of the
            elevated water, that alternate ascent and descent will be analogous to
            the reciprocal motion of the water in the canal, and observe the same
            laws as to the times of its ascent and descent; and therefore (by
            Prop. XLIV) if the distances between the highest places of the waves
            A, C, E, and the lowest B, D, F, be equal to twice the length of any
            pendulum, the highest parts A, C, E, will become the lowest in the
            time of one oscillation, and in the time of another oscillation will
            ascend again. Therefore between the passage of each wave, the time of
            two oscillations will intervene; that is, the wave will describe its
            breadth in the time that pendulum will oscillate twice; but a pendulum
            of four times that length, and which therefore is equal to the breadth
            of the waves, will just oscillate once in that time.
              Q.E.I.
        


        
            Cor. 1. Therefore waves, whose breadth is
            equal to 3 1

            18 French feet, will advance
            through a space equal to their breadth in one second of time; and
            therefore in one minute will go over a space of 183⅓ feet; and in an
            hour a space of 11000 feet, nearly.
        


        
            Cor. 2. And the velocity of greater or less
            waves will be augmented or diminished in the subduplicate ratio of
            their breadth.
        


        
            These things are true upon the supposition that the parts of water
            ascend or descend in a right line; but, in truth, that ascent and
            descent is rather performed in a circle; and therefore I propose the
            time defined by this Proposition as only near the truth.
        


    

    
        Proposition xlvii. Theorem xxxvii.


            
                
                    If pulses are propagated through a fluid, the several particles
                    of the fluid, going and returning with the shortest reciprocal
                    motion, are always accelerated or retarded according to the law of
                    the oscillating pendulum.
                
            


        

        
            Let AB, BC, CD, &c., represent equal distances of successive
            pulses, ABC the line of direction of the motion of the successive
            pulses propagated from A to B; E, F, G three
            physical points of the quiescent medium situate in the right line AC
            at equal distances from each other; Ee, Ff, Gg,
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            equal spaces of extreme shortness,
            through which those points go and return with a reciprocal motion in each
            vibration; ε, Φ, γ, any intermediate places of the same
            points; EF, FG physical lineolae, or linear parts of the medium lying
            between those points, and successively transferred into the places εΦ,
            Φγ, and ef, fg. Let there be drawn the right line PS
            equal to the right line Ee. Bisect the same in O, and from
            the centre O, with the interval OP, describe the circle SIPi.
            Let the whole time of one vibration; with its proportional parts, be
            expounded by the whole circumference of this circle and its parts, in
            such sort, that, when any time PH or PHSh is completed, if
            there be let fall to
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            PS the perpendicular HL or hl,
            and there be taken Eε equal to PL or Pl, the
            physical point E may be found in ε. A point, as E, moving
            according to this law with a reciprocal motion, in its going from E
            through ε to e, and returning again through ε
            to E, will perform its several vibrations with the same degrees of
            acceleration and retardation with those of an oscillating pendulum. We
            are now to prove that the several physical points of the medium will
            be agitated with such a kind of motion. Let us suppose, then, that a
            medium hath such a motion excited in it from any cause whatsoever, and
            consider what will follow from thence.
        


        
            In the circumference PHSh let there be taken the equal arcs,
            HI, IK, or hi, ik, having the same ratio to the whole
            circumference as the equal right lines EF, FG have to BC, the whole
            interval of the pulses. Let fall the perpendiculars IM, KN, or im,
            kn; then because the points E, F, G are successively agitated
            with like motions, and perform their entire vibrations composed of
            their going and return, while the pulse is transferred from B to C; if
            PH or PHSh be the time elapsed since the beginning of the
            motion of the point E, then will PI or PHSi be the time
            elapsed since the beginning of the motion of the point F, and PK or
            PHSk the time elapsed since the beginning of the motion of
            the point G; and therefore Eε, FΦ, Gγ, will
            be respectively equal to PL, PM, PN, while the points are going, and
            to Pl, Pm, Pn, when the points are
            returning. Therefore εγ or EG + Gγ − Eε
            will, when the points are going, be equal to EG − LN and
            in their return equal to EG + ln. But εγ is the
            breadth or expansion of the part EG of the medium in the place εγ;
            and therefore the expansion of that part in its going is to its mean
            expansion as EG − LN to EG; and in its return, as EG + ln or
            EG + LN to EG. Therefore since LN is to KH as IM to the radius OP, and
            KH to EG as the circumference PHShP to BC; that is, if we put
            V for the radius of a circle whose circumference is equal to BC the
            interval of the pulses, as OP to V; and, ex aequo, LN to EG
            as IM to V; the expansion of the part EG, or of the physical point F
            in the place εγ, to the mean expansion of the same part in
            its first place EG, will be as V − IM to V in going, and as V + im
            to V in its return. Hence the elastic force of the point P in the
            place εγ to its mean elastic force in the place EG is as
            1

            V − IM to 1

            V in its going, and 
            1

            V + im to 1

            V in its return. And by the same
            reasoning the elastic forces of the physical points E and G in going
            are as 1

            V − HL and 
            1

            V − KN to 1

            V; and the difference of the forces
            to the mean elastic force of the medium as HL
            − KN

            VV − V x HL − V x KN + HL x KN to
            1

            V; that is, as 
            HL − KN

            VV to 1

            V, or as HL − KN to V; if we suppose
            (by reason of the very short extent of the vibrations) HL and KN to be
            indefinitely less than the quantity V. Therefore since the quantity V
            is given, the difference of the forces is as HL − KN; that is (because
            HL − KN is proportional to HK, and OM to OI or OP; and because HK and
            OP are given) as OM; that is, if Ff be bisected in Ω, as ΩΦ.
            And for the same reason the difference of the elastic forces of the
            physical points ε and γ, in the return of the
            physical lineola εγ, is as ΩΦ. But that difference
            (that is, the excess of the elastic force of the point ε
            above the elastic force of the point γ) is the very force by which the
            intervening physical lineola εγ of the medium is accelerated
            in going, and retarded in returning; and therefore the accelerative
            force of the physical lineola εγ is as its distance from Ω,
            the middle place of the vibration. Therefore (by Prop. XXXVIII, Book
            I) the time is rightly expounded by the arc PI; and the linear part of
            the medium εγ is moved according to the law abovementioned,
            that is, according to the law of a pendulum oscillating; and the case
            is the same of all the linear parts of which the whole medium is
            compounded.   Q.E.D.
        


        
            Cor. Hence it appears that the number of the
            pulses propagated is the same with the number of the vibrations of the
            tremulous body, and is not multiplied in their progress. For the
            physical lineola εγ as soon as it returns to its first place
            is at rest; neither will it move again, unless it receives
            a new motion either from the impulse of the tremulous body, or of the
            pulses propagated from that body. As soon, therefore, as the pulses
            cease to be propagated from the tremulous body, it will return to a
            state of rest, and move no more.
        


    

    
        Proposition xlviii. Theorem xxxviii.


            
                
                    The velocities of pulses propagated in an elastic fluid are in
                    a ratiο compounded of the subduplicate ratio of the elastic force
                    directly, and the subduplicate ratio of the density inversely;
                    supposing the elastic force of the fluid to be proportional to its condensation.
                
            


        

        
            Case 1. If the mediums be homogeneous, and
            the distances of the pulses in those mediums be equal amongst
            themselves, but the motion in one medium is more intense than in the
            other, the contractions and dilatations of the correspondent parts
            will be as those motions; not that this proportion is perfectly
            accurate. However, if the contractions and dilatations are not
            exceedingly intense, the error will not be sensible; and therefore
            this proportion may be considered as physically exact. Now the motive
            elastic forces are as the contractions and dilatations; and the
            velocities generated in the same time in equal parts are as the
            forces. Therefore equal and corresponding parts of corresponding
            pulses will go and return together, through spaces proportional to
            their contractions and dilatations, with velocities that are as those
            spaces; and therefore the pulses, which in the time of one going and
            returning advance forward a space equal to their breadth, and are
            always succeeding into the places of the pulses that immediately go
            before them, will, by reason of the equality of the distances, go
            forward in both mediums with equal velocity.
        


        
            Case 2. If the distances of the pulses or
            their lengths are greater in one medium than in another, let us
            suppose that the correspondent parts describe spaces, in going and
            returning, each time proportional to the breadths of the pulses; then
            will their contractions and dilatations be equal: and therefore if the
            mediums are homogeneous, the motive elastic forces, which agitate them
            with a reciprocal motion, will be equal also. Now the matter to be
            moved by these forces is as the breadth of the pulses; and the space
            through which they move every time they go and return is in the same
            ratio. And, moreover, the time of one going and returning is in a
            ratio compounded of the subduplicate ratio of the matter, and the
            subduplicate ratio of the space; and therefore is as the space. But
            the pulses advance a space equal to their breadths in the times of
            going once and returning once; that is, they go over spaces
            proportional to the times, and therefore are equally swift.
        


        
            Case 3. And therefore in mediums of equal
            density and elastic force, all the pulses are equally swift. Now if
            the density or the elastic force of the medium were augmented, then,
            because the motive force is increased in the
            ratio of the elastic force, and the matter to be moved is increased in
            the ratio of the density, the time which is necessary for producing
            the same motion as before will be increased in the subduplicate ratio
            of the density, and will be diminished in the subduplicate ratio of
            the elastic force. And therefore the velocity of the pulses will be in
            a ratio compounded of the subduplicate ratio of the density of the
            medium inversely, and the subduplicate ratio of the elastic force
            directly.   Q.E.D.
        


        
            This Proposition will be made more clear from the construction of the
            following Problem.
        


    

    
        Proposition xlix. Problem xi.


            
                
                    The density and elastic force of a medium being given, to find
                    the velocity of the pulses.
                
            


        

        
            Suppose the medium to be pressed by an incumbent weight after the
            manner of our air; and let A be the height of a homogeneous medium,
            whose weight is equal to the incumbent weight, and whose density is
            the same with the density of the compressed medium in which the pulses
            are propagated. Suppose a pendulum to be constructed whose length
            between the point of suspension and the centre of oscillation is A:
            and in the time in which that pendulum will perform one entire
            oscillation composed of its going and returning, the pulse will be
            propagated right onwards through a space equal to the circumference of
            a circle described with the radius A.
        


        
            For, letting those things stand which were constructed in Prop.
            XLVII, if any physical line, as EF, describing the space PS in each
            vibration, be acted on in the extremities P and S of every going and
            return that it makes by an elastic force that is equal to its weight,
            it will perform its several vibrations in the time in which the same
            might oscillate in a cycloid whose whole perimeter is equal to the
            length PS; and that because equal forces will impel equal corpuscles
            through equal spaces in the same or equal times. Therefore since the
            times of the oscillations are in the subduplicate ratio of the lengths
            of the pendulums, and the length of the pendulum is equal to half the
            arc of the whole cycloid, the time of one vibration would be to the
            time of the oscillation of a pendulum whose length is A in the
            subduplicate ratio of the length ½PS or PO to the length A. But the
            elastic force with which the physical lineola EG is urged, when it is
            found in its extreme places P, S, was (in the demonstration of Prop.
            XLVII) to its whole elastic force as HL − KN to V, that is (since the
            point K now falls upon P), as HK to V: and all that force, or which is
            the same thing, the incumbent weight by which the lineola EG is
            compressed, is to the weight of the lineola as the altitude A of the
            incumbent weight to EG the length of the lineola; and therefore, ex
            aequo, the force
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            with which the lineola EG is urged in the places P and S is to the
            weight of that lineola as HK x A to V x EG; or as PO x A to VV;
            because HK was to EG as PO to V. Therefore since the times in which
            equal bodies are impelled through equal spaces are reciprocally in the
            subduplicate ratio of the forces, the time of one vibration, produced
            by the action of that elastic force, will be to the time of a
            vibration, produced by the impulse of the weight in a subduplicate
            ratio of VV to PO x A, and therefore to the time of the oscillation of
            a pendulum whose length is A in the subduplicate ratio of VV to PO x
            A, and the subduplicate ratio of PO to A conjunctly; that is, in the
            entire ratio of V to A.
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            But in the time of one vibration composed of the going and returning of the pendulum,
            the pulse will be propagated right onward through a space equal to its breadth BC.
            Therefore the time in which a pulse runs over the space BC is to the
            time of one oscillation composed of the going and returning of the
            pendulum as V to A, that is, as BC to the circumference of a circle
            whose radius is A. But the time in which the pulse will run over the
            space BC is to the time in which it will run over a length equal to
            that circumference in the same ratio; and therefore in the time of
            such an oscillation the pulse will run over a length equal to that
            circumference.   Q.E.D.
        


        
            Cor. 1. The velocity of the pulses is equal
            to that which heavy bodies acquire by falling with an equally
            accelerated motion, and in their fall describing half the altitude A.
            For the pulse will, in the time of this fall, supposing it to move
            with the velocity acquired by that fall, run over a space that will be
            equal to the whole altitude A; and therefore in the time of one
            oscillation composed of one going and return, will go over a space
            equal to the circumference of a circle described with the radius A;
            for the time of the fall is to the time of oscillation as the radius
            of a circle to its circumference.
        


        
            Cor. 2. Therefore since that altitude A is as
            the elastic force of the fluid directly, and the density of the same
            inversely, the velocity of the pulses will be in a ratio compounded of
            the subduplicate ratio of the density inversely, and the subduplicate
            ratio of the elastic force directly.
        



        


    

    
        
            Proposition l. Problem xii.


            To find the distances of the pulses. 


        

        
            Let the number of the vibrations of the body, by whose tremor the
            pulses are produced, be found to any given time. By that number divide
            the space which a pulse can go over in the same time, and the part
            found will be the breadth of one pulse.   Q.E.I.
        


    

    
        Scholium.



        
            The last Propositions respect the motions of light and sounds; for
            since light is propagated in right lines, it is certain that it cannot
            consist in action alone (by Prop. XLI and XLII). As to sounds, since
            they arise from tremulous bodies, they can be nothing else but pulses
            of the air propagated through it (by Prop. XLIII); and this is
            confirmed by the tremors which sounds, if they be loud and deep,
            excite in the bodies near them, as we experience in the sound of
            drums; for quick and short tremors are less easily excited. But it is
            well known that any sounds, falling upon strings in unison with the
            sonorous bodies, excite tremors in those strings. This is also
            confirmed from the velocity of sounds; for since the specific
            gravities of rain-water and quicksilver are to one another as about 1
            to 13⅔, and when the mercury in the barometer is at the height of 30
            inches of our measure, the specific gravities of the air and of
            rain-water are to one another as about 1 to 870, therefore the
            specific gravity of air and quicksilver are to each other as 1 to
            11890. Therefore when the height of the quicksilver is at 30 inches, a
            height of uniform air, whose weight would be sufficient to compress
            our air to the density we find it to be of, must be equal to 356700
            inches, or 29725 feet of our measure; and this is that very height of
            the medium, which I have called A in the construction of the foregoing
            Proposition. A circle whose radius is 29725 feet is 186768 feet in
            circumference. And since a pendulum 39 1

            5 inches in length completes one
            oscillation, composed of its going and return, in two seconds of time,
            as is commonly known, it follows that a pendulum 29725 feet, or 356700
            inches in length will perform a like oscillation in 190¾ seconds.
            Therefore in that time a sound will go right onwards 186768 feet, and
            therefore in one second 979 feet.
        


        
            But in this computation we have made no allowance for the crassitude
            of the solid particles of the air, by which the sound is propagated
            instantaneously. Because the weight of air is to the weight of water
            as 1 to 870, and because salts are almost twice as dense as water; if
            the particles of air are supposed to be of near the same density as
            those of water or salt, and the rarity of the air arises from the
            intervals of the particles; the diameter of one particle of air will
            be to the interval between the centres of the
            particles as 1 to about 9 or 10, and to the interval between the
            particles themselves as 1 to 8 or 9. Therefore to 979 feet, which,
            according to the above calculation, a sound will advance forward in
            one second of time, we may add 979

            9, or about 109 feet, to compensate for
            the crassitude of the particles of the air: and then a sound will go
            forward about 1088 feet in one second of time.
        


        
            Moreover, the vapours floating in the air being of another spring,
            and a different tone, will hardly, if at all, partake of the motion of
            the true air in which the sounds are propagated. Now if these vapours
            remain unmoved, that motion will be propagated the swifter through the
            true air alone, and that in the subduplicate ratio of the defect of
            the matter. So if the atmosphere consist of ten parts of true air and
            one part of vapours, the motion of sounds will be swifter in the
            subduplicate ratio of 11 to 10, or very nearly in the entire ratio of
            21 to 20, than if it were propagated through eleven parts of true air:
            and therefore the motion of sounds above discovered must be increased
            in that ratio. By this means the sound will pass through 1142 feet in
            one second of time.
        


        
            These things will be found true in spring and autumn, when the air is
            rarefied by the gentle warmth of those seasons, and by that means its
            elastic force becomes somewhat more intense. But in winter, when the
            air is condensed by the cold, and its elastic force is somewhat
            remitted, the motion of sounds will be slower in a subduplicate ratio
            of the density; and, on the other hand, swifter in the summer.
        


        
            Now by experiments it actually appears that sounds do really advance
            in one second of time about 1142 feet of English measure, or
            1070 feet of French measure.
        


        
            The velocity of sounds being known, the intervals of the pulses are
            known also. For M. Sauveur, by some experiments that he
            made, found that an open pipe about five Paris feet in
            length gives a sound of the same tone with a viol-string that vibrates
            a hundred times in one second. Therefore there are near 100 pulses in
            a space of 1070 Paris feet, which a sound runs over in a
            second of time; and therefore one pulse fills up a space of about 10
            7

            10 Paris feet, that is, about
            twice the length of the pipe. From whence it is probable that the
            breadths of the pulses, in all sounds made in open pipes, are equal to
            twice the length of the pipes.
        


        
            Moreover, from the Corollary of Prop. XLVII appears the reason why
            the sounds immediately cease with the motion of the sonorous body, and
            why they are heard no longer when we are at a great distance from the
            sonorous bodies than when we are very near them. And besides, from the
            foregoing principles, it plainly appears how it comes to pass that
            sounds are so mightily increased in speaking-trumpets; for all
            reciprocal motion uses to be increased by the generating cause at each
            return. And in tubes hindering the dilatation of the sounds, the
            motion decays more slowly, and recurs more
            forcibly; and therefore is the more increased by the new motion
            impressed at each return. And these are the principal phaenomena of
            sounds.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.7




    
        Section vii.


        Concerning the rectilinear ascent and descent of bodies.



    

    
        Proposition xxxii. Problem xxiv.


            
                
                    Supposing that the centripetal force is reciprocally
                    proportional to the square of the distance of the places from the
                    centre; it is required to define the spaces which a body, falling
                    directly, describes in given times.
                
            


        

        
            Case 1. If the body does not fall
            perpendicularly, it will (by Cor. 1 
            [image: Mathematical Principles of Natural Philosophy figure: 160a]
            Prop. XIII) describe some conic section whose focus is A placed in the
            centre of force. Suppose that conic section to be ARPB and its focus
            S. And, first, if the figure be an ellipsis, upon the greater axis
            thereof AB describe the semi-circle ADB, and let the right line DPC
            pass through the falling body, making right angles with the axis; and
            drawing DS, PS, the area ASD will be proportional to the area ASP, and
            therefore also to the time. The axis AB still remaining the same, let
            the breadth of the ellipsis be perpetually diminished, and the area
            ASD will always remain proportional to the time. Suppose that breadth
            to be diminished in infinitum; and the orbit APB in that
            case coinciding with the axis AB, and the focus S with the extreme
            point of the axis B, the body will descend in the right line AC, and
            the area ABD will become proportional to the time. Wherefore the space
            AC will be given which the body describes in a given time by its
            perpendicular fall from the place A, if the area ABD is taken
            proportional to the time, and from the point D the right line DC is
            let fall perpendicularly on the right line AB.   Q.E.I.
        


        [image: Mathematical Principles of Natural Philosophy figure: 160b]

        
            Case 2. If the figure RPB is an hyperbola, on
            the same principal diameter AB describe the rectangular hyperbola BED;
            and because the areas CSP, CBfP, SPfB, are severally
            to the several areas CSD, CBED, SDEB, in the given ratio of the
            heights CP, CD, and the area SPfB is proportional to the time
            in which the body P will move through the arc PfB. the area
            SDEB will be also proportional to that time. Let the latus rectum of
            the hyperbola RPB be diminished in infinitum, the latus
            transversum remaining the same; and the arc PB will come to coincide
            with the right line CB, and the focus S, with the vertex B, and the
            right line SD with the right line BD. And therefore the area BDEB will
            be proportional to the time in which the body C, by its perpendicular
            descent, describes the line CB.   Q.E.I.
        


        [image: Mathematical Principles of Natural Philosophy figure: 160c]

        
            Case 3. And by the like argument, if the
            figure RPB is a parabola, and to the same principal vertex B another
            parabola BED is described, that may always remain given while the
            former para bola in whose perimeter the body P moves, by having its
            latus rectum diminished and reduced to nothing, comes to coincide with
            the line CB, the parabolic segment BDEB will be proportional to the
            time in which that body P or C will descend to the centre S or B.
              Q.E.I
        


    

    
        
            Proposition xxxiii. Theorem ix.


            
                The things above found being supposed. I say, that the velocity
                of a falling body in any place C is to the velocity of a
                body, describing a circle about the centre B at the
                distance BC, in the subduplicate ratio of AC,
                the distance of the body from the remoter vertex A of
                the circle or rectangular hyperbola, to ½AB, the
                principal semi-diameter of the figure.
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 161]

        
            Let AB, the common diameter of both figures RPB, DEB, be bisected in
            O; and draw the right line PT that may touch the figure RPB in P, and
            likewise cut that common diameter AB (produced, if need be) in T; and
            let SY be perpendicular to this line, and BQ to this diameter, and
            suppose the latus rectum of the figure RPB to be L. From Cor. 9, Prop.
            XVI, it is manifest that the velocity of a body, moving in the line
            RPB about the centre S, in any place P, is to the velocity of a body
            describing a circle about the same centre, at the distance SP, in the
            subduplicate ratio of the rectangle ½L x SP to SY². For by the
            properties of the conic sections ACB is to CP² as 2AO to L, and
            therefore 2CP2 x AO

            ACB is equal to L. Therefore those
            velocities are to each other in the subduplicate ratio of 
            CP2 x AO x SP

            ACB to SY². Moreover, by the properties
            of the conic sections, CO is to BO as BO to TO, and (by composition or
            division) as CB to BT. Whence (by division or composition) BO − or +
            CO will be to BO as CT to BT, that is, AC will be to AO as CP to BQ;
            and therefore CP2 x AO
            x SP

            ACB is equal to 
            BQ2 x AC x SP

            AO x BC. Now suppose CP, the breadth of
            the figure RPB, to be diminished in infinitum, so as the
            point P may come to coincide with the point C, and the point S with
            the point B, and the line SP with the line BC, and the line SY with
            the line BQ; and the velocity of the body now descending
            perpendicularly in the line CB will be to the velocity of a
            body describing a circle about the centre B, at the distance BC; in
            the subduplicate ratio of BQ2
            x AC x SP

            AO x BC to SY², that is (neglecting the
            ratios of equality of SP to BC, and BQ² to SY²), in the subduplicate
            ratio of AC to AO, or ½AB.   Q.E.D.
        


        
            Cor. 1. When the points B and S come to
            coincide, TC will become to TS as AC to AO.
        


        
            Cor. 2. A body revolving in any circle at a
            given distance from the Centre, by its motion converted upwards, will
            ascend to double its distance from the centre.
        


    

    
        Proposition xxxiv. Theorem X.


            
                If the figure BED is a parabola, I say, that the
                velocity of a falling body in any place C is equal to
                the velocity by which a body may uniformly describe a circle about
                the centre B at half the interval BC.
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            For (by Cor. 7, Prop. XVI) the velocity of a body describing a
            parabola RPB about the centre S, in any place P, is equal to the
            velocity of a body uniformly describing a circle about the same centre
            S at half the interval SP. Let the breadth CP of the parabola be
            diminished in infinitum, so as the parabolic arc PfB
            may come to coincide with the right line CB, the centre S with the
            vertex B, and the interval SP with the interval BC, and the
            proposition will be manifest.   Q.E.D.
        


    

    
        Proposition xxxv. Theorem xi.


            
                The same things supposed, I say, that the area of the figure
                DES, described by the indefinite radius SD, is equal to
                the area which a body with a radius equal to half the latus rectum
                of the figure DES, by uniformly revolving about the
                centre S, may describe in the same time.
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            For suppose a body C in the smallest moment
            of time describes in falling the infinitely little line Cc,
            while another body K, uniformly revolving about the centre S in the
            circle OKk, describes the arc Kk. Erect the
            perpendiculars CD, cd, meeting the figure DES in D, d.
            Join SD, Sd, SK, Sk, and draw Dd meeting
            the axis AS in T, and thereon let fall the perpendicular SY.
        


        
            Case 1. If the figure DES is a circle, or a
            rectangular hyperbola, bisect its transverse diameter AS in O, and SO
            will be half the latus rectum. And because TC is to TD as Cc
            to Dd, and TD to TS as CD to SY; ex aequo TC will
            be to TS as CD x Cc to SY x Dd. But (by Cor. 1,
            Prop. XXXIII) TC is to TS as AC to AO; to wit, if in the coalescence
            of the points D, d, the ultimate ratios of the lines are
            taken. Wherefore AC is to AO or SK as CD x Cc to SY x Dd.
            Farther, the velocity of the descending body in C is to the velocity
            of a body describing a circle about the centre S, at the interval SC,
            in the subduplicate ratio of AC to AO or SK (by Prop. XXXIII); and
            this velocity is to the velocity of a body describing the circle OKk
            in the subduplicate ratio of SK to SC (by Cor. 6, Prop IV); and, ex
            aequo, the first velocity to the last, that is, the little line
            Cc to the arc Kk, in the subduplicate ratio of AC to
            SC, that is, in the ratio of AC to CD. Wherefore CD x Cc is
            equal to AC x Kk, and consequently AC to SK as AC x Kk
            to SY x Dd, and thence SK x Kk equal to SY x Dd,
            and ½SK x Kk equal to ½SY x Dd, that is, the area KSk
            equal to the area SDd. Therefore in every moment of time two
            equal particles, KSk and SDd, of areas are
            generated, which, if their magnitude is diminished, and their number
            increased in infinitum, obtain the ratio of equality, and
            consequently (by Cor. Lem. IV), the whole areas together generated are
            always equal.   Q.E.D.
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            Case 2. But if the figure DES is a parabola,
            we shall find, as above, CD x Cc to SY x Dd as TC to
            TS, that is, as 2 to 1; and that therefore ¼CD x Cc is equal
            to ½SY x Dd. But the velocity of the falling body in C is
            equal to the velocity with which a circle may be uniformly described
            at the interval ½SC (by Prop. XXXIV). And this velocity to the
            velocity with which a circle may be described with the radius SK, that
            is, the little line Cc to the arc Kk, is (by Cor. 6,
            Prop. IV) in the subduplicate ratio of SK to ½SC; that is, in the
            ratio of SK to ½CD. Wherefore ½SK x Kk is equal to ¼CD x Cc,
            and therefore equal to ½SY x Dd; that is, the area KSk
            is equal to the area SDd, as above.   Q.E.D.
        


    

    
        
            Proposition xxxvi. Problem xxv.


            To determine the times of the descent of a body falling from place A.


        

        [image: Mathematical Principles of Natural Philosophy figure: 164a]

        
            Upon the diameter AS, the distance of the body from the centre at the
            beginning, describe the semi-circle ADS, as likewise the semi-circle
            OKH equal thereto, about the centre S. From any place C of the body
            erect the ordinate CD. Join SD, and make the sector OSK equal to the
            area ASD. It is evident (by Prop. XXXV) that the body in falling will
            describe the space AC in the same time in which another body,
            uniformly revolving about the centre S, may describe the arc OK.
              Q.E.F.
        


    

    
        Proposition xxxvii. Problem xxvi.


            
                
                    To define the times of the ascent or descent of a body
                    projected upwards or downwards from a given place.
                
            


        

        
            Suppose the body to go off from the given place G, in the direction
            of the line GS, with any velocity. In the duplicate ratio of this
            velocity to the uniform velocity in a circle, with which the body may
            revolve about
            [image: Mathematical Principles of Natural Philosophy figure: 164b]
            the centre S at the given
            interval SG, take GA to ½AS. If that ratio is the same as of the
            number 2 to 1, the point A is infinitely remote; in which case a
            parabola is to be described with any latus rectum to the vertex S, and
            axis SG; as appears by Prop. XXXIV. But if that ratio is less or
            greater than the ratio of 2 to 1, in the former case a circle, in the
            latter a rectangular hyperbola, is to be described on the diameter SA;
            as appears by Prop. XXXIII. Then about the centre S, with an interval
            equal to half the latus rectum, describe the circle HkK; and
            at the place G of the ascending or descending body, and at any other
            place C, erect the perpendiculars GI, CD, meeting the conic section or
            circle in I and D. Then joining SI, SD, let the sectors HSK, HSk
            be made equal to the segments SEIS, SEDS. and (by Prop. XXXV) the body
            G will describe the space GC in the same time
            in which the body K may describe the arc Kk.
              Q.E.F.
        


    

    
        Proposition xxxviii. Theorem xii.


            
                
                    Supposing that the centripetal force is proportional to the
                    altitude or distance of places from the centre. I say, that the
                    times and velocities of falling bodies, and the spaces which they
                    describe, are respectively proportional to the arcs, and the right
                    and versed sines of the arcs.
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            Suppose the body to fall from any place A in the right line AS; and
            about the centre of force S, with the interval AS, describe the
            quadrant of a circle AE; and let CD be the right sine of any arc AD;
            and the body A will in the time AD in falling describe the space AC,
            and in the place C will acquire the velocity CD.
        


        
            This is demonstrated the same way from Prop. X, as Prop. XXXII was
            demonstrated from Prop. XI.
        


        
            Cor. 1. Hence the times are equal in which
            one body falling from the place A arrives at the centre S, and another
            body revolving describes the quadrantal arc ADE.
        


        
            Cor. 2. Wherefore all the times are equal in
            which bodies falling from whatsoever places arrive at the centre. For
            all the periodic times of revolving bodies are equal (by Cor. 3, Prop. IV).
        


    

    
        Proposition xxxix. Problem xxvii.


            
                
                    Supposing a centripetal force of any kind, and granting the
                    quadratures of curvilinear figures; it is required to find the
                    velocity of a body, ascending or descending in a right line, in
                    the several places through which it passes; as also the time in
                    which it will arrive at any place: and vice versa.
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            Suppose the body E to fall from any place A in the right line ADEC;
            and from its place E imagine a perpendicular EG always erected
            proportional to the centripetal force in that place tending to the
            centre C; and let BFG be a curve line, the locus of the point G. And
            in the beginning of the motion suppose EG to coincide with the
            perpendicular AB; and the velocity of the body in any place E will be
            as a right line whose square is equal to the curvilinear area ABGE.
              Q.E.I.
        


        
            In EG take EM reciprocally proportional to a
            right line whose square is equal to the area ABGE, and let VLM he a
            curve line wherein the point M is always placed, and to which the
            right line AB produced is an asymptote; and the time in which the body
            in falling describes the line AE, will be as the curvilinear area
            ABTVME.   Q.E.I.
        


        
            For in the right line AE let there be taken the very small line DE of
            a given length, and let DLF be the place of the line EMG, when the
            body was in D; and if the centripetal force be such, that a right
            line, whose square is equal to the area ABGE, is as the velocity of
            the descending body, the area itself will be as the square of that
            velocity; that is, if for the velocities in D and E we write V and V +
            I, the area ABFD will be as VV, and the area ABGE as VV + 2VI + II;
            and by division, the area DFGE as 2VI + II, and therefore 
            DFGE

            DE will be as 
            2VI+II

            DE; that is, if we take the first
            ratios of those quantities when just nascent, the length DF is as the
            quantity 2VI

            DE, and therefore also as half that
            quantity I x V

            DE. But the time in which the body in
            falling describes the verv small line DE, is as that line directly and
            the velocity V inversely; and the force will be as the increment I of
            the velocity directly and the time inversely; and therefore if we take
            the first ratios when those quantities are just nascent, as
            
            I x V

            DE, that is, as the length DF.
            Therefore a force proportional to DF or EG will cause the body to
            descend with a velocity that is as the right line whose square is
            equal to the area ABGE.   Q.E.D.
        


        
            Moreover, since the time in which a very small line DE of a given
            length may be described is as the velocity inversely, and therefore
            also inversely as a right line whose square is equal to the area ABFD;
            and since the line DL, and by consequence the nascent area DLME, will
            be as the same right line inversely, the time will be as the area
            DLME, and the sum of all the times will be as the sum of all the
            areas; that is (by Cor. Lem. IV), the whole time in which the line AE
            is described will be as the whole area ATVME.   Q.E.D.
        


        
            Cor. 1. Let P be the place from whence a body
            ought to fall, so as that, when urged by any known uniform centripetal
            force (such as gravity is vulgarly supposed to be), it may acquire in
            the place D a velocity equal to the velocity which another body,
            falling by any force whatever, hath acquired in that place D. In the
            perpendicular DF let there be taken DR, which may be to DF as that
            uniform force to the other force in the place D. Complete the
            rectangle PDRQ, and cut off the area ABFD equal to that rectangle.
            Then A will be the place 
            [image: Mathematical Principles of Natural Philosophy figure: 165b]
            from whence the other body fell. For completing the rectangle DRSE,
            since the area ABFD is to the area DFGE as VV to 2VI, and therefore as
            ½V to I, that is, as half the whole velocity to the increment of the
            velocity of the body falling by the unequable force; and in like
            manner the area PQRD to the area DRSE as half the whole velocity to
            the increment of the velocity of the body falling by the uniform
            force; and since those increments (by reason of the equality of the
            nascent times) are as the generating forces, that is, as the ordinates
            DF, DR, and consequently as the nascent areas DFGE, DRSE: therefore, ex
            aequo, the whole areas ABFD, PQRD will be to one another as the
            halves of the whole velocities; and therefore, because the velocities
            are equal, they become equal also.
        


        
            Cor. 2. Whence if any body be projected
            either upwards or downwards with a given velocity from any place D,
            and there be given the law of centripetal force acting on it, its
            velocity will be found in any other place, as e, by erecting
            the ordinate eg, and taking that velocity to the velocity in
            the place D as a right line whose square is equal to the rectangle
            PQRD, either increased by the curvilinear area DFge, if the
            place e is below the place D, or diminished by the same area
            DFge, if it be higher, is to the right line whose square is
            equal to the rectangle PQRD alone.
        


        
            Cor. 3. The time is also known by erecting
            the ordinate em reciprocally proportional to the square root
            of PQRD + or − DFge, and taking the time in which the body
            has described the line De to the time in which another body
            has fallen with an uniform force from P, and in falling arrived at D
            in the proportion of the curvilinear area DLme to the
            rectangle 2PD x DL. For the time in which a body falling with an
            uniform force hath described the line PD, is to the time in which the
            same body has described the line PE in the subduplicate ratio of PD to
            PE; that is (the very small line DE being just nascent), in the ratio
            of PD to PD + ½DE, or 2PD to 2PD + DE, and, by division, to the time
            in which the body hath described the small line DE, as 2PD to DE, and
            therefore as the rectangle 2PD x DL to the area DLME; and the time in
            which both the bodies described the very small line DE is to the time
            in which the body moving unequably hath described the line De
            as the area DLME to the area DLme; and, ex aequo,
            the first mentioned of these times is to the last as the rectangle 2PD
            x DL to the area DLme.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.6




    
        Section vi.


        How the motions are to be found in given orbits.



    

    
        Proposition xxx. Problem xxii.


            
                
                    To find at any assigned time the place of a body moving in, a
                    given parabolic trajectory.
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            Let S be the focus, and A the principal vertex of the parabola; and
            suppose 4AS x M equal to the parabolic area to be cut off APS, which
            either was described by the radius SP, since the body's departure from
            the vertex, or is to be described thereby before its arrival there.
            Now the quantity of that area to be cut off is known from the time
            which is proportional to it. Bisect AS in G, and erect the
            perpendicular GH equal to BM, and a circle described about the centre
            H, with the interval HS, will cut the parabola in the place P
            required. For letting fall PO perpendicular on the axis, and drawing
            PH, there will be

            AG2 + GH2

            (= HP2 = (AO
            − AG)2 + (PO − GH)2)

            = AO2 + PO2 − 2GAO + 2 GH +
            PO + AG2 + GH2.

             Whence 2GH x PO (= AO2 + PO2
            − 2GAO) = AO2 + ¾PO2. For AO2 write
            AO x PO2

            4AS; then dividing all the terms by 2PO, and
            multiplying them by 2AS, we shall have 4/3GH x
            AS (= 1/6AO x PO + ½AS x PO = 
            AO+3AS

            6 x PO = 
            4AO − 3SO

            6 x PO = to the area (APO − SPO))
            = to the area APS. But GH was 3M, and therefore 4/3GH
            x AS is 4AS x M. Wherefore the
            area cut off APS is equal to the area that was to be cut off 4AS
            x M.   Q.E.D.
        


        
            Cor. 1. Hence GH is to AS as the time in
            which the body described the arc AP to the time in which the body
            described the arc between the vertex A and the perpendicular erected
            from the focus S upon the axis.
        


        
            Cor. 2. And supposing a circle ASP
            perpetually to pass through the moving body P, the velocity of the
            point H is to the velocity which the body had in the vertex A as 3 to
            8; and therefore in the same ratio is the line GH to the right line
            which the body, in the time of its moving from A to P, would describe
            with that velocity which it had in the vertex A.
        


        
            Cor. 3. Hence, also, on the other hand, the
            time may be found in which the body has described any assigned arc AP.
            Join AP, and on its middle point erect a perpendicular meeting the
            right line GH in H.
        


    

    
        Lemma xxviii.


            
                
                    There is no oval figure whose area, cut off by right lines at
                    pleasure, can be universally found by means of equations of any
                    number of finite terms and dimensions.
                
            


        

        
            Suppose that within the oval any point is given; about which as a
            pole a right line is perpetually revolving with an uniform motion,
            while in that right line a moveable point going out from the pole
            moves always forward with a velocity proportional to the square of
            that right line with in the oval. By this motion that point will
            describe a spiral with infinite circumgyrations. Now if a portion of
            the area of the oval cut off by that right line could be found by a
            finite equation, the distance of the point from the pole, which is
            proportional to this area, might be found by the same equation, and
            therefore all the points of the spiral might be found by a finite
            equation also; and therefore the intersection of a right line given in
            position with the spiral might also be found by a finite equation. But
            every right line infinitely produced cuts a spiral in an infinite
            number of points; and the equation by which any one intersection of
            two lines is found at the same time exhibits all their intersections
            by as many roots, and therefore rises to as many dimensions as there
            are intersections. Be cause two circles mutually cut one another in
            two points, one of those intersections is not
            to be found but by an equation of two dimensions, by which the other
            intersection may be also found. Because there may be four
            intersections of two conic sections, any one of them is not to be
            found universally, but by an equation of four dimensions, by which
            they may be all found together. For if those intersections are
            severally sought, be cause the law and condition of all is the same,
            the calculus will be the same in every case, and therefore the
            conclusion always the same; which must therefore comprehend all those
            intersections at once within itself, and exhibit them all
            indifferently. Hence it is that the intersections of the conic scions
            with the curves of the third order, because they may amount to six,
            come out together by equations of six dimensions; and the
            intersections of two curves of the third order, because they may
            amount to nine, come out together by equations of nine dimensions. If
            this did not necessarily happen, we might reduce all solid to plane
            Problems, and those higher than solid to solid Problems. But here I
            speak of curves irreducible in power. For if the equation by which the
            curve is defined may be reduced to a lower power, the curve will not
            be one single curve, but composed of two, or more, whose intersections
            may be severally found by different calculusses. After the same manner
            the two intersections of right lines with the conic sections come out
            always by equations of two dimensions; the three intersections of
            right lines with the irreducible curves of the third order by
            equations of three dimensions; the four intersections of right lines
            with the irreducible curves of the fourth order, by equations of four
            dimensions; and so on in infinitum. Wherefore the
            innumerable intersections of a right line with a spiral, since this is
            but one simple curve and not reducible to more curves, require
            equations infinite in number of dimensions and roots, by which they
            may be all exhibited together. For the law and calculus of all is the
            same. For if a perpendicular is let fall from the pole upon that
            intersecting right line, and that perpendicular together with the
            intersecting line revolves about the pole, the intersections of the
            spiral will mutually pass the one into the other; and that which was
            first or nearest, after one revolution, will be the second; after two,
            the third; and so on: nor will the equation in the mean time be
            changed but as the magnitudes of those quantities are changed, by
            which the position of the intersecting line is determined. Wherefore
            since those quantities after every revolution return to their first
            magnitudes, the equation will return to its first form; and
            consequently one and the same equation will exhibit all the
            intersections, and will therefore have an infinite number of roots, by
            which they may be all exhibited. And therefore the intersection of a
            right line with a spiral cannot be universally found by any finite
            equation; and of consequence there is no oval figure whose area, cut
            off by right lines at pleasure, can be universally exhibited by any
            such equation.
        


        
            By the same argument, if the interval of the
            pole and point by which the spiral is described is taken proportional
            to that part of the perimeter of the oval which is cut off; it may be
            proved that the length of the perimeter cannot be universally
            exhibited by any finite equation. But here I speak of ovals that are
            not touched by conjugate figures running out in infinitum.
        


        
            Cor. Hence the area of an ellipsis, described
            by a radius drawn from the focus to the moving body, is not to be
            found from the time given by a finite equation; and therefore cannot
            be determined by the description of curves geometrically rational.
            Those curves I call geometrically rational, all the points whereof may
            be determined by lengths that are definable by equations; that is, by
            the complicated ratios of lengths. Other curves (such as spirals,
            quadratrixes, and cycloids) I call geometrically irrational. For the
            lengths which are or are not as number to number (according to the
            tenth Book of Elements) are arithmetically rational or irrational. And
            therefore I cut off an area of an ellipsis proportional to the time in
            which it is described by a curve geometrically irrational, in the
            following manner.
        


    

    
        Proposition xxxi. Problem xxiii.


            
                
                    To find the place of a body moving in a given elliptic
                    trajectory at any assigned time.
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            Suppose A to be the principal vertex, S the focus, and O the centre
            of the ellipsis APB; and let P be the place of the body to be found.
            Produce OA to G so as OG may be to OA as OA to OS. Erect the
            perpendicular GH; and about the centre O, with the interval OG,
            describe the circle GEF; and on the ruler GH, as a base, suppose the
            wheel GEF to move forwards, revolving about its axis, and in the mean
            time by its point A describing the cycloid ALI. Which done, take GK to
            the perimeter GEFG of the wheel, in the ratio of the time in which the
            body proceeding from A described the arc AP, to the time of a whole
            revolution in the ellipsis. Erect the perpendicular KL meeting the
            cycloid in L; then LP drawn parallel to KG will meet the ellipsis in
            P, the required place of the body.
        


        
            For about the centre O with the interval OA describe the semi-circle
            AQB, and let LP, produced, if need be, meet the arc AQ in Q, and join
            SQ, OQ. Let OQ meet the arc EFG in F, and upon
            OQ let fall the perpendicular SR. The area APS is as the area AQS,
            that is, as the difference between the sector OQA and the triangle
            OQS, or as the difference of the rectangles ½OQ x AQ, and ½OQ x SR,
            that is, because ½OQ is given, as the difference between the arc AQ
            and the right line SR; and therefore (because of the equality of the
            given ratios SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to
            GF; and by division, AQ − SR to GF − sine of the arc AQ) as GK, the
            difference between the arc GF and the sine of the arc AQ.
              Q.E.D.
        


    

    
        Scholium.
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            But since the description of this curve is difficult, a solution by
            approximation will be preferable. First, then, let there be found a
            certain angle B which may be to an angle of 57,29578 degrees, which an
            arc equal to the radius subtends, as SH, the distance of the foci, to
            AB, the diameter of the ellipsis. Secondly, a certain length L, which
            may be to the radius in the same ratio inversely. And these being
            found, the Problem may be solved by the following analysis. By any
            construction (or even by conjecture), suppose we know P the place of
            the body near its true place p. Then letting fall on the
            axis of the ellipsis the ordinate PR from the proportion of the
            diameters of the ellipsis, the ordinate RQ of the circumscribed circle
            AQB will be given; which ordinate is the sine of the angle AOQ,
            supposing AO to be the radius, and also cuts the ellipsis in P. It
            will be sufficient if that angle is found by a rude calculus in
            numbers near the truth. Suppose we also know the angle proportional to
            the time, that is, which is to four right angles as the time in which
            the body described the arc Ap, to the time of one revolution
            in the ellipsis. Let this angle be N. Then take an angle D, which may
            be to the angle B as the sine of the angle AOQ to the radius; and an
            angle E which may be to the angle N − AOQ + D as the length L to the
            same length L diminished by the cosine of the angle AOQ, when that
            angle is less than a right angle, or increased thereby when greater.
            In the next place, take an angle F that may be to the angle B as the
            sine of the angle AOQ + E to the radius, and an angle G, that may be
            to the angle N − AOQ − E + F as the length L to the same length L
            diminished by the cosine of the angle AOQ + E, when that angle is less
            than a right angle, or increased thereby when greater. For the third
            time take an angle H, that may be to the angle B as the sine of the
            angle AOQ + E + G to the radius; and an angle I to the angle N − AOQ −
            E − G + H, as the length L is to the same
            length L diminished by the cosine of the angle AOQ + E + G, when that
            angle is less than a right angle, or increased thereby when greater.
            And so we may proceed in infinitum. Lastly, take the angle
            AOq equal to the angle AOQ + E + G + I +, &c. and from
            its cosine Or and the ordinate pr, which is to its
            sine qr as the lesser axis of the ellipsis to the greater,
            we shall have p the correct place of the body. When the
            angle N − AOQ + D happens to be negative, the sign + of the angle E
            must be every where changed into −, and the sign − into +. And the
            same thing is to be understood of the signs of the angles G and I,
            when the angles N − AOQ − E + F, and N − AOQ − E − G + H come out
            negative. But the infinite series AOQ + E + G + I +, &c. converges
            so very fast, that it will be scarcely ever needful to proceed beyond
            the second term E. And the calculus is founded upon this Theorem, that
            the area APS is as the difference between the arc AQ and the right
            line let fall from the focus S perpendicularly upon the radius OQ.
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            And by a calculus not unlike, the Problem is solved in the hyperbola.
            Let its centre be O, its vertex A, its focus S, and asymptote OK; and
            suppose the quantity of the area to be cut off is known, as being
            proportional to the time. Let that be A, and by conjecture suppose we
            know the position of a right line SP, that cuts off an area APS near
            the truth. Join OP, and from A and P to the asymptote draw AI, PK
            parallel to the other asymptote; and by the table of logarithms the
            area AIKP will be given, and equal thereto the area OPA, which
            subducted from the triangle OPS, will leave the area cut off APS. And
            by applying 2APS − SA, or 2A − SAPS, the double difference of the area
            A that was to be cut off, and the area APS that is cut off, to the
            line SN that is let fall from the focus S, perpendicular upon the
            tangent TP, we shall have the length of the chord PQ. Which chord PQ
            is to be inscribed between A and P, if the area APS that is cut off be
            greater than the area A that was to be cut off, but towards the
            contrary side of the point P, if otherwise: and the point Q will be
            the place of the body more accurately. And by repeating the
            computation the place may be found perpetually to greater and greater
            accuracy.
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            And by such computations we have a general analytical resolution of
            the Problem. But the particular calculus that follows is better fitted
            for astronomical purposes. Supposing AO, OB, OD, to be the semi-axis
            of the ellipsis, and L its latus rectum, and D the difference betwixt
            the lesser semi-axis OD, and ½L the half of
            the latus rectum: let an angle Y be found, whose sine may be to the
            radius as the rectangle under that difference D, and AO + OD the half
            sum of the axes to the square of the greater axis AB. Find also an
            angle Z, whose sine may be to the radius as the double rectangle under
            the distance of the foci SH and that difference D to triple the square
            of half the greater semi-axis AO. Those angles being once found, the
            place of the body may be thus determined. Take the angle T
            proportional to the time in which the arc BP was described, or equal
            to what is called the mean motion; and an angle V the first equation
            of the mean motion to the angle Y, the greatest first equation, as the
            sine of double the angle T is to the radius; and an angle X, the
            second equation, to the angle Z, the second greatest equation, as the
            cube of the sine of the angle T is to the cube of the radius. Then
            take the angle BHP the mean motion equated equal to T + X + V, the sum
            of the angles T, V, X, if the angle T is less than a right angle; or
            equal to T + X − V, the difference of the same, if that angle T is
            greater than one and less than two right angles; and if HP meets the
            ellipsis in P, draw SP, and it will cut off the area BSP nearly
            proportional to the time.
        


        
            This practice seems to be expeditious enough, because the angles V
            and X, taken in second minutes, if you please, being very small, it
            will be sufficient to find two or three of their first figures. But it
            is likewise sufficiently accurate to answer to the theory of the
            planet's motions. For even in the orbit of Mars, where the greatest
            equation of the centre amounts to ten degrees, the error will scarcely
            exceed one second. But when the angle of the mean motion equated BHP
            is found, the angle of the true motion BSP, and the distance SP, are
            readily had by the known methods.
        


        
            And so far concerning the motion of bodies in curve lines. But it may
            also come to pass that a moving body shall ascend or descend in a
            right line; and I shall now go on to explain what belongs to such kind
            of motions.
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        Section xiii.


        Of the attractive forces of bodies which are not of a sphaerical figure.



    


    
        Proposition lxxxv. Theorem xlii.


            
                
                    If a body be attracted by another, and its attraction be vastly
                    stronger when it is contiguous to the attracting body than when
                    they are separated from one another by a very small interval; the
                    forces of the particles of the attracting body decrease, in the
                    recess of the body attracted, in more than a duplicate ratio of
                    the distance of the particles.
                
            


        

        
            For if the forces decrease in a duplicate ratio of the distances from
            the particles, the attraction towards a sphaerical body being (by
            Prop. LXXIV) reciprocally as the square of the distance of the
            attracted body from the centre of the sphere, will not be sensibly
            increased by the contact, and it will be
            still less increased by it, if the attraction, in the recess of the
            body attracted, decreases in a still less proportion. The proposition,
            therefore, is evident concerning attractive spheres. And the case is
            the same of concave sphaerical orbs attracting external bodies. And
            much more does it appear in orbs that attract bodies placed within
            them, because there the attractions diffused through the cavities of
            those orbs are (by Prop. LXX) destroyed by contrary attractions, and
            therefore have no effect even in the place of contact. Now if from
            these spheres and sphaerical orbs we take away any parts remote from
            the place of contact, and add new parts any where at pleasure, we may
            change the figures of the attractive bodies at pleasure; but the parts
            added or taken away, being remote from the place of contact, will
            cause no remarkable excess of the attraction arising from the contact
            of the two bodies. Therefore the proposition holds good in bodies of
            all figures.   Q.E.D.
        


    

    
        Proposition lxxxvi. Theorem xliii.


            
                
                    If the forces of the particles of which an attractive body is
                    composed decrease, in the recess of the attractive body, in a
                    triplicate or more than a triplicate ratio of the distance from
                    the particles, the attraction will be vastly stronger in the point
                    of contact than when the attracting and attracted bodies are
                    separated from each other, though by never so small an interval.
                
            


        

        
            For that the attraction is infinitely increased when the attracted
            corpuscle comes to touch an attracting sphere of this kind, appears,
            by the solution of Problem XLI, exhibited in the second and third
            Examples. The same will also appear (by comparing those Examples and
            Theorem XLI together) of attractions of bodies made towards
            concavo-convex orbs, whether the attracted bodies be placed without
            the orbs, or in the cavities within them. And by adding to or taking
            from those spheres and orbs any attractive matter any where without
            the place of contact, so that the attractive bodies may receive any
            assigned figure, the Proposition will hold good of all bodies
            universally.   Q.E.D.
        


    

    
        Proposition lxxxvii. Theorem xliv.


            
                
                    If two bodies similar to each other, and consisting of matter
                    equally attractive, attract separately two corpuscles proportional
                    to those bodies, and in a like situation to them, the accelerative
                    attractions of the corpuscles towards the entire bodies will be as
                    the accelerative attractions of the corpuscles towards particles
                    of the bodies proportional to the wholes, and alike situated in them.
                
            


        

        
            For if the bodies are divided into particles proportional to the
            wholes, and alike situated in them, it will be, as the attraction
            towards any particle of one of the bodies to the attraction towards
            the correspondent particle in the other body,
            so are the attractions towards the several particles of the first
            body, to the attractions towards the several correspondent particles
            of the other body; and, by composition, so is the attraction towards
            the first whole body to the attraction towards the second whole body.
              Q.E.D.
        


        
            Cor. 1 . Therefore if, as the distances of
            the corpuscles attracted increase, the attractive forces of the
            particles decrease in the ratio of any power of the distances, the
            accelerative attractions towards the whole bodies will be as the
            bodies directly, and those powers of the distances inversely. As if
            the forces of the particles decrease in a duplicate ratio of the
            distances from the corpuscles attracted, and the bodies are as A³ and
            B³, and therefore both the cubic sides of the bodies, and the distance
            of the attracted corpuscles from the bodies, are as A and B; the
            accelerative attractions towards the bodies will be as 
            A3

            A2 and 
            B3

            B2, that is, as A and B the
            cubic sides of those bodies. If the forces of the particles decrease
            in a triplicate ratio of the distances from the attracted corpuscles,
            the accelerative attractions towards the whole bodies will be as
            A3

            A3 and 
            B3

            B3, that is, equal. If the
            forces decrease in a quadruplicate ratio, the attractions towards the
            bodies will be as A3

            A4 and 
            B3

            B4, that is, reciprocally as
            the cubic sides A and B. And so in other cases.
        


        
            Cor. 2. Hence, on the other hand, from the
            forces with which like bodies attract corpuscles similarly situated,
            may be collected the ratio of the decrease of the attractive forces of
            the particles as the attracted corpuscle recedes from them; if so be
            that decrease is directly or inversely in any ratio of the distances.
        


    

    
        Proposition lxxxviii. Theorem xlv.


            
                
                    If the attractive forces of the equal particles of any body be
                    as the distance of the places from the particles, the force of the
                    whole body will tend to its centre of gravity; and will be the
                    same with the force of a globe, consisting of similar and equal
                    matter, and having its centre in the centre of gravity.
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            Let the particles A, B, of the body RSTV attract any corpuscle Z with
            forces which, supposing the particles to be equal between themselves,
            are as the distances AZ, BZ; but, if they are supposed unequal, are as
            those particles and their distances AZ, BZ, conjunctly, or (if I may
            so speak) as those particles drawn into their distances AZ, BZ
            respectively. And let those forces be expressed by the contents
            under A x AZ, and B x BZ. Join AB, and let it be cut in G, so that AG
            may be to BG as the particle B to the particle A; and G will be the
            common centre of gravity of the particles A and B. The force A x AZ
            will (by Cor. 2, of the Laws) be resolved into the forces A x GZ and A
            x AG; and the force B x BZ into the forces B x GZ and B x BG. Now the
            forces A x AG and B x BG, because A is proportional to B, and BG to
            AG, are equal, and therefore having contrary directions destroy one
            another. There remain then the forces A x GZ and B x GZ. These tend
            from Z towards the centre G, and compose the force (A
            + B) x GZ; that is, the same force as if the attractive
            particles A and B were placed in their common centre of gravity G,
            composing there a little globe.
        


        
            By the same reasoning, if there be added a third particle C, and the
            force of it be compounded with the force (A + B) x
            GZ tending to the centre G, the force thence arising will
            tend to the common centre of gravity of that globe in G and of the
            particle C; that is, to the common centre of gravity of the three
            particles A, B, C; and will be the same as if that globe and the
            particle C were placed in that common centre composing a greater globe
            there; and so we may go on in infinitum. Therefore the whole
            force of all the particles of any body whatever RSTV is the same as if
            that body, without removing its centre of gravity, were to put on the
            form of a globe.   Q.E.D.
        


        
            Cor. Hence the motion of the attracted body Z
            will be the same as if the attracting body RSTV were sphaerical; and
            therefore if that attracting body be either at rest, or proceed
            uniformly in a right line, the body attracted will move in an ellipsis
            having its centre in the centre of gravity of the attracting body.
        


    

    
        Proposition lxxxix. Theorem xlvi.


            
                
                    If there be several bodies consisting of equal particles whose
                    forces are as the distances of the places from each, the force
                    compounded of all the forces by which any corpuscle is attracted
                    will tend to the common centre of gravity of the attracting
                    bodies; and will be the same as if those attracting bodies,
                    preserving their common centre of gravity, should unite there, and
                    be formed into a globe.
                
            


        

        
            This is demonstrated after the same manner as the foregoing
            Proposition.
        


        
            Cor. Therefore the motion of the attracted
            body will be the same as if the attracting bodies, preserving their
            common centre of gravity, should unite there, and be formed into a
            globe. And, therefore, if the common centre of gravity of the
            attracting bodies be either at rest, or proceed uniformly in a right
            line, the attracted body will move in an ellipsis having its centre in
            the common centre of gravity of the attracting bodies.
        


    

    
        
            Proposition xc. Problem xliv.


            
                
                    If to the several points of any circle there tend equal
                    centripetal forces, increasing or decreasing in any ratio of the
                    distances; it is required to find the force with which a corpuscle
                    is attracted, that is, situate any where in a right line which
                    stands at right angles to the plant of the circle at its centre.
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            Suppose a circle to be described about the centre A with any interval
            AD in a plane to which the right line AP is perpendicular; and let it
            be required to find the force with which a corpuscle P is attracted
            towards the same. From any point E of the circle, to the attracted
            corpuscle P, let there be drawn the right line PE. In the right line
            PA take PF equal to PE, and make a perpendicular FK, erected at F, to
            be as the force with which the point E attracts the corpuscle P. And
            let the curve line IKL be the locus of the point K. Let that curve
            meet the plane of the circle in L. In PA take PH equal to PD, and
            erect the perpendicular HI meeting that curve in I; and the attraction
            of the corpuscle P towards the circle will be as the area AHIL drawn
            into the altitude AP.   Q.E.I.
        


        
            For let there be taken in AE a very small line Ee. Join Pe,
            and in PE, PA take PC, Pf equal to Pe. And because
            the force, with which any point E of the annulus described about the
            centre A with the interval AE in the aforesaid plane attracts to
            itself the body P, is supposed to be as FK; and, therefore, the force
            with which that point attracts the body P towards A is as 
            AP x FK

            PE; and the force with which the whole
            annulus attracts the body P towards A is as the annulus and 
            AP x FK

            PE conjunctly; and that annulus also is
            as the rectangle under the radius AE and the breadth Ee, and
            this rectangle (because PE and AE, Ee and CE are
            proportional) is equal to the rectangle PE x CE or PE x Ff;
            the force with which that annulus attracts the body P towards A will
            be as PE x Ff and AP x
            FK

            PE conjunctly; that is, as the content
            under Ff x FK x AP, or as the area FKkf drawn into
            AP. And therefore the sum of the forces with which all the annuli, in
            the circle described about the centre A with the interval AD, attract
            the body P towards A, is as the whole area AHIKL drawn into AP.
              Q.E.D.
        


        
            Cor. 1. Hence if the forces of the points
            decrease in the duplicate ratio of the
            distances, that is, if FK be as 
            1

            PF2 and therefore the
            area AHIKL as 1

            PA − 1

            PH; the attraction of the
            corpuscle P towards the circle will be as 1 − 
            PA

            PH; that is, as 
            AH

            PH.
        


        
            Cor. 2. And universally if the forces of the
            points at the distances D be reciprocally as any power Dn
            of the distances; that is, if FK be as 1

            Dn and therefore the area
            AHIKL as 1

            PAn-1 − 
            1

            PHn-1; the
            attraction of the corpuscle P towards the circle will be as 
            1

            PAn-2 − 
            1

            PHn-1.
        


        
            Cor. 3. And if the diameter of the circle be
            increased in infinitum, and the number n be
            greater than unity; the attraction of the corpuscle P towards the
            whole infinite plane will be reciprocally as PAn-2, because
            the other term PA

            PAn-1 vanishes.
        


    

    
        Proposition xci. Problem xlv.


            
                
                    To find the attraction of a corpuscle situate in the axis of a
                    round solid, to whose several points there tend equal centripetal
                    forces decreasing in any ratio of the distances whatsoever.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 238]

        
            Let the corpuscle P, situate in the axis AB of the solid DECG, be
            attracted towards that solid. Let the solid be cut by any circle as
            RFS, perpendicular to the axis: and in its semi-diameter FS, in any
            plane PALKB passing through the axis, let there be taken (by Prop. XC)
            the length FK proportional to the force with which the corpuscle P is
            attracted towards that circle. Let the locus of the point K be the
            curve line LKI, meeting the planes of the outermost circles AL and BI
            in L and I; and the attraction of the corpuscle P towards the solid
            will be as the area LABI.   Q.E.I.
        


        
            Cor. 1. Hence if the solid be a cylinder
            described by the parallelogram ADEB revolved about the axis AB, and
            the centripetal forces tending to the several points be reciprocally
            as the squares of the distances from the points; the attraction of the
            corpuscle P towards this cylinder will be as AB − PE + PD. For the
            ordinate FK (by Cor. 1, Prop. XC) will be as 1 − 
            PF

            PR. The part 1 of this quantity, drawn
            into the length AB, describes
            [image: Mathematical Principles of Natural Philosophy figure: 239a]
            the area 1 x AB; and the other part PF

            PR, drawn into the length PB describes the area 1
            into (PE − AD) (as may be easily shewn from the quadrature of
            the curve LKI); and, in like manner, the same part drawn into the
            length PA describes the area 1 into (PD − AD),
            and drawn into AB, the difference of PB and PA, describes 1
            into (PE − PD), the difference of the areas. From the first
            content 1 x AB take away the last content 1 into
            (PE − PD), and there will remain the area LABI equal to
            1 into (AB − PE + PD). Therefore the force,
            being proportional to this area, is as AB − PE +
            PD.
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            Cor. 2. Hence also is known the force by
            which a spheroid AGBC attracts any body P situate externally in its
            axis AB. Let NKRM be a conic section whose ordinate ER perpendicular
            to PE may be always equal to the length of the line PD, continually
            drawn to the point D in which that ordinate cuts the spheroid. From
            the vertices A, B, of the spheriod, let there be erected to its axis
            AB the perpendiculars AK, BM, respectively equal to AP, BP, and
            therefore meeting the conic section in K and M; and join KM cutting
            off from it the segment KMRK. Let S be the centre of the spheroid, and
            SC its greatest semi-diameter; and the force with which the spheroid
            attracts the body P will be to the force with which a sphere described
            with the diameter AB attracts the same body as 
            AS x CS2 − PS x KMRK

            PS2 + CS2 − AS2
            is to AS3

            3PS2. And by a
            calculation founded on the same principles may be found the forces of
            the segments of the spheroid.
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            Cor. 3. If the corpuscle be placed within the
            spheroid and in its axis, the attraction will be as its distance from
            the centre. This may be easily collected from the following reasoning,
            whether the particle be in the axis or in any other given diameter.
            Let AGOF be an attracting spheroid, S its centre, and P the body
            attracted. Through the body P let there be drawn the semi-diameter
            SPA, and two right lines DE, FG meeting the spheroid in D and E, F and
            G; and let PCM, HLN be the superficies of two
            interior spheroids similar and concentrical to the exterior, the first
            of which passes through the body P, and cuts the right lines DE, FG in
            B and C; and the latter cuts the same right lines in H and I, K and L.
            Let the spheroids have all one common axis, and the parts of the right
            lines intercepted on both sides DP and BE, FP and CG, DH and IE, FK
            and LG, will be mutually equal; because the right lines DE, PB, and
            HI, are bisected in the same point, as are also the right lines FG,
            PC, and KL. Conceive now DPF, EPG to represent opposite cones
            described with the infinitely small vertical angles DPF, EPG, and the
            lines DH, EI to be infinitely small also. Then the particles of the
            cones DHKF, GLIE, cut off by the spheroidical superficies, by reason
            of the equality of the lines DH and EI, will be to one another as the
            squares of the distances from the body P, and will therefore attract
            that corpuscle equally. And by a like reasoning if the spaces DPF,
            EGCB be divided into particles by the superficies of innumerable
            similar spheroids concentric to the former and having one common axis,
            all these particles will equally attract on both sides the body P
            towards contrary parts. Therefore the forces of the cone DPF, and of
            the conic segment EGCB, are equal, and by their contrariety destroy
            each other. And the case is the same of the forces of all the matter
            that lies without the interior spheroid PCBM. Therefore the body P is
            attracted by the interior spheroid PCBM alone, and therefore (by Cor.
            3, Prop. LXXII) its attraction is to the force with which the body A
            is attracted by the whole spheroid AGOD as the distance PS to the
            distance AS.   Q.E.D.
        


    

    
        Proposition xcii. Problem xlvi.


            
                
                    An attracting body being given, it is required to find the
                    ratio of the decrease of the centripetal forces tending to its several points.
                
            


        

        
            The body given must be formed into a sphere, a cylinder, or some
            regular figure, whose law of attraction answering to any ratio of
            decrease may be found by Prop. LXXX, LXXXI, and XCI. Then, by
            experiments, the force of the attractions must be found at several
            distances, and the law of attraction towards the whole, made known by
            that means, will give the ratio of the decrease of the forces of the
            several parts; which was to be found.
        


    

    
        Proposition xciii. Theorem xlvii.


            
                If a solid be plane on one side, and infinitely extended on all
                other sides, and consist of equal particles equally attractive,
                whose forces decrease, in the recess from the solid, in the ratio
                of any power greater than the square of the distances; and a
                corpuscle placed towards either part of the plane is attracted by
                the force of the whole solid; I say that the attractive force of
                the whole solid, in the recess from its plane superficies, will
                decrease in the ratio of a power whose side is the distance of the
                corpuscle from the plane, and its index less by 3 than
                the index of the power of the distances.
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            Case 1. Let LGl be the plane by
            which the solid is terminated. Let the solid lie on that hand of the
            plane that is towards I, and let it be resolved into innumerable
            planes mHM, nIN, oKO, &c., parallel
            to GL. And first let the attracted body C be placed without the solid.
            Let there be drawn CGHI perpendicular to those innumerable planes, and
            let the attractive forces of the points of the solid decrease in the
            ratio of a power of the distances whose index is the number n
            not less than 3. Therefore (by Cor. 3, Prop. XC) the force with which
            any plane mHM attracts the point C is reciprocally as CHn-2.
            In the plane mHM take the length HM reciprocally
            proportional to CHn-2, and that force will be as HM. In
            like manner in the several planes lGL, nIN, oKO,
            &c., take the lengths GL, IN, KO, &c., reciprocally
            proportional to CGn-2, CIn-2, CKn-2,
            &c., and the forces of those planes will be as the lengths so
            taken, and therefore the sum of the forces as the sum of the lengths,
            that is, the force of the whole solid as the area GLOK produced
            infinitely towards OK. But that area (by the known methods of
            quadratures) is reciprocally as CGn-3, and therefore the
            force of the whole solid is reciprocally as CGn-3.
              Q.E.D.
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            Case 2. Let the corpuscle C be now placed on
            that hand of the plane lGL that is within the solid, and
            take the distance CK equal to the distance CG. And the part of the
            solid LGloKO terminated by the parallel planes lGL,
            oKO, will attract the corpuscle C, situate in the middle,
            neither one way nor another, the contrary actions of the opposite
            points destroying one another by reason of their equality. Therefore
            the corpuscle C is attracted by the force only of the solid situate
            beyond the plane OK. But this force (by Case 1) is reciprocally as CKn-3,
            that is, (because CG, CK are equal) reciprocally as CGn-3.
              Q.E.D.
        


        
            Cor. 1. Hence if the solid LGIN be terminated
            on each side by two infinite parallel places LG, IN, its attractive
            force is known, subducting from the attractive force of the whole
            infinite solid LGKO the attractive force of the more distant part NIKO
            infinitely produced towards KO.
        


        
            Cor. 2. If the more distant part of this
            solid be rejected, because its attraction compared with the attraction
            of the nearer part is inconsiderable, the
            attraction of that nearer part will, as the distance increases,
            decrease nearly in the ratio of the power CGn-3.
        


        
            Cor. 3. And hence if any finite body, plane
            on one side, attract a corpuscle situate over against the middle of
            that plane, and the distance between the corpuscle and the plane
            compared with the dimensions of the attracting body be extremely
            small; and the attracting body consist of homogeneous particles, whose
            attractive forces decrease in the ratio of any power of the distances
            greater than the quadruplicate; the attractive force of the whole body
            will decrease very nearly in the ratio of a power whose side is that
            very small distance, and the index less by 3 than the index of the
            former power. This assertion does not hold good, however, of a body
            consisting of particles whose attractive forces decrease in the ratio
            of the triplicate power of the distances; because, in that case, the
            attraction of the remoter part of the infinite body in the second
            Corollary is always infinitely greater than the attraction of the
            nearer part.
        


    

    
        Scholium.



        
            If a body is attracted perpendicularly towards a given plane, and
            from the law of attraction given, the motion of the body be required;
            the Problem will be solved by seeking (by Prop. XXXIX) the motion of
            the body descending in a right line towards that plane, and (by Cor.
            2, of the Laws) compounding that motion with an uniform motion
            performed in the direction of lines parallel to that plane. And, on
            the contrary, if there be required the law of the attraction tending
            towards the plane in perpendicular directions, by which the body may
            be caused to move in any given curve line, the Problem will be solved
            by working after the manner of the third Problem.
        


        
            But the operations may be contracted by resolving the ordinates into
            converging series. As if to a base A the length B be ordinately
            applied in any given angle, and that length be as any power of the
            base A m

            n; and there be sought the force with
            which a body, either attracted towards the base or driven from it in
            the direction of that ordinate, may be caused to move in the curve
            line which that ordinate always describes with its superior extremity;
            I suppose the base to be increased by a very small part O, and I
            resolve the ordinate (A+O)
            m

            n into an infinite
            series Am

            n + 
            m

            nOAm
            − n

            n + 
            mm − mn

            2nnOOAm
            − 2n

            n &c., and I
            suppose the force proportional to the term of this series in which O
            is of two dimensions, that is, to the term 
            mm − mn

            2nn OOA 
            m-2n

            n. Therefore the force
            sought is as  
            mm − mn

            nn A m-2n

            n, or, which is the
            same thing, as mm
            − mn

            nn B m-2n

            n. As if the ordinate
            describe a parabola, m being = 2, and n = 1, the
            force will be as the given quantity 2B°, and therefore is given.
            Therefore with a given force the body will move in a parabola, as Galileo
            has demonstrated. If the ordinate describe an hyperbola, m
            being = 0 − 1, and n = 1, the force will be as 2A-3
            or 2B3; and therefore a force which is as the cube of the
            ordinate will cause the body to move in an hyperbola. But leaving this
            kind of propositions, I shall go on to some others relating to motion
            which I have hot yet touched upon.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton






    Book 1.1



    
        Section I.


        
            
                Of the method of first and last ratios of quantities,
                by the help whereof we demonstrate the propositions that follow.
            
        


    


    
        Lemma I.


            
                
                    Quantities, and the ratios of quantities, which in any finite
                    time converge continually to equality, and before the end of
                    that time approach nearer the one to the other than by any given
                    difference, become ultimately equal.
                
            


        


        
            If you deny it, suppose them to be ultimately unequal, and let D be
            their ultimate difference. Therefore they cannot approach nearer to
            equality than by that given difference D; which is against the
            supposition.
        


    


    
        Lemma ii.
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                If in any figure AacE, terminated by the right lines
                Aa, AE, and the curve acE, there be inscribed any
                number of parallelograms Ab, Be, Cd, &c.,
                comprehended under equal bases AB, BC, CD, &c.,
                and the sides, Bb, Cc, Dd, &c., parallel to one
                side Aa of the figure; and the parallelograms
                aKbl, bLcm, cMdn, &c., are completed. Then if the breadth
                of those parallelograms be supposed to be diminished, and their
                number to be augmented in infinitum; I say, that the
                ultimate ratios which the inscribed figure AKbLcMdD,
                the circumscribed figure AalbmcndoE, and curvilinear
                figure AabcdE, will have to one another, are ratios of
                equality.
              
            


        

        
            For the difference of the inscribed and circumscribed figures is
            the sum of the parallelograms Kl, Lm, Mu,
            Do, that is (from the equality of all their bases), the
            rectangle under one of their bases Kb and the sum of their
            altitudes Aa, that is, the rectangle ABla. But
            this rectangle, because its breadth AB is
            supposed diminished in infinitum, becomes less than any
            given space. And therefore (by Lem. I) the figures inscribed and
            circumscribed become ultimately equal one to the other; and much
            more will the intermediate curvilinear figure be ultimately equal to
            either.    Q.E.D.
        


    

    
        Lemma iii.


            
                The same ultimate ratios are also ratios of equality, when the, breadths,
                AB, BC, DC, &c., of the parallelograms are unequal, and are all diminished
                in infinitum.
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            For suppose AF equal to the greatest breadth, and complete the
            parallelogram FAaf. This parallelogram will be greater than
            the difference of the inscribed and circumscribed figures; but,
            because its breadth AF is diminished in infinitum, it will
            be come less than any given rectangle.   Q.E.D.
        


        
            Cor. 1. Hence the ultimate sum of those
            evanescent parallelograms will in all parts coincide with the
            curvilinear figure.
        


        
            Cor. 2. Much more will the rectilinear
            figure comprehended under the chords of the evanescent arcs ab,
            bc, cd, &c., ultimately coincide with the curvilinear
            figure.
        


        
            Cor. 3. And also the circumscribed
            rectilinear figure comprehended under the tangents of the same arcs.
        


        
            Cor. 4 And therefore these ultimate figures
            (as to their perimeters acE) are not rectilinear, but
            curvilinear limits of rectilinear figures.
        


    

    
        Lemma iv.
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                If in two figures AacE, PprT,
                you inscribe (as before) two ranks of parallelograms, an equal number in each
                rank, and, when their breadths are diminished in infinitum,
                the ultimate ratios of the parallelograms in one figure to those
                in the other, each to each respectively, are the same; I say,
                that those two figures AacE, PprT, are to one another in that same ratio.
            


        

        
            For as the parallelograms in the one are severally to the
            parallelograms in the other, so (by composition) is the sum of all
            in the one to the sum of all in the other; and so is the one figure
            to the other; because (by Lem. III) the former figure to the former
            sum, and the latter figure to the latter sum, are both in the ratio
            of equality.   Q.E.D.
        


        
            Cor. Hence if two quantities of any kind
            are any how divided into an equal number of parts, and those
            parts, when their number is augmented, and their
            magnitude diminished in infinitum, have a given ratio one
            to the other, the first to the first, the second to the second, and
            so on in order, the whole quantities will be one to the other in
            that same given ratio. For if, in the figures of this Lemma, the
            parallelograms are taken one to the other in the ratio of the parts,
            the sum of the parts will always be as the sum of the
            parallelograms; and therefore supposing the number of the
            parallelograms and parts to be augmented, and their magnitudes
            diminished in infinitum, those sums will be in the
            ultimate ratio of the parallelogram in the one figure to the
            correspondent parallelogram in the other; that is (by the
            supposition), in the ultimate ratio of any part of the one quantity
            to the correspondent part of the other.
        


    

    
        Lemma V.


            
                
                    In similar figures, all sorts of homologous sides, whether
                    curvilinear or rectilinear, are proportional; and the areas are
                    in the duplicate ratio of the homologous sides.
                
            


        


    
        Lemma vi.
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                If any arc ACB, given in position is subtended by
                its chord AB, and in any point A, in the
                middle of the continued curvature, is touched by a right line
                AD, produced both ways; then if the points A and B approach
                one another and meet, I say, the angle BAD, contained
                between, the chord and the tangent, will be diminished in
                infinitum, and ultimately will vanish.
            


        

        
            For if that angle does not vanish, the arc ACB will contain with
            the tangent AD an angle equal to a rectilinear angle; and therefore
            the curvature at the point A will not be continued, which is against
            the supposition.
        


    

    
        Lemma vii.


            
                
                    The same things being supposed, I say that the ultimate ratio
                    of the arc, chord, and tangent, any one to any other, is the
                    ratio of equality.
                
            


        

        
            For while the point B approaches towards the point A, consider
            always AB and AD as produced to the remote points b and d,
            and parallel to the secant BD draw bd: and let the arc Acb
            be always similar to the arc ACB. Then, supposing the points A and B
            to coincide, the angle dAb will vanish, by the
            preceding Lemma; and therefore the right lines Ab, Ad
            (which are always finite), and the intermediate arc Acb,
            will coincide, and become equal among themselves. Wherefore, the
            right lines AB, AD, and the intermediate arc
            ACB (which are always proportional to the former), will vanish, and
            ultimately acquire the ratio of equality.   Q.E.D.
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            Cor. 1. Whence if through B we draw BF
            parallel to the tangent, always cutting any right line AF passing
            through A in F, this line BF will be ultimately in the ratio of
            equality with the evanescent arc ACB; because, completing the
            parallelogram AFBD, it is always in a ratio of equality with AD.
        


        
            Cor. 2. And if through B and A more right
            lines are drawn, as BE, BD, AF, AG, cutting the tangent AD and its
            parallel BF; the ultimate ratio of all the abscissas AD, AE, BF, BG,
            and of the chord and arc AB, any one to any other, will be the ratio
            of equality.
        


        
            Cor. 3. And therefore in all our reasoning
            about ultimate ratios, we may freely use any one of those lines for
            any other.
        


    

    
        Lemma viii.


            
                If the right lines AR, BR, with the arc ACB,
                the chord AB, and the tangent AD, constitute
                three triangles RAB, RACB, RAD, and the points A and
                B approach and meet: I say, that the ultimate form of these
                evanescent triangles is that of similitude, and their ultimate
                ratio that of equality.
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            For while the point B approaches towards the point A, consider
            always AB, AD, AR, as produced to the remote points b, d,
            and r, and rbd as drawn parallel to RD, and let
            the arc Acb be always similar to the arc ACB. Then
            supposing the points A and B to coincide, the angle bAd
            will vanish; and therefore the three triangles rAb,
            rAcb, rAd (which are always
            finite), will coincide, and on that account become both similar and
            equal. And therefore the triangles RAB, RACB, RAD, which are always
            similar and proportional to these, will ultimately be come both
            similar and equal among themselves.   Q.E.D.
        


        
            Cor. And hence in all reasonings about
            ultimate ratios, we may indifferently use any one of those triangles
            for any other.
        


    

    
        Lemma ix.


            
                If a right line AE, and a curve Line ABC,
                both given by position, cut each other in a given angle, A;
                and to that right line, in another given angle, BD, CE are
                ordinately applied, meeting the curve in B, C; and the
                points B and C together approach towards and
                meet in the point A: I say, that the areas of the
                triangles ABD, ACE, will ultimately be one to the other
                in the duplicate ratio of the sides.
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            For while the points B, C, approach towards the point A, suppose
            always AD to be produced to the remote points d and e,
            so as Ad, Ae may be proportional to AD, AE; and
            the ordinates db, ec, to be drawn parallel to
            the ordinates DB and EC, and meeting AB and AC produced in b
            and c. Let the curve Abc be similar to the curve
            ABC, and draw the right line Ag so as to touch both curves
            in A, and cut the ordinates DB, EC, db, ec, in F, G, f,
            g. Then, supposing the length Ae to remain the same,
            let the points B and C meet in the point A; and the angle cAg
            vanishing, the curvilinear areas Abd, Ace will
            coincide with the rectilinear areas Afd, Age; and
            therefore (by Lem. V) will be one to the other in the duplicate
            ratio of the sides Ad, Ae. But the areas ABD, ACE
            are always proportional to these areas; and so the sides AD, AE are
            to these sides. And therefore the areas ABD, ACE are ultimately one
            to the other in the duplicate ratio of the sides AD, AE.
              Q.E.D.
        


    

    
        Lemma X.


            
                
                    The spaces which a body describes by any finite force urging
                    it, whether that force is determined and immutable, or is
                    continually augmented or continually diminished, are in the very
                    beginning of the motion one to the other in the duplicate ratio
                    of the times.
                
            


        

        
            Let the times be represented by the lines AD, AE, and the
            velocities generated in those times by the ordinates DB, EC. The
            spaces described with these velocities will be as the areas ABD,
            ACE, described by those ordinates, that is, at the very beginning of
            the motion (by Lem. IX), in the duplicate ratio of the times AD, AE.
              Q.E.D.
        


        
            Cor. 1. And hence one may easily infer,
            that the errors of bodies describing similar parts of similar
            figures in proportional times, are nearly as the squares of the
            times in which they are generated; if so be these errors are
            generated by any equal forces similarly applied to the bodies, and
            measured by the distances of the bodies from those places of the
            similar figures, at which, without the action of those forces, the
            bodies would have arrived in those proportional times.
        


        
            Cor. 2. But the errors that are generated
            by proportional forces, similarly applied to the bodies at similar
            parts of the similar figures, are as the forces and the squares of
            the times conjunctly.
        


        
            Cor. 3. The same thing is to be understood
            of any spaces whatsoever described by bodies urged with different
            forces; all which, in the very beginning of the motion, are as the
            forces and the squares of the times conjunctly.
        


        
            Cor. 4. And
            therefore the forces are as the spaces described in the very
            beginning of the motion directly, and the squares of the times
            inversely.
        


        
            Cor. 5. And the squares of the times are as
            the spaces described directly, and the forces inversely.
        


    

    
        Scholium.


        

        
            If in comparing indetermined quantities of different sorts one with
            another, any one is said to be as any other directly or inversely,
            the meaning is, that the former is augmented or diminished in the
            same ratio with the latter, or with its reciprocal. And if any one
            is said to be as any other two or more directly or inversely, the
            meaning is, that the first is augmented or diminished in the ratio
            compounded of the ratios in which the others, or the reciprocals of
            the others, are augmented or diminished. As if A is said to be as B
            directly, and C directly, and D inversely, the meaning is, that A is
            augmented or diminished in the same ratio with B
            x C x 1

            D, that is to say, that A
            and BC

            D are one to the other in a given ratio.
        


    

    
        Lemma xi.


            
                
                    The evanescent subtense of the angle of contact, in
                    all curves which at the point of contact have a finite
                    curvature, is ultimately in the duplicate ratio of the subtense
                    of the conterminate arc.
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            Case 1. Let AB be that arc, AD its tangent,
            BD the subtense of the angle of contact perpendicular on the
            tangent, AB the subtense of the arc. Draw BG perpendicular to the
            subtense AB, and AG to the tangent AD, meeting in G; then let the
            points D, B, and G, approach to the points d, b, and g,
            and suppose J to be the ultimate intersection of the lines BG, AG,
            when the points D, B, have come to A. It is evident that the
            distance GJ may be less than any assignable. But (from the nature of
            the circles passing through the points A, B, G, A, b, g)
            AB2 = AG x BD, and Ab2
            = Ag x bd; and therefore the ratio of AB² to Ab²
            is compounded of the ratios of AG to Ag, and of Bd
            to bd. But because GJ may be assumed of less length than
            any assignable, the ratio of AG to Ag may be such as to
            differ from the ratio of equality by less than any assignable
            difference; and therefore the ratio of AB² to Ab² may be
            such as to differ from the ratio of BD to bd by less than
            any assignable difference. There fore, by Lem. I, the ultimate ratio
            of AB² to Ab² is the same with the ultimate ratio of BD to
            bd.   Q.E.D.
        


        
            Case 2. Now let BD be inclined to AD in any
            given angle, and the ultimate ratio of BD to bd will
            always be the same as before, and therefore the same with the ratio
            of AB² to Ab².   Q.E.D.
        


        
            Case 3. And if we
            suppose the angle D not to be given, but that the right line BD
            converges to a given point, or is determined by any other condition
            whatever; nevertheless the angles D, d, being determined
            by the same law, will always draw nearer to equality, and approach
            nearer to each other than by any assigned difference, and therefore,
            by Lem. I, will at last be equal; and therefore the lines BD, bd
            are in the same ratio to each other as before.   Q.E.D.
        


        
            Cor. 1. Therefore since the tangents AD, Ad,
            the arcs AB, Ab, and their sines, BC, bc, become
            ultimately equal to the chords AB, Ab, their squares will
            ultimately become as the subtenses BD, bd.
        


        
            Cor. 2. Their squares are also ultimately
            as the versed sines of the arcs, bisecting the chords, and
            converging to a given point. For those versed sines are as the
            subtenses BD, bd.
        


        
            Cor. 3. And therefore the versed sine is in
            the duplicate ratio of the time in which a body will describe the
            arc with a given velocity.
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            Cor. 4. The rectilinear triangles ADB, Adb
            are ultimately in the triplicate ratio of the sides AD, Ad,
            and in a sesquiplicate ratio of the sides DB, db; as being
            in the ratio compounded of the sides AD to DB, and of Ad to
            db. So also the triangles ABC, Abc are ultimately
            in the triplicate ratio of the sides BC, bc. What I call
            the sesquiplicate ratio is the subduplicate of the triplicate, as
            being compounded of the simple and subduplicate ratio.
        


        
            Cor. 5. And because DB, db are
            ultimately parallel and in the duplicate ratio of the lines AD, Ad,
            the ultimate curvilinear areas ADB, Adb will be (by the
            nature of the parabola) two thirds of the rectilinear triangles ADB,
            Adb and the segments AB, Ab will be one third of
            the same triangles. And thence those areas and those segments will
            be in the triplicate ratio as well of the tangents AD, Ad,
            as of the chords and arcs AB, AB.
        


    

    
        Scholium.


        

        
            But we have all along supposed the angle of contact to be neither
            infinitely greater nor infinitely less than the angles of contact
            made by circles and their tangents; that is, that the curvature at
            the point A is neither infinitely small nor infinitely great, or
            that the interval AJ is of a finite magnitude. For DB may be taken
            as AD³: in which case no circle can be drawn through the point A,
            between the tangent AD and the curve AB, and therefore the angle of
            contact will be infinitely less than those of circles. And by a like
            reasoning, if DB be made successfully as AD4, AD5,
            AD6, AD7, &c., we shall have a series of
            angles of contact, proceeding in infinitum, wherein every
            succeeding term is infinitely less than the preceding. And
            if DB be made successively as AD2; AD3/2,
            AD4/3, AD5/4, AD6/5,
            AD7/6, &c., we shall have another infinite
            series of angles of contact, the first of which is of the same sort
            with those of circles, the second infinitely greater, and every
            succeeding one infinitely greater than the preceding. But between
            any two of these angles another series of intermediate angles of
            contact may be interposed, proceeding both ways in infinitum,
            wherein every succeeding angle shall be infinitely greater or
            infinitely less than the preceding. As if between the terms AD2
            and AD3 there were interposed the series AD13/6,
            AD11/5, AD9/4, AD7/3,
            AD5/2, AD8/3, AD11/4,
            AD14/5, AD17/6 &c.
            And again, between any two angles of this series, a new series of
            intermediate angles may be interposed, differing from one another by
            infinite intervals. Nor is nature confined to any bounds.
        


        
            Those things which have been demonstrated of curve lines, and the
            superfices which they comprehend, may be easily applied to the curve
            superfices and contents of solids. These Lemmas are premised to
            avoid the tediousness of deducing perplexed demonstrations ad
            absurdum, according to the method of the ancient geometers.
            For demonstrations are more contracted by the method of
            indivisibles: but because the hypothesis of indivisibles seems
            somewhat harsh, and therefore that method is reckoned less
            geometrical, I chose rather to reduce the demonstrations of the
            following propositions to the first and last sums and ratios of
            nascent and evanescent quantities, that is, to the limits of those
            sums and ratios; and so to premise, as short as I could, the
            demonstrations of those limits. For hereby the same thing is
            performed as by the method of indivisibles; and now those principles
            being demonstrated, we may use them with more safety. Therefore if
            hereafter I should happen to consider quantities as made up of
            particles, or should use little curve lines for right ones, I would
            not be understood to mean indivisibles, but evanescent divisible
            quantities: not the sums and ratios of determinate parts, but always
            the limits of sums and ratios; and that the force of such
            demonstrations always depends on the method laid down in the
            foregoing Lemmas.
        


        
            Perhaps it may be objected, that there is no ultimate proportion,
            of evanescent quantities; because the proportion, before the
            quantities have vanished, is not the ultimate, and when they are
            vanished, is none. But by the same argument, it may be alledged,
            that a body arriving at a certain place, and there stopping, has no
            ultimate velocity: because the velocity, before the body comes to
            the place, is not its ultimate velocity; when it has arrived, is
            none. But the answer is easy; for by the ultimate velocity is meant
            that with which the body is moved, neither before it arrives at its
            last place and the motion ceases, nor after, but at the very instant
            it arrives; that is, that velocity with which the body arrives at
            its last place, and with which the motion ceases. And in like
            manner, by the ultimate ratio of evanescent quantities is to be
            understood the ratio of the quantities not
            before they vanish, nor afterwards, but with which they vanish. In
            like manner the first ratio of nascent quantities is that with which
            they begin to be. And the first or last sum is that with which they
            begin and cease to be (or to be augmented or diminished). There is a
            limit which the velocity at the end of the motion may attain, but
            not exceed. This is the ultimate velocity. And there is the like
            limit in all quantities and proportions that begin and cease to be.
            And since such limits are certain and definite, to determine the
            same is a problem strictly geometrical. But whatever is geometrical
            we may be allowed to use in determining and demonstrating any other
            thing that is likewise geometrical.
        


        
            It may also be objected, that if the ultimate ratios of evanescent
            quantities are given, their ultimate magnitudes will be also given:
            and so all quantities will consist of indivisibles, which is
            contrary to what Euclid has demonstrated concerning
            incommensurables, in the 10th Book of his Elements. But this
            objection is founded on a false supposition. For those ultimate
            ratios with which quantities vanish are not truly the ratios of
            ultimate quantities, but limits towards which the ratios of
            quantities decreasing without limit do always converge; and to which
            they approach nearer than by any given difference, but never go
            beyond, nor in effect attain to, till the quantities are diminished
            in infinitum. This thing will appear more evident in
            quantities infinitely great. If two quantities, whose difference is
            given, be augmented in infinitum, the ultimate ratio of
            these quantities will be given, to wit, the ratio of equality; but
            it does not from thence follow, that the ultimate or greatest
            quantities themselves, whose ratio that is, will be given. Therefore
            if in what follows, for the sake of being more easily understood, I
            should happen to mention quantities as least, or evanescent, or
            ultimate, you are not to suppose that quantities of any determinate
            magnitude are meant, but such as are conceived to be always
            diminished without end.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 2.5




    
        Section V.


        Of the density and compression of fluids; and of hydrostatics.


    

    
        The Definition of a Fluid.


            
                
                    A fluid is any body whose parts yield to any force impressed on
                    it, by yielding, are easily moved among themselves.
                
            


        

    

    
        Proposition xix. Theorem xiv


            
                
                    All the parts of a homogeneous and unmoved fluid included in
                    any unmoved vessel, and compressed on every side (setting aside
                    the consideration of condensation, gravity, and all centripetal
                    forces), will be equally pressed on every side, and remain in
                    their places without any motion arising from that pressure.
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            Case 1. Let a fluid be included in the
            spherical vessel ABC, arid uniformly compressed on every side: I say,
            that no part of it will be moved by that pressure. For if any part, as
            D, be moved, all such parts at the same distance from the centre on
            every side must necessarily be moved at the same time by a like
            motion; because the pressure of them all is similar and equal; and all
            other motion is excluded that does not arise from that pressure. But
            if these parts come all of them nearer to the centre, the fluid must
            be condensed towards the centre, contrary to the supposition. If they
            recede from it, the fluid must be condensed towards the circumference;
            which is also contrary to the supposition. Neither can they move in
            any one direction retaining their distance from the centre, because
            for the same reason, they may move in a contrary direction; but the
            same part cannot be moved contrary ways at the same time. Therefore no
            part of the fluid will be moved from its place.   Q.E.D.
        


        
            Case 2. I say now, that all the spherical
            parts of this fluid are equally pressed on every side. For let EF be a
            spherical part of the fluid; if this be not pressed equally on every
            side, augment the lesser pressure till it be pressed equally on every
            side; and its parts (by Case 1) will remain in their places. But
            before the increase of the pressure, they would remain in their places
            (by Case 1); and by the addition of a new pressure they will be moved,
            by the definition of a fluid, from those places. Now these two
            conclusions contradict each other. Therefore it was false to say that
            the sphere EF was not pressed equally on every side.
              Q.E.D.
        


        
            Case 3. I say besides, that different
            spherical parts have equal pressures. For the contiguous spherical
            parts press each other mutually and equally in the point of contact
            (by Law III). But (by Case 2) they are pressed on every side with the
            same force. Therefore any two spherical parts not contiguous,
            since an intermediate spherical part can touch both, will be pressed
            with the same force.   Q.E.D.
        


        
            Case 4. I say now, that all the parts of the
            fluid are every where pressed equally. For any two parts may be
            touched by spherical parts in any points whatever; and there they will
            equally press those spherical parts (by Case 3), and are reciprocally
            equally pressed by them (by Law III).   Q.E.D.
        


        
            Case 5. Since, therefore, any part GHI of the
            fluid is inclosed by the rest of the fluid as in a vessel, and is
            equally pressed on every side; and also its parts equally press one
            another, and are at rest among themselves; it is manifest that all the
            parts of any fluid as GHI, which is pressed equally on every side, do
            press each other mutually and equally, and are at rest among
            themselves.   Q.E.D.
        


        
            Case 6. Therefore if that fluid be included
            in a vessel of a yielding substance, or that is not rigid, and be not
            equally pressed on every side, the same will give way to a stronger
            pressure, by the Definition of fluidity.
        


        
            Case 7. And therefore, in an inflexible or
            rigid vessel, a fluid will not sustain a stronger pressure on one side
            than on the other, but will give way to it, and that in a moment of
            time; because the rigid side of the vessel does not follow the
            yielding liquor. But the fluid, by thus yielding, will press against
            the opposite side, and so the pressure will tend on every side to
            equality. And because the fluid, as soon as it endeavours to recede
            from the part that is most pressed, is withstood by the resistance of
            the vessel on the opposite side, the pressure will on every side be
            reduced to equality, in a moment of time, without any local motion:
            and from thence the parts of the fluid (by Case 5) will press each
            other mutually and equally, and be at rest among themselves.
              Q.E.D.
        


        
            Cor. Whence neither will a motion of the
            parts of the fluid among themselves be changed by a pressure
            communicated to the external superficies, except so far as either the
            figure of the superficies may be somewhere altered, or that all the
            parts of the fluid, by pressing one another more in tensely or
            remissly, may slide with more or less difficulty among them selves.
        


    

    
        Proposition xx. Theorem xv.


            
                
                    If all the parts of a spherical fluid, homogeneous at equal
                    distances from the centre, lying on a spherical concentric bottom,
                    gravitate towards the centre of the whole, the bottom will sustain
                    the weight of a cylinder, whose base is equal to the superficies
                    of the bottom, and whose altitude is the same with that of the incumbent fluid.
                
            


        

        
            Let DHM be the superficies of the bottom, and AEI the upper
            superficies of the fluid. Let the fluid be distinguished into
            concentric orbs of equal thickness, by the innumerable spherical
            superficies BFK, CGL: and
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            conceive the force of gravity to act only in the upper superficies of
            every orb, and the actions to be equal on the equal parts of all the
            superficies. Therefore the upper superficies AE is pressed by the
            single force of its own gravity, by which all the parts of the upper
            orb, and the second superficies BFK, will (by Prop. XIX), according to
            its measure, be equally pressed. The second superficies BFK is pressed
            likewise by the force of its own gravity, which, added to the former
            force, makes the pressure double. The third superficies GGL is,
            according to its measure, acted on by this pressure and the force of
            its own gravity besides, which makes its pressure triple. And in like
            manner the fourth superficies receives a quadruple pressure, the fifth
            superficies a quintuple, and so on. Therefore the pressure acting on
            every superficies is not as the solid quantity of the incumbent fluid,
            but as the number of the orbs reaching to the upper surface of the
            fluid; and is equal to the gravity of the lowest orb multiplied by the
            number of orbs: that is, to the gravity of a solid whose ultimate
            ratio to the cylinder above-mentioned (when the number of the orbs is
            increased and their thickness diminished, ad infinitum, so
            that the action of gravity from the lowest superficies to the
            uppermost may become continued) is the ratio of equality. Therefore
            the lowest superficies sustains the weight of the cylinder above
            determined.   Q.E.D.   And by a like reasoning the
            Proposition will be evident, where the gravity of the fluid decreases
            in any assigned ratio of the distance from the centre, and also where
            the fluid is more rare above and denser below.   Q.E.D.
        


        
            Cor. 1. Therefore the bottom is not pressed
            by the whole weight of the incumbent fluid, but only sustains that
            part of it which is described in the Proposition; the rest of the
            weight being sustained archwise by the spherical figure of the fluid.
        


        
            Cor. 2. The quantity of the pressure is the
            same always at equal distances from the centre, whether the
            superficies pressed be parallel to the horizon, or perpendicular, or
            oblique; or whether the fluid, continued upwards from the compressed
            superficies, rises perpendicularly in a rectilinear direction, or
            creeps obliquely through crooked cavities and canals, whether those
            passages be regular or irregular, wide or narrow. That the pressure is
            not altered by any of these circumstances, may be collected by
            applying the demonstration of this Theorem to the several cases of
            fluids.
        


        
            Cor. 3. From the same demonstration it may
            also be collected (by Prop. XIX), that the parts of a heavy fluid
            acquire no motion among themselves by the pressure of the incumbent
            weight, except that motion which arises from condensation.
        


        
            Cor. 4. And therefore
            if another body of the same specific gravity, incapable of
            condensation, be immersed in this fluid, it will acquire no motion by
            the pressure of the incumbent weight: it will neither descend nor
            ascend, nor change its figure. If it be spherical, it will remain so,
            notwithstanding the pressure; if it be square, it will remain square;
            and that, whether it be soft or fluid; whether it swims freely in the
            fluid, or lies at the bottom. For any internal part of a fluid is in
            the same state with the submersed body; and the case of all submersed
            bodies that have the same magnitude, figure, and specific gravity, is
            alike. If a submersed body, retaining its weight, should dissolve and
            put on the form of a fluid, this body, if before it would have
            ascended, descended, or from any pressure assume a new figure, would
            now likewise ascend, descend, or put on a new figure; and that,
            because its gravity and the other causes of its motion remain. But (by
            Case 5, Prop. XIX) it would now be at rest, and retain its figure.
            Therefore also in the former case.
        


        
            Cor. 5. Therefore a body that is specifically
            heavier than a fluid contiguous to it will sink; and that which is
            specifically lighter will ascend, and attain so much motion and change
            of figure as that excess or defect of gravity is able to produce. For
            that excess or defect is the same thing as an impulse, by which a
            body, otherwise in equilibrio with the parts of the fluid,
            is acted on; and may be compared with the excess or defect of a weight
            in one of the scales of a balance.
        


        
            Cor. 6. Therefore bodies placed in fluids
            have a twofold gravity the one true and absolute, the other apparent,
            vulgar, and comparative. Absolute gravity is the whole force with
            which the body tends downwards; relative and vulgar gravity is the
            excess of gravity with which the body tends downwards more than the
            ambient fluid. By the first kind of gravity the parts of all fluids
            and bodies gravitate in their proper places; and therefore their
            weights taken together compose the weight of the whole. For the whole
            taken together is heavy, as may be experienced in vessels full of
            liquor; and the weight of the whole is equal to the weights of all the
            parts, and is therefore composed of them. By the other kind of gravity
            bodies do not gravitate in their places; that is, compared with one
            another, they do not preponderate, but, hindering one another's
            endeavours to descend, remain in their proper places, as if they were
            not heavy. Those things which are in the air, and do not preponderate,
            are commonly looked on as not heavy. Those which do preponderate are
            commonly reckoned heavy, in as much as they are not sustained by the
            weight of the air. The common weights are nothing else but the excess
            of the true weights above the weight of the air. Hence also, vulgarly,
            those things are called light which are less heavy, and, by yielding
            to the preponderating air, mount upwards. But these are only
            comparatively light, and not truly so, because they descend
            in vacuo. Thus, in water, bodies which, by their greater or
            less gravity, descend or ascend, are comparatively
            and apparently heavy or light; and their comparative and apparent
            gravity or levity is the excess or defect by which their true gravity
            either exceeds the gravity of the water or is exceeded by it. But
            those things which neither by preponderating descend, nor, by yielding
            to the preponderating fluid, ascend, although by their true weight
            they do increase the weight of the whole, yet comparatively, and in
            the sense of the vulgar, they do not gravitate in the water. For these
            cases are alike demonstrated.
        


        
            Cor. 7. These things which have been
            demonstrated concerning gravity take place in any other centripetal
            forces.
        


        
            Cor. 8. Therefore if the medium in which any
            body moves be acted on either by its own gravity, or by any other
            centripetal force, and the body be urged more powerfully by the same
            force; the difference of the forces is that very motive force, which,
            in the foregoing Propositions, I have considered as a centripetal
            force. But if the body be more lightly urged by that force, the
            difference of the forces becomes a centrifugal force, and is to be
            considered as such.
        


        
            Cor. 9. But since fluids by pressing the
            included bodies do not change their external figures, it appears also
            (by Cor. Prop. XIX) that they will not change the situation of their
            internal parts in relation to one another; and therefore if animals
            were immersed therein, and that all sensation did arise from the
            motion of their parts, the fluid will neither hurt the immersed
            bodies, nor excite any sensation, unless so far as those bodies may be
            condensed by the compression. And the case is the same of any system
            of bodies encompassed with a compressing fluid. All the parts of the
            system will be agitated with the same motions as if they were placed
            in a vacuum, and would only retain their comparative gravity; unless
            so far as the fluid may somewhat resist their motions, or be requisite
            to conglutinate them by compression.
        


    

    
        Proposition xxi. Theorem xvi.


            
                
                    Let the density of any fluid be proportional to the
                    compression, and its parts be attracted downwards by a centripetal
                    force reciprocally proportional to the distances from the centre:
                    I say, that, if those distances be taken continually proportional,
                    the densities of the fluid at the same distances will be also
                    continually proportional.
                
            


        

        
            Let ATV denote the spherical bottom of the fluid, S the centre, SA,
            SB, SC, SD, SE, SF, &c., distances continually proportional. Erect
            the perpendiculars AH, BI, CK, DL, EM, FN, &c., which shall be as
            the densities of the medium in the places A, B, C, D, E, F; and the
            specific gravities in those places will be AH

            AS, BI

            BS, CK

            CS, &c., or, which is all one, as
             AH

            AB, BI

            BC, CK

            CD, &c. Suppose, first, these
            gravities to be uniformly continued from A to B, from B to C, from C
            to D, &c., the decrements in the points
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            B, C, D, &c., being taken by steps. And these gravities drawn into
            the altitudes AB, BC, CD, &c., will give the pressures AH, BI, CK,
            &c., by which the bottom ATV is acted on (by Theor. XV). Therefore
            the particle A sustains all the pressures AH, BI, CK, DL, &c.,
            proceeding in infinitum; and the particle B sustains the
            pressures of all but the first AH; and the particle C all but the two
            first AH, BI; and so on: and therefore the density AH of the first
            particle A is to the density BI of the second particle B as the sum of
            all AH + BI + CK + DL, in infinitum, to the sum of all BI +
            CK + DL, &c. And BI the density of the second particle B is to CK
            the density of the third C, as the sum of all BI + CK + DL, &c.,
            to the sum of all CK + DL, &c. Therefore these sums are
            proportional to their differences AH, BI, CK, &c., and therefore
            continually proportional (by Lem. 1 of this Book); and therefore the
            differences AH, BI, CK, &c., proportional to the sums, are also
            continually proportional. Wherefore since the densities in the places
            A, B, C, &c., are as AH, BI, CK, &c., they will also be
            continually proportional. Proceed intermissively, and, ex aequo,
            at the distances SA, SC, SE, continually proportional, the densities
            AH, CK, EM will be continually proportional. And by the same
            reasoning, at any distances SA, SD, SG, continually proportional, the
            densities AH, DL, GO, will be continually proportional. Let now the
            points A, B, C, D, E, &c., coincide, so that the progression of
            the specific gravities from the bottom A to the top of the fluid may
            be made continual; and at any distances SA, SD, SG, continually
            proportional, the densities AH, DL, GO, being all along continually
            proportional, will still remain continually proportional.
              Q.E.D.
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            Cor. Hence if the density of the fluid in two
            places, as A and E, be given, its density in any other place Q may be
            collected. With the centre S, and the rectangular asymptotes SQ, SX,
            describe an hyperbola cutting the perpendiculars AH, EM, QT in a,
            e, and q, as also the perpendiculars HX, MY, TZ, let
            fall upon the asymptote SX, in h, m, and t. Make
            the area YmtZ to the given area YmhX as the given
            area EeqQ to the given area EeaA; and the line Zt
            produced will cut off the line QT proportional to the density. For if
            the lines SA, SE, SQ are continually proportional, the areas EeqQ,
            EeaA will be equal, and thence the
            areas YmtZ, XhmY, proportional to them, will be also
            equal; and the lines SX, SY, SZ, that is, AH, EM, QT continually
            proportional, as they ought to be. And if the lines SA, SE, SQ, obtain
            any other order in the series of continued proportionals, the lines
            AH, EM, QT, because of the proportional hyperbolic areas, will obtain
            the same order in another series of quantities continually
            proportional.
        


    

    
        Proposition xxii. Theorem xvii.


            
                
                    Let the density of any fluid be proportional to the
                    compression, and its parts be attracted downwards by a gravitation
                    reciprocally proportional to the squares of the distances from the
                    centre: I say, that if the distances be taken in harmonic
                    progression, the densities of the fluid at those distances will be
                    in a geometrical progression.
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            Let S denote the centre, and SA, SB, SC, SD, SE, the distances in
            geometrical progression. Erect the perpendiculars AH, BI, CK, &c.,
            which shall be as the densities of the fluid in the places A, B, C, D,
            E, &c., and the specific gravities thereof in those places will be
            as AH

            SA2, 
            BI

            SB2, 
            CK

            SC2, &c. Suppose these
            gravities to be uniformly continued, the first from A to B, the second
            from B to C, the third from C to D, &c. And these drawn into the
            altitudes AB, BC, CD, DE, &c., or, which is the same thing, into
            the distances SA, SB, SC, &c., proportional to those altitudes,
            will give AH

            SA, BI

            SB, CK

            SC, &c., the exponents of the
            pressures. Therefore since the densities are as the sums of those
            pressures, the differences AH − BI, BI − CK, &c., of the densities
            will be as the differences of those sums AH

            SA, BI

            SB, CK

            SC, &c. With the centre S, and the
            asymptotes SA, Sx, describe any hyperbola, cutting the
            perpendiculars AH, BI, CK, &c., in a, b, c, &c., and
            the perpendiculars Ht, In, Kw, let fall
            upon the asymptote Sx, in h, i, k; and the
            differences of the densities tu, uw, &c., will be as
            AH

            SA, BI

            SB, &c. And the rectangles tu
            x th, uw x ui, &c., or tp, uq, &c., as
            AH x th

            SA, BI
            x ui

            SB, &c., that is, as Aa, Bb,
            &c. For, by the nature of the hyperbola, SA is to AH or St
            as th to Ac, and therefore 
            AH x th

            SA is equal to Aa. And, by a
            like reasoning, BI
            x ui

            SB is equal to Bb, &c. But
            Aa, Bb, Cc, &c., are continually
            proportional, and therefore proportional to their differences Aa
            − Bb, Bb − Cc, &c., therefore the
            rectangles tp, uq, &c., are proportional to those
            differences; as also the sums of the rectangles tp + uq, or
            tp + uq + wr to the sums of the differences Aa − Cc
            or Aa − Dd. Suppose several of these terms, and the
            sum of all the differences, as Aa − Ff, will be
            proportional to the sum of all the rectangles, as zthn.
            Increase the number of terms, and diminish the distances of the points
            A, B, C, &c., in infinitum, and those rectangles will
            become equal to the hyperbolic area zthn, and therefore the
            difference Aa − Ff is proportional to this area.
            Take now any distances, as SA, SD, SF, in harmonic progression, and
            the differences Aa − Dd, Dd − Ff
            will be equal; and therefore the areas thlx, xluz,
            proportional to those differences will be equal among themselves, and
            the densities St, Sx, Sz, that is, AH, DL,
            FN, continually proportional.   Q.E.D.
        


        
            Cor. Hence if any two densities of the fluid,
            as AH and BI, be given, the area thiu, answering to their
            difference tu, will be given; and thence the density FN will
            be found at any height SF, by taking the area thnz to that
            given area thiu as the difference Aa − Ff
            to the difference Aa − Bb.
        


    

    
        Scholium.



        
            By a like reasoning it may be proved, that if the gravity of the
            particles of a fluid be diminished in a triplicate ratio of the
            distances from the centre; and the reciprocals of the squares of the
            distances SA, SB, SC, &c., (namely, SA3

            SA2, 
            SA3

            SB2, 
            SA3

            SC2 ) be taken in an
            arithmetical progression, the densities AH, BI, CK, &c., will be
            in a geometrical progression. And if the gravity be diminished in a
            quadruplicate ratio of the distances, and the reciprocals of the cubes
            of the distances (as SA4

            SA3, 
            SA4

            SB3, 
            SA4

            SC3, &c.,) be taken in
            arithmetical progression, the densities AH, BI, CK, &c., will be
            in geometrical progression. And so in infinitum. Again; if
            the gravity of the particles of the fluid be the same at all
            distances, and the distances be in arithmetical progression, the
            densities will be in a geometrical progression as Dr. Halley
            has found. If the gravity be as the distance, and the squares of the
            distances be in arithmetical progression, the densities will be in
            geometrical progression. And so in infinitum. These things
            will be so, when the density of the fluid condensed by compression is
            as the force of compression; or, which is the same thing, when the
            space possessed by the fluid is reciprocally as this force. Other laws
            of condensation may be supposed, as that the cube of the compressing
            force may be as the biquadrate of the density;
            or the triplicate ratio of the force the same with the quadruplicate
            ratio of the density: in which case, if the gravity he reciprocally as
            the square of the distance from the centre; the density will be
            reciprocally as the cube of the distance. Suppose that the cube of the
            compressing force be as the quadrato-cube of the density; and if the
            gravity be reciprocally as the square of the distance, the density
            will be reciprocally in a sesquiplicate ratio of the distance. Suppose
            the compressing force to be in a duplicate ratio of the density, and
            the gravity reciprocally in a duplicate ratio of the distance, and the
            density will be reciprocally as the distance. To run over all the
            cases that might be offered would be tedious. But as to our own air,
            this is certain from experiment, that its density is either
            accurately, or very nearly at least, as the compressing force; and
            therefore the density of the air in the atmosphere of the earth is as
            the weight of the whole incumbent air, that is, as the height of the
            mercury in the barometer.
        


    

    
        Proposition xxiii. Theorem xviii.


            
                
                    If a fluid be composed of particles mutually flying each other,
                    and the density be as the compression, the centrifugal forces of
                    the particles will be reciprocally proportional to the distances
                    of their centres. And, vice versa, particles flying each
                    other, with forces that are reciprocally proportional to the
                    distances of their centres, compose an elastic fluid, whose
                    density is as the compression.
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            Let the fluid be supposed to be included in a cubic space ACE, and
            then to be reduced by compression into a lesser cubic space ace;
            and the distances of the particles retaining a like situation with
            respect to each other in both the spaces, will be as the sides AB, ab
            of the cubes; and the densities of the mediums will be reciprocally as
            the containing spaces AB³, ab³. In the plane side of the
            greater cube ABCD take the square DP equal to the plane side db
            of the lesser cube: and, by the supposition, the pressure with which
            the square DP urges the inclosed fluid will be to the pressure with
            which that square db urges the inclosed fluid as the
            densities of the mediums are to each other, that is, as ab³
            to AB³. But the pressure with which the square DB urges the included
            fluid is to the pressure with which the square DP urges the same fluid
            as the square DB to the square DP, that is, as AB² to ab².
            Therefore, ex aequo, the pressure with which the square DB
            urges the fluid is to the pressure with which the square db
            urges the fluid as ab to AB. Let the planes FGH, fgh,
            be drawn through the middles of the two cubes, and divide the fluid
            into two parts. These parts will press each other mutually with the
            same forces with which they are themselves
            pressed by the planes AC, ac, that is, in the proportion of
            ab to AB: and therefore the centrifugal forces by which these
            pressures are sustained are in the same ratio. The number of the
            particles being equal, and the situation alike, in both cubes, the
            forces which all the particles exert, according to the planes FGH, fgh,
            upon all, are as the forces which each exerts on each. Therefore the
            forces which each exerts on each, according to the plane FGH in the
            greater cube, are to the forces which each exerts on each, according
            to the plane fgh in the lesser cube, as ab to AB,
            that is, reciprocally as the distances of the particles from each
            other.   Q.E.D.
        


        
            And, vice versa, if the forces of the single particles are
            reciprocally as the distances, that is, reciprocally as the sides of
            the cubes AB, ab; the sums of the forces will be in the same
            ratio, and the pressures of the sides DB, db as the sums of
            the forces; and the pressure of the square DP to the pressure of the
            side DB as ab² to AB² . And, ex aequo, the
            pressure of the square DP to the pressure of the side db as
            ab³ to AB³; that is, the force of compression in the one to
            the force of compression in the other as the density in the former to
            the density in the latter.   Q.E.D.
        


    

    
        Scholium.



        
            By a like reasoning, if the centrifugal forces of the particles are
            reciprocally in the duplicate ratio of the distances between the
            centres, the cubes of the compressing forces will be as the
            biquadrates of the densities. If the centrifugal forces be
            reciprocally in the triplicate or quadruplicate ratio of the
            distances, the cubes of the compressing forces will be as the
            quadratocubes, or cubo-cubes of the densities. And universally, if D
            be put for the distance, and E for the density of the compressed
            fluid, and the centrifugal forces be reciprocally as any power Dn
            of the distance, whose index is the number n, the
            compressing forces will be as the cube roots of the power En+2,
            whose index is the number n + 2; and the contrary. All these
            things are to be understood of particles whose centrifugal forces
            terminate in those particles that are next them, or are diffused not
            much further. We have an example of this in magnetical bodies. Their
            attractive virtue is terminated nearly in bodies of their own kind
            that are next them. The virtue of the magnet is contracted by the
            interposition of an iron plate, and is almost terminated at it: for
            bodies further off are not attracted by the magnet so much as by the
            iron plate. If in this manner particles repel others of their own kind
            that lie next them, but do not exert their virtue on the more remote,
            particles of this kind will compose such fluids as are treated of in
            this Proposition. If the virtue of any particle diffuse itself every
            way in infinitum, there will be required a greater force to
            produce an equal condensation of a greater quantity of the fluid.
            But whether elastic fluids do really consist
            of particles so repelling each other, is a physical question. We have
            here demonstrated mathematically the property of fluids consisting of
            particles of this kind, that hence philosophers may take occasion to
            discuss that question.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.12




    
        Section xii.


        Of the attractive forces of sphaerical bodies.



    

    
        Proposition lxx. Theorem xxx.


            
                
                    If to every point of a sphaerical surface there tend equal
                    centripetal forces decreasing in the duplicate ratio of the
                    distances from those points; I say, that a corpuscle placed within
                    that superficies will not be attracted by those forces any way.
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            Let HIKL, be that sphaerical superficies, and P a corpuscle placed
            within. Through P let there be drawn to this superficies to two lines
            HK, IL, intercepting very small arcs HI, KL; and because (by Cor. 3,
            Lem. VII) the triangles HPI, LPK are alike, those arcs will be
            proportional to the distances HP, LP; and any particles at HI and KL
            of the sphaerical superficies, terminated by right lines passing
            through P, will be in the duplicate ratio of those distances.
            Therefore the forces of these particles exerted upon the body P are
            equal between themselves. For the forces are as the particles
            directly, and the squares of the distances inversely. And these two
            ratios compose the ratio of equality. The attractions therefore, being
            made equally towards contrary parts, destroy each other. And by a like
            reasoning all the attractions through the whole sphaerical superficies
            are destroyed by contrary attractions. Therefore the body P will not
            be any way impelled by those attractions.   Q.E.D.
        


    

    
        Proposition lxxi. Theorem xxxi.


            
                
                    The same things supposed as above, I say, that a corpuscle
                    placed with out the sphaerical superficies is attracted towards
                    the centre of the sphere with a force reciprocally proportional to
                    the square of its distance from that centre.
                
            


        

        
            Let AHKB, ahkb, be two equal sphaerical superficies
            described about the centre S, s;
            their diameters AB, ab; and let P and p be two
            corpuscles situate without the spheres in those diameters produced.
            Let there
            [image: Mathematical Principles of Natural Philosophy figure: 219]
            be drawn from the corpuscles the lines PHK, PIL, phk, pil,
            cutting off from the great circles AHB,
            ahb, the equal arcs HK, hk, IL, il;
            and to those lines let fall the perpendiculars SD, sd, SE, se,
            IR, ir; of which let SD, sd, cut PL, pl,
            in F and f. Let fall also to the diameters the
            perpendiculars IQ, iq. Let now the angles DPE, dpe,
            vanish; and because DS and ds, ES and es are
            equal, the lines PE, PF, and pe, pf, and the lineolao DF, df
            may be taken for equal; because their last ratio, when the angles DPE,
            dpe vanish together, is the ratio of equality. These things
            then supposed, it will be, as PI to PF so is RI to DF, and as pf
            to pi so is df or DF to ri; and, ex
            aequo, as PI x pf to PF x pi so is RI to ri,
            that is (by Cor. 3, Lem VII), so is the arc IH to the arc ih.
            Again, PI is to PS as IQ to SE, and ps to pi as se
            or SE to iq; and, ex aequo, PI x ps to
            PS x pi as IQ to iq. And compounding the ratios
            PI² x pf x ps is to pi² x PF x PS, as IH
            x IQ to ih x iq; that is, as the circular
            superficies which is described by the arc IH, as the semi-circle AKB
            revolves about the diameter AB, is to the circular superficies
            described by the arc ih as the semi-circle akb
            revolves about the diameter ab. And the forces with which
            these superficies attract the corpuscles P and p in the
            direction of lines tending to those superficies are by the hypothesis
            as the superficies themselves directly, and the squares of the
            distances of the superficies from those corpuscles inversely; that is,
            as pf x ps to PF x PS. And these forces again are
            to the oblique parts of them which (by the resolution of forces as in
            Cor. 2, of the Laws) tend to the centres in the directions of the
            lines PS, ps, as PI to PQ, and pi to pq;
            that is (because of the like triangles PIQ and PSF, piq and
            psf), as PS to PF and ps to pf. Thence ex
            aequo, the attraction of the corpuscle P towards S is to the
            attraction of the corpuscle p towards s as
            PF x pf x ps

            PS is to pf
            x PF x ps

            ps, that is, as ps² to PS² .
            And, by a like reasoning, the forces with which the superficies
            described by the revolution of the arcs KL, kl attract those
            corpuscles, will be as ps² to PS² . And in the same ratio
            will be the forces of all the circular superficies into which each of
            the sphaerical superficies may be divided by taking sd
            always equal to SD, and se equal to SE. And therefore, by
            composition, the forces of the entire sphaerical superficies exerted
            upon those corpuscles will be in the same ratio.   Q.E.D.
        


    

    
        
            Proposition lxxii. Theorem xxxii.


            
                
                    If to the several points of a sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from those points; and there be given both the density
                    of the sphere and the ratio of the diameter of the sphere to the
                    distance of the corpuscle from its centre; I say, that the force
                    with which the corpuscle is attracted is proportional to the
                    semi-diameter of the sphere.
                
            


        

        
            For conceive two corpuscles to be severally attracted by two spheres,
            one by one, the other by the other, and their distances from the
            centres of the spheres to be proportional to the diameters of the
            spheres respectively, and the spheres to be resolved into like
            particles, disposed in a like situation to the corpuscles. Then the
            attractions of one corpuscle towards the several particles of one
            sphere will be to the attractions of the other towards as many
            analogous particles of the other sphere in a ratio compounded of the
            ratio of the particles directly, and the duplicate ratio of the
            distances inversely. But the particles are as the spheres, that is, in
            a triplicate ratio of the diameters, and the distances are as the
            diameters; and the first ratio directly with the last ratio taken
            twice inversely, becomes the ratio of diameter to diameter.
              Q.E.D.
        


        
            Cor. 1. Hence if corpuscles revolve in
            circles about spheres composed of matter equally attracting, and the
            distances from the centres of the spheres be proportional to their
            diameters, the periodic times will be equal.
        


        
            Cor. 2. And, vice versa, if the
            periodic times are equal, the distances will be proportional to the
            diameters. These two Corollaries appear from Cor. 3, Prop. IV.
        


        
            Cor. 3. If to the several points of any two
            solids whatever, of like figure and equal density, there tend equal
            centripetal forces decreasing in a duplicate ratio of the distances
            from those points, the forces, with which corpuscles placed in a like
            situation to those two solids will be attracted by them, will be to
            each other as the diameters of the solids.
        


    

    
        Proposition lxxiii. Theorem xxxiii.


            
                
                    If to the several points of a given sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from the points; I say, that a corpuscle placed within
                    the sphere is attracted by a force proportional to its distance
                    from the centre.
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            In the sphere ABCD, described about the centre S, let there be placed
            the corpuscle P; and about the same centre S, with the interval SP,
            conceive described an interior sphere PEQF. It is plain (by Prop. LXX)
            that the concentric sphaerical superficies, of which the difference
            AEBF of the spheres is composed, have no effect at all upon the body
            P, their attractions being destroyed by
            contrary attractions. There remains, therefore, only the attraction of
            the interior sphere PEQF. And (by Prop, LXXII) this is as the distance
            PS.   Q.E.D.
        


    

    
        Scholium.



        
            By the superficies of which I here imagine the solids composed, I do
            not mean superficies purely mathematical, but orbs so extremely thin,
            that their thickness is as nothing; that is, the evanescent orbs of
            which the sphere will at last consist when the number of the orbs is
            increased, and their thickness diminished without end. In like manner,
            by the points of which lines, surfaces, and solids are said to be
            composed, are to be understood equal particles, whose magnitude is
            perfectly inconsiderable.
        


    

    
        Proposition lxxiv. Theorem xxxiv.


            
                
                    The same things supposed, I say, that a corpuscle situate
                    without the sphere is attracted with a force reciprocally
                    proportional to the square of its distance from the centre.
                
            


        

        
            For suppose the sphere to be divided into innumerable concentric
            sphaerical superficies, and the attractions of the corpuscle arising
            from the several superficies will be reciprocally proportional to the
            square of the distance of the corpuscle from the centre of the sphere
            (by Prop. LXXI). And, by composition, the sum of those attractions,
            that is, the attraction of the corpuscle towards the entire sphere,
            will be in the same ratio.   Q.E.D.
        


        
            Cor. 1. Hence the attractions of homogeneous
            spheres at equal distances from the centres will be as the spheres
            themselves. For (by Prop. LXXII) if the distances be proportional to
            the diameters of the spheres, the forces will be as the diameters. Let
            the greater distance be diminished in that ratio; and the distances
            now being equal, the attraction will be increased in the duplicate of
            that ratio; and therefore will be to the other attraction in the
            triplicate of that ratio; that is, in the ratio of the spheres.
        


        
            Cor. 2. At any distances whatever the
            attractions are as the spheres applied to the squares of the
            distances.
        


        
            Cor. 3. If a corpuscle placed without an
            homogeneous sphere is attracted by a force reciprocally proportional
            to the square of its distance from the centre, and the sphere consists
            of attractive particles, the force of every particle will decrease in
            a duplicate ratio of the distance from each particle.
        


    

    
        Proposition lxxv. Theorem xxxv.


            
                
                    If to the several points of a given sphere there tend equal
                    centripetal forces decreasing in a duplicate ratio of the
                    distances from the points; I say, that another similar sphere will
                    be attracted by it with a force reciprocally proportional to the
                    square of the distance of the centres.
                
            


        

        
            For the attraction of every particle is reciprocally as the square of
            its distance from the centre of the
            attracting sphere (by Prop. LXXIV), and is therefore the same as if
            that whole attracting force issued from one single corpuscle placed in
            the centre of this sphere. But this attraction is as great as on the
            other hand the attraction of the same corpuscle would be, if that were
            itself attracted by the several particles of the attracted sphere with
            the same force with which they are attracted by it. But that
            attraction of the corpuscle would be (by Prop. LXXIV) reciprocally
            proportional to the square of its distance from the centre of the
            sphere; therefore the attraction of the sphere, equal thereto, is also
            in the same ratio.   Q.E.D.
        


        
            Cor. 1. The attractions of spheres towards
            other homogeneous spheres are as the attracting spheres applied to the
            squares of the distances of their centres from the centres of those
            which they attract.
        


        
            Cor. 2. The case is the same when the
            attracted sphere does also attract. For the several points of the one
            attract the several points of the other with the same force with which
            they themselves are attracted by the others again; and therefore since
            in all attractions (by Law III) the attracted and attracting point are
            both equally acted on, the force will be doubled by their mutual
            attractions, the proportions remaining.
        


        
            Cor. 3. Those several truths demonstrated
            above concerning the motion of bodies about the focus of the conic
            sections will take place when an attracting sphere is placed in the
            focus, and the bodies move without the sphere.
        


        
            Cor. 4. Those things which were demonstrated
            before of the motion of bodies about the centre of the conic sections
            take place when the motions are performed within the sphere.
        


    

    
        Proposition lxxvi. Theorem xxxvi.


            
                
                    If spheres be however dissimilar (as to density of matter and
                    attractive force) in the same ratio onward from the centre to the
                    circumference; but every where similar, at every given distance
                    from the centre, on all sides round about; and the attractive
                    force of every point decreases in the duplicate ratio of the
                    distance of the body attracted; I say, that the whole force with
                    which one of these spheres attracts the other will be reciprocally
                    proportional to the square of the distance of the centres.
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            Imagine several concentric similar spheres, AB, CD, EF, &c., the
            innermost of which added to the outermost may compose a matter more
            dense towards the centre, or subducted from them may leave the same
            more lax and rare. Then, by Prop. LXXV, these spheres will attract
            other similar concentric spheres GH, IK, LM,
            &c., each the other, with forces reciprocally proportional to the
            square of the distance SP. And, by composition or division, the sum of
            all those forces, or the excess of any of them above the others; that
            is, the entire force with which the whole sphere AB (composed of any
            concentric spheres or of their differences) will attract the whole
            sphere GH (composed of any concentric spheres or their differences) in
            the same ratio. Let the number of the concentric spheres be increased
            in infinitum, so that the density of the matter together with
            the attractive force may, in the progress from the circumference to
            the centre, increase or decrease according to any given law; and by
            the addition of matter not attractive, let the deficient density be
            supplied, that so the spheres may acquire any form desired; and the
            force with which one of these attracts the other will be still, by the
            former reasoning, in the same ratio of the square of the distance
            inversely.   Q.E.D.
        


        
            Cor. 1. Hence if many spheres of this kind,
            similar in all respects, attract each other mutually, the accelerative
            attractions of each to each, at any equal distances of the centres,
            will be as the attracting spheres.
        


        
            Cor. 2. And at any unequal distances, as the
            attracting spheres applied to the squares of the distances between the
            centres.
        


        
            Cor. 3. The motive attractions, or the
            weights of the spheres towards one another, will be at equal distances
            of the centres as the attracting and attracted spheres conjunctly;
            that is, as the products arising from multiplying the spheres into
            each other.
        


        
            Cor. 4. And at unequal distances, as those
            products directly, and the squares of the distances between the
            centres inversely.
        


        
            Cor. 5. These proportions take place also
            when the attraction arises from the attractive virtue of both spheres
            mutually exerted upon each other. For the attraction is only doubled
            by the conjunction of the forces, the proportions remaining as before.
        


        
            Cor. 6. If spheres of this kind revolve about
            others at rest, each about each; and the distances between the centres
            of the quiescent and revolving bodies are proportional to the
            diameters of the quiescent bodies; the periodic times will be equal.
        


        
            Cor. 7. And, again, if the periodic times are
            equal, the distances will be proportional to the diameters.
        


        
            Cor. 8. All those truths above demonstrated,
            relating to the motions of bodies about the foci of conic sections,
            will take place when an attracting sphere, of any form and condition
            like that above described, is placed in the focus.
        


        
            Cor. 9. And also when the revolving bodies
            are also attracting spheres of any condition like that above
            described.
        


    

    
        
            Proposition lxxvii. Theorem xxxvii.


            
                
                    If to the several points of spheres there tend centripetal
                    forces proportional to the distances of the points from the
                    attracted bodies; I say, that the compounded force with which two
                    spheres attract each other mutually is as the distance between the
                    centres of the spheres.
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            Case 1. Let AEBF be a sphere; S its centre; P
            a corpuscle attracted; PASB the axis of the sphere passing through the
            centre of the corpuscle; EF, ef two planes cutting the
            sphere, and perpendicular to the axis, and equi-distant, one on one
            side, the other on the other, from the centre of the sphere; G and g
            the intersections of the planes and the axis; and H any point in the
            plane EF. The centripetal force of the point H upon the corpuscle P,
            exerted in the direction of the line PH, is as the distance PH; and
            (by Cor. 2, of the Laws) the same exerted in the direction of the line
            PG, or towards the centre S, is as the length PG. Therefore the force
            of all the points in the plane EF (that is, of that whole plane) by
            which the corpuscle P is attracted towards the centre S is as the
            distance PG multiplied by the number of those points, that is, as the
            solid contained under that plane EF and the distance PG. And in like
            manner the force of the plane ef, by which the corpuscle P
            is attracted towards the centre S, is as that plane drawn into its
            distance Pg, or as the equal plane EF drawn into that
            distance Pg; and the sum of the forces of both planes as the
            plane EF drawn into the sum of the distances PG + Pg, that
            is, as that plane drawn into twice the distance PS of the centre and
            the corpuscle; that is, as twice the plane EF drawn into the distance
            PS, or as the sum of the equal planes EF + ef drawn into the
            same distance. And, by a like reasoning, the forces of all the planes
            in the whole sphere, equi-distant on each side from the centre of the
            sphere, are as the sum of those planes drawn into the distance PS,
            that is, as the whole sphere and the distance PS conjunctly.
              Q.E.D.
        


        
            Case 2. Let now the corpuscle P attract the
            sphere AEBF. And, by the same reasoning, it will appear that the force
            with which the sphere is attracted is as the distance PS.
              Q.E.D.
        


        
            Case 3. Imagine another sphere composed of
            innumerable corpuscles P; and because the force with which every
            corpuscle is attracted is as the distance of the corpuscle from the
            centre of the first sphere, and as the same sphere conjunctly, and is
            therefore the same as if it all proceeded from a single corpuscle
            situate in the centre of the sphere, the entire force with which all
            the corpuscles in the second sphere are attracted, that is, with which
            that whole sphere is attracted, will be the same as if that sphere
            were attracted by a force issuing from a single
            corpuscle in the centre of the first sphere; and is therefore
            proportional to the distance between the centres of the spheres.
              Q.E.D.
        


        
            Case 4. Let the spheres attract each other
            mutually, and the force will be doubled, but the proportion will
            remain.   Q.E.D.
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            Case 5. Let the corpuscle p be
            placed within the sphere AEBF; and because the force of the plane ef
            upon the corpuscle is as the solid contained under that plane and the
            distance pg; and the contrary force of the plane EP as the
            solid contained under that plane and the distance pG; the
            force compounded of both will be as the difference of the solids, that
            is, as the sum of the equal planes drawn into half the difference of
            the distances; that is, as that sum drawn into pS, the
            distance of the corpuscle from the centre of the sphere. And, by a
            like reasoning, the attraction of all the planes EF, ef,
            throughout the whole sphere, that is, the attraction of the whole
            sphere, is conjunctly as the sum of all the planes, or as the whole
            sphere, and as pS, the distance of the corpuscle from the
            centre of the sphere.   Q.E.D.
        


        
            Case 6. And if there be composed a new sphere
            out of innumerable corpuscles such as p, situate within the
            first sphere AEBF, it may be proved, as before, that the attraction,
            whether single of one sphere towards the other, or mutual of both
            towards each other, will be as the distance pS of the
            centres.   Q.E.D.
        


    

    
        Proposition lxxviii. Theorem xxxviii.


            
                
                    If spheres is the progress from the centre to the circumference
                    be however dissimilar and unequable, but similar on every side
                    round about at all given distances from the centre; and the
                    attractive force of every point be as the distance of the
                    attracted body; I say, that the entire force with which two
                    spheres of this kind attract each other mutually is proportional
                    to the distance between the centres of the spheres.
                
            


        

        
            This is demonstrated from the foregoing Proposition, in the same
            manner as Proposition LXXVI was demonstrated from Proposition LXXV.
        


        
            Cor. Those things that were above
            demonstrated in Prop. X and LXIV, of the motion of bodies round the
            centres of conic sections, take place when all the attractions are
            made by the force of sphaerical bodies of the condition above
            described, and the attracted bodies are spheres of the same kind.
        


    

    
        Scholium.



        
            I have now explained the two principal cases of attractions; to wit,
            when the centripetal forces decrease in a duplicate ratio of the
            distances, or increase in a simple ratio of the distances, causing the
            bodies in both cases to revolve in conic
            sections, and composing sphaerical bodies whose centripetal forces
            observe the same law of increase or decrease in the recess from the
            centre as the forces of the particles themselves do; which is very
            remarkable. It would be tedious to run over the other cases, whose
            conclusions are less elegant and important, so particularly as I have
            done these. I choose rather to comprehend and determine them all by
            one general method as follows.
        


    

    
        Lemma xxix.


            
                If about the centre S there be described any circle
                as AEB, and about the centre P there be also
                described two circles EF, ef, cutting the first in E
                And e, and the line PS in F and f; and there be let
                fall to PS the perpendiculars ED, ed; I say, that if the distance
                of the arcs EF, ef be supposed to be infinitely
                diminished, the last ratio of the evanscent line Dd to
                the evanescent line Ff is the same as that of the line
                PE to the line PS.
            


        

        
            For if the line Pe cut the arc EF in q; and the
            right line Ee, which
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            coincides with the evanescent arc Ee, be produced, and meet the right
            line PS in T; and there be let fall from S to PE the perpendicular SG;
            then, because of the like triangles DTE, dTe, DES,
            it will be as Dd to Ee so DT to TE, or DE to ES: and
            because the triangles, Eeq, ESG (by Lem. VIII, and Cor. 3,
            Lem. VII) are similar, it will be as Ee to eq or Ff
            so ES to SG; and, ex aequo, as Dd to Ff so
            DE to SG; that is (because of the similar triangles PDE, PGS), so is
            PE to PS.   Q.E.D.
        


    

    
        Proposition lxxix. Theorem xxxix.


            
                Suppose a superficies as EFfe to have its breadth
                infinitely diminished, and to be just vanishing and that the same
                superficies by its revolution round the axis PS describes
                a sphaerical concavo-convex solid, to the several equal particles
                of which there tend equal centripetal forces; I say, that the
                force with which that solid attracts a corpuscle situate in P
                Is in a ratio compounded of the ratio of the solid DE² x Ff
                And the ratio of the force with which the given particle in the
                place Ff would, attract the same corpuscle.
            


        

        
            For if we consider, first, the force of the sphaerical superficies FE which
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            is generated by the revolution of the arc FE, and is cut any where, as in
            r, by the line de, the annular part of the
            superficies generated by the revolution of the arc rE will
            be as the lineola Dd, the radius of the sphere PE remaining
            the same; as Archimedes has demonstrated in his Book of the
            Sphere and Cylinder. And the force of this superficies exerted in the
            direction of the lines PE or Pr situate all round in the
            conical superficies, will be as this annular superficies itself; that
            is as the lineola Dd, or, which is the same, as the rectangle
            under the given radius PE of the sphere and the lineola Dd;
            but that force, exerted in the direction of the line PS tending to the
            centre S, will be less in the ratio PD to PE, and therefore will be as
            PD x Dd. Suppose now the line DF to be divided into
            innumerable little equal particles, each of which call Dd,
            and then the superficies FE will be divided into so many equal annuli,
            whose forces will be as the sum of all the rectangles PD x Dd,
            that is, as ½PF² − ½PD², and therefore as DE². Let now the superficies
            FE be drawn into the altitude Ff; and the force of the solid
            EFfe exerted upon the corpuscle P will be as DE² x Ff;
            that is, if the force be given which any given particle as Ff
            exerts upon the corpuscle P at the distance PF. But if that force be
            not given, the force of the solid EFfe will be as the solid
            DE² x Ff and that force not given, conjunctly.
              Q.E.D.
        


    

    
        Proposition lxxx. Theorem xl.


            
                If to the several equal parts of a sphere ABE described
                about the centre S there tend equal centripetal forces; and from
                the several points D in the axis of the sphere AB in
                which a corpuscle, as F, is placed, there be erected the
                perpendiculars DE meeting the sphere in E, and
                if in those perpendiculars the lengths DN be taken as
                the quantity DE2
                x PS

                PE, and as the force which a particle of the sphere
                situate in the axis exerts at the distance PE upon the
                corpuscle P conjunctly; I say, that the whole force with
                which the corpuscle P is attracted towards the sphere is
                as the area ANB, comprehended under the axis of the
                sphere AB, and the crrve line ANB, the locus of the point N.
            


        

        
            For supposing the construction in the last Lemma and Theorem to
            stand, conceive the axis of the sphere AB to be divided into
            innumerable equal particles Dd, and the whole sphere to be
            divided into so many sphserical concavo-convex laminae EFfe;
            and erect the perpendicular dn. By the last Theorem, the
            force with which the laminae EFfe attracts the corpuscle P
            is as DE² x Ff and the force of one particle exerted at the
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            distance PE or PF, conjunctly. But (by the last Lemma) Dd is to Ff as PE to PS,
            and therefore Ff is equal to PS
            x Dd

            PE; and DE² x Ff is equal to Dd
            x DE2 x PS

            PE; and therefore the force of the lamina EFfe
            is as Dd x DE2
            x PS

            PE and the force of a particle exerted at the
            distance PF conjunctly; that is, by the supposition, as DN x Dd,
            or as the evanescent area DNnd. Therefore the forces of all
            the laminae exerted upon the corpuscle P are as all the areas DNnd,
            that is, the whole force of the sphere will be as the whole area ANB.
              Q.E.D.
        


        
            Cor. 1. Hence if the centripetal force
            tending to the several particles remain always the same at all
            distances, and DN be made as DE2
            x PS

            PE the whole force with which the corpuscle is attracted by
            the sphere is as the area ANB.
        


        
            Cor. 2. If the centripetal force of the
            particles be reciprocally as the distance of the corpuscle attracted
            by it, and DN be made as DE2
            x PS

            PE2, the force with which the corpuscle P is
            attracted by the whole sphere will be as the area ANB.
        


        
            Cor. 3. If the centripetal force of the
            particles be reciprocally as the cube of the distance of the corpuscle
            attracted by it, and DN be made as DE2
            x PS

            PE4, the force with which the corpuscle is
            attracted by the whole sphere will be as the area ANB.
        


        
            Cor. 4. And universally if the centripetal
            force tending to the several particles of the sphere be supposed to be
            reciprocally as the quantity V; and DN be made as 
            DE2 x PS

            PE x V; the force with which a corpuscle is attracted by the
            whole sphere will be as the area ANB.
        


    

    
        
            Proposition lxxxi. Problem xli.


            The things remaining as above, it is required to measure the area ANB.


        

        
            From the point P let there be drawn the right line PH touching the
            sphere in H; and to the axis PAB, letting fall the perpendicular HI,
            bisect PI in L; and (by Prop. XII, Book II, Elem.) PE² is equal to
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            PS² + SE² + 2PSD. But because the triangles SPH,
            SHI are alike, SE² or SH² is equal to the rectangle PSI.
            Therefore PE² is equal to the rectangle contained under PS and PS
            + SI + 2SD; that is, under PS and 2LS + 2SD; that is, under PS and
            2LD. Moreover DE² is equal to SE² − SD², or SE² − LS² + 2SLD − LD²,
            that is, 2SLD − LD² − ALB. For LS² − SE² or LS² − SA² (by Prop. VI,
            Book II, Elem.) is equal to the rectangle ALB. Therefore if instead of
            DE² we write 2SLD − LD² − ALB, the quantity 
            DE2 x PS

            PE x V, which (by Cor. 4 of the foregoing Prop.) is as the
            length of the ordinate DN, will now resolve itself into three parts
            2SLD x PS

            PE x V − LD2
            x PS

            PE x V − ALB
            x PS

            PE x V; where if instead of V
            we write the inverse ratio of the centripetal force, and instead of PE
            the mean proportional between PS and 2LD, those three parts will
            become ordinates to so many curve lines, whose areas are discovered by
            the common methods.   Q.E.D.
        


        
            Example 1. If the centripetal force tending
            to the several particles of the sphere be reciprocally as the
            distance; instead of V write PE the distance, then 2PS x LD for PE²;
            and DN will become as SL − ½LD − ALB

            2LD. Suppose DN equal to its double 2SL
            − LD − ALB

            LD; and 2SL the given part of the
            ordinate drawn into the length AB will describe the rectangular area
            2SL x AB; and the indefinite part LD, drawn perpendicularly into the
            same length with a continued motion, in such sort as in its motion one
            way or another it may either by increasing or decreasing remain always
            equal to the length LD, will describe the area 
            LB2 − LA2

            2, that is, the area SL x AB; which
            taken from the former area 2SL x AB, leaves the area SL x AB. But the
            third part ALB

            LD, drawn after the same manner with a
            continued motion perpendicularly into the same length,
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            will describe the area of an hyperbola, which subducted from the area
            SL x AB will leave ANB the area sought. Whence arises this
            construction of the Problem. At the points, L, A, B, erect the
            perpendiculars Ll, Aa, Bb; making Aa
            equal to LB, and Bb equal to LA. Making Ll and LB
            asymptotes, describe through the points a, b, the
            hyperbolic curve ab. And the chord ba being drawn,
            will inclose the area aba equal to the area sought ANB.
        


        
            Example 2. If the centripetal force tending
            to the several particles of the sphere be reciprocally as the cube of
            the distance, or (which is the same thing) as that cube applied to any
            given plane; write PE3

            2AS2 for V, and 2PS x LD for
            PE²; and DN will become as 
            SL x AS2

            PS x LD − AS2

            2PS − ALB
            x AS2

            2PS x LD2 that is
            (because PS, AS, SI are continually proportional), as 
            LSI

            LD − 1/2SI
            − ALB x SI

            2LD2. If we draw
            then these three parts into the length AB, the first 
            LSI

            LD will generate the area of an
            hyperbola; the second ½SI the area ½AB x SI; the third 
            ALB x SI

            2LD2 the area 
            ALB x SI

            2LA ALB
            x SI

            2LB, that is, ½AB x SI. From the first
            subduct the sum of the second and third, and there will remain ANB,
            the area sought. Whence arises this construction of the problem. At
            the points L, A, S, B, erect
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            the perpendiculars Ll Aa Ss, Bb, of
            which suppose Ss equal to SI; and through the point s,
            to the asymptotes Ll, LB, describe the hyperbola asb
            meeting the perpendiculars Aa, Bb, in a
            and b; and the rectangle 2ASI, subducted from the hyberbolic
            area AasbB, will leave ANB the area sought.
        


        
            Example 3. If the centripetal force tending
            to the several particles of the spheres decrease in a quadruplicate
            ratio of the distance from the particles; write 
            PE4

            2AS3 for V, then √(2PS+LD)
            for PE, and DN will become as 
            SI2 x SL

            √(2SI) x 1

            √LD3 − 
            SI2

            2√(2SI) x 1

            √LD − SI2
            x ALB

            2√(2SI) x 1

            √LD5. These three
            parts drawn into the length AB, produce so many areas, viz.
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            2SI2 x SL

            √(2SI) into (
            1

            √(LA) − 1

            √(LB) ); 
            SI2

            √(2SI) into √LB −
            √LA; and SI2
            x ALB

            3√(2SI) into (
            1

            √(LA3) − 
            1

            √(LB3) ). And
            these after due reduction come forth 2SI2
            x SL

            LI, SI², and SI² + 
            2SI3

            3LI. And these by subducting the last
            from the first, become 4SI3

            3LI. Therefore the entire force with
            which the corpuscle P is attracted towards the centre of the sphere is
            as SI3

            PI, that is, reciprocally as PS³ x PI.
              Q.E.I.
        


        
            By the same method one may determine the attraction of a corpuscle
            situate within the sphere, but more expeditiously by the following
            Theorem.
        


    

    
        Proposition lxxxii. Theorem xli.


            
                In a sphere described about the centre S with the interval SA,
                if there be taken SI, SA, SP continually proportional; I
                say, that the attraction of a corpuscle within the sphere in any
                place I is to its attraction without the sphere in the
                place P in a ratio compounded of the subduplicate ratio
                of IS, PS, the distances from the centre, and the
                subduplicate ratio of the centripetal forces tending to the centre
                in those places P and I.
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            As if the centripetal forces of the particles of the sphere be
            reciprocally as the distances of the corpuscle attracted by them; the
            force with which the corpuscle situate in I is attracted by the entire
            sphere will be to the force with which it is attracted in P in a ratio
            compounded of the subduplicate ratio of the distance SI to the
            distance SP, and the subduplicate ratio of the centripetal force in
            the place I arising from any particle in the centre to the centripetal
            force in the place P arising from the same particle in the centre;
            that is, in the subduplicate ratio of the distances SI, SP to each
            other reciprocally. These two subduplicate ratios compose the ratio of
            equality, and therefore the attractions in I and P produced by the
            whole sphere are equal. By the like calculation, if the forces of the
            particles of the sphere are reciprocally in a duplicate ratio of the
            distances, it will be found that the attraction in I is to the
            attraction in P as the distance SP to the semi-diameter SA of the
            sphere. If those forces are reciprocally in a triplicate ratio of the
            distances, the attractions in I and P will be to each other as SP² to
            SA²; if in a quadruplicate ratio, as SP³ to SA³. Therefore since the
            attraction in P was found in this last case to be reciprocally as PS³
            x PI, the attraction in I will be reciprocally as SA³ x PI, that is,
            because SA³ is given reciprocally as PI. And the progression is the
            same in infinitum. The demonstration of this Theorem is as
            follows:
        


        
            The things remaining as above constructed, and a corpuscle being in
            any place P, the ordinate DN was found to be
            as DE2 x PS

            PE x V. Therefore if IE be drawn, that
            ordinate for any other place of the corpuscle, as I, will become (mutatis
            mutandis) as DE2
            x IS

            IE x V. Suppose the centripetal forces
            flowing from any point of the sphere, as E, to be to each other at the
            distances IE and PE as PEn to IEn (where the
            number n denotes the index of the powers of PE and IE), and
            those ordinates will become as DE2
            x PS

            PE x PEn and 
            DE2 x IS

            IE x IEn whose ratio to each
            other is as PS x IE x IEn to
            IS x PE x PEn. Because SI, SE, SP are
            in continued proportion, the triangles SPE, SEI are alike; and thence
            IE is to PE as IS to SE or SA. For the ratio of IE to PE write the
            ratio of IS to SA; and the ratio of the ordinates becomes that of PS x
            IEn to SA x PEn. But the ratio of PS to SA is
            subduplicate of that of the distances PS, SI; and the ratio of IEn
            to PEn (because IE is to PE as IS to SA) is subduplicate of
            that of the forces at the distances PS, IS. Therefore the ordinates,
            and consequently the areas which the ordinates describe, and the
            attractions proportional to them, are in a ratio compounded of those
            subduplicate ratios.   Q.E.D.
        


    

    
        Proposition lxxxiii. Problem xlii.


            
                
                    To find the force with which a corpuscle placed in the centre
                    of a sphere is attracted towards any segment of that sphere whatsoever.
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            Let P be a body in the centre of that sphere and RBSD a segment
            thereof contained under the plane RDS, and thesphaerical superficies
            RBS. Let DB be cut in F by a sphaerical superficies EFG described from
            the centre P, and let the segment be divided into the parts BREFGS,
            FEDG. Let us suppose that segment to be not a purely mathematical but
            a physical superficies, having some, but a perfectly inconsiderable
            thickness. Let that thickness be called O, and (by what Archimedes
            has demonstrated) that superficies will be as PF x DF x O. Let us
            suppose besides the attractive forces of the particles of the sphere
            to be reciprocally as that power of the distances, of which n
            is index; and the force with which the superficies EFG attracts the
            body P will be (by Prop. LXXIX) as DE2
            x O

            PFn, that is, as 
            2DF x O

            PF(n-1) − 
            DF2 x O

            PFn. Let the
            perpendicular FN drawn into O be proportional
            to this quantity; and the curvilinear area BDI, which the ordinate FN,
            drawn through the length DB with a continued motion will describe,
            will be as the whole force with which the whole segment RBSD attracts
            the body P.   Q.E.I.
        


    

    
        Proposition lxxxiv. Problem xliii.


            
                
                    To find the force with which a corpuscle, placed without the
                    centre of a sphere in the axis of any segment, is attracted by that segment.
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            Let the body P placed in the axis ADB of the segment EBK be attracted
            by that segment. About the centre P, with the interval PE, let the
            spherical superficies EFK be described; and let it divide the segment
            into two parts EBKFE and EFKDE. Find the force of the first of those
            parts by Prop. LXXXI, and the force of the latter part by Prop.
            LXXXIII, and the sum of the forces will be the force of the whole
            segment EBKDE.    Q.E.I.
        


    

    
        Scholium.



        
            The attractions of sphaerical bodies being now explained, it comes
            next in order to treat of the laws of attraction in other bodies
            consisting in like manner of attractive particles; but to treat of
            them particularly is not necessary to my design. It will be sufficient
            to subjoin some general propositions relating to the forces of such
            bodies, and the motions thence arising, because the knowledge of these
            will be of some little use in philosophical inquiries.
        


    







    
        


        
            < Book 1.11


            > Book 1.13


            Table of Contents

            Index
        
        


    
     







oebps/book.2.04.html





    
        The Mathematical Principles
of
Natural Philosophy



        Book 2.4



        C®pyRight & C©pyLeft
by



        Sir Isaac Newton



        Translated into English by Andrew Motte



        Last Update: 14 January 1666



        Table of Contents



         


    







The Mathematical Principles of Natural Philosophy
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Book 2.4




    
        Section iv.


        Of the circular motion of bodies in resisting mediums.



    

    
        Lemma iii.


            
                Let PQR be a spiral cutting all the radii SP,
                SQ, SR, &c., in equal angles. Draw the right line PT touching
                the spiral in any point P, and cutting the radius SQ
                In T; draw PO, QO perpendicular to the
                spiral, and meeting in O, and join SO. I say,
                that if the points P and Q approach and
                coincide, the angle PSO will become a right angle, and
                the ultimate ratio of the rectangle TQ x 2PS to PQ²
                Will be the ratio of equality.
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            For from the right angles OPQ, OQR, subduct the equal angles SPQ,
            SQR, and there will remain the equal angles OPS, OQS. Therefore a
            circle which passes through the points OSP will pass also through the
            point Q. Let the points P and Q coincide, and this circle will touch
            the spiral in the place of coincidence PQ, and will therefore cut the
            right line OP perpendicularly. Therefore OP will become a diameter of
            this circle, and the angle OSP, being in a semi-circle, becomes a
            right one.   Q.E.D.
        


        
            Draw QD, SE perpendicular to OP, and the ultimate ratios of the lines
            will be as follows: TQ to PD as TS or PS to PE, or 2PO to 2PS; and PD
            to PQ as PQ to 2PO; and, ex aequo perturbatè, to TQ to PQ as
            PQ to 2PS. Whence PQ² becomes equal to TQ x 2PS.   Q.E.D.
        


    

    
        Proposition xv. Theorem xii.


            
                
                    If the density of a medium in each place thereof be
                    reciprocally as the distance of the places from an immovable
                    centre, and the centripetal force be in the duplicate ratio of the
                    density; I say, that a body may revolve in a spiral which cuts all
                    the radii drawn from that centre in a given angle.
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            Suppose every thing to be as in the foregoing Lemma, and produce SQ
            to V so that SV may be equal to SP. In any time let a body, in a
            resisting medium, describe the least arc PQ, and in double the time
            the least arc PR; and the decrements of those arcs arising from the
            resistance, or their differences from the arcs which would be
            described in a non-resisting medium in the same times, will be to each
            other as the squares of the times in which they are generated;
            therefore the decrement of the arc PQ is the
            fourth part of the decrement of the arc PR. Whence also if the area QSr
            be taken equal to the area PSQ, the decrement of the arc PQ will be
            equal to half the lineola Rr; and therefore the force of
            resistance and the centripetal force are to each other as the lineola
            ½Rr and TQ which they generate in the same time. Because the
            centripetal force with which the body is urged in P is reciprocally as
            SP², and (by Lem. X, Book I) the lineola TQ, which is generated by
            that force, is in a ratio compounded of the ratio of this force and
            the duplicate ratio of the time in which the arc PQ is described (for
            in this case I neglect the resistance, as being infinitely less than
            the centripetal force), it follows that TQ x SP², that is (by the last
            Lemma), ½PQ² x SP, will be in a duplicate ratio of the time, and
            therefore the time is as PQ x√SP; and the
            velocity of the body, with which the arc PQ is described in that time,
            as PQ

            PQ x √SP or 
            1

            √SP, that is, in the subduplicate
            ratio of SP reciprocally. And, by a like reasoning, the velocity with
            which the arc QR is described, is in the subduplicate ratio of SQ
            reciprocally. Now those arcs PQ and QR are as the describing
            velocities to each other; that is, in the subduplicate ratio of SQ to
            SP, or as SQ to √(SP x SQ); and, because of
            the equal angles SPQ, SQr, and the equal areas PSQ, QSr,
            the arc PQ is to the arc Qr as SQ to SP. Take the differences
            of the proportional consequents, and the arc PQ will be to the arc Rr
            as SQ to SP − √(SP x SQ), or ½VQ. For the
            points P and Q coinciding, the ultimate ratio of SP
            − √(SP x SQ) to ½VQ is the ratio of equality. Because the
            decrement of the arc PQ arising from the resistance, or its double Rr,
            is as the resistance and the square of the time conjunctly, the
            resistance will be as Rr

            PQ2 x SP. But PQ was to Rr
            as SQ to ½VQ, and thence Rr

            PQ2 x SP becomes as
            ½VQ

            PQ x SP x SQ, or as 
            ½OS

            OP x SP2. For the points P
            and Q coinciding, SP and SQ coincide also, and the angle PVQ becomes a
            right one; and, because of the similar triangles PVQ, PSO, PQ becomes
            to ½VQ as OP to ½OS. Therefore OS

            OP x SP2 is as the
            resistance, that is, in the ratio of the density of the medium in P
            and the duplicate ratio of the velocity conjunctly. Subduct the
            duplicate ratio of the velocity, namely, the ratio 
            1

            SP, and there will remain the density
            of the medium in P, as OS

            OP x SP. Let the spiral be given,
            and, because of the given ratio of OS to OP, the density of the medium
            in P will be as 1

            SP. Therefore in a medium whose
            density is reciprocally as SP the distance from
            the centre, a body will revolve in this spiral.   Q.E.D.
        


        
            Cor. 1. The velocity in any place P, is
            always the same wherewith a body in a non-resisting medium with the
            same centripetal force would revolve in a circle, at the same distance
            SP from the centre.
        


        
            Cor. 2. The density of the medium, if the
            distance SP be given, is as OS

            OP, but if that distance is not given,
            as OS

            OP x SP. And thence a spiral may be
            fitted to any density of the medium.
        


        
            Cor. 3. The force of the resistance in any
            place P is to the centripetal force in the same place as ½OS to OP.
            For those forces are to each other as ½Rr and TQ, or as
            ¼VQ x PQ

            SQ and ½PQ2

            SP, that is, as ½VQ and PQ, or ½OS and
            OP. The spiral therefore being given, there is given the proportion of
            the resistance to the centripetal force; and, vice versa, from that
            proportion given the spiral is given.
        


        
            Cor. 4. Therefore the body cannot revolve in
            this spiral, except where the force of resistance is less than half
            the centripetal force. Let the resistance be made equal to half the
            centripetal force, and the spiral will coincide with the right line
            PS, and in that right line the body will descend to the centre with a
            velocity that is to the velocity, with which it was proved before, in
            the case of the parabola (Theor. X, Book I), the descent would be made
            in a non-resisting medium, in the subduplicate ratio of unity to the
            number two. And the times of the descent will be here reciprocally as
            the velocities, and therefore given.
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            Cor. 5. And because at equal distances from
            the centre the velocity is the same in the spiral PQR as it is in the
            right line SP, and the length of the spiral is to the length of the
            right line PS in a given ratio, namely, in the ratio of OP to OS; the
            time of the descent in the spiral will be to the time of the descent
            in the right line SP in the same given ratio, and therefore given.
        


        
            Cor. 6. If from the centre S, with any two
            given intervals, two circles are described; and these circles
            remaining, the angle which the spiral makes with the radius PS be any
            how changed; the number of revolutions which the body can complete in
            the space between the circumferences of those circles, going round in
            the spiral from one circumference to another, will be as 
            PS

            OS, or as the tangent of the angle
            which the spiral makes with the radius PS; and the
            time of the same revolutions will be as OP

            OS, that is, as the secant of the same
            angle, or reciprocally as the density of the medium.
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            Cor. 7. If a body, in a medium whose density
            is reciprocally as the distances of places from the centre, revolves
            in any curve AEB about that centre, and cuts the first radius AS in
            the same angle in B as it did before in A, and that with a velocity
            that shall be to its first velocity in A reciprocally in a
            subduplicate ratio of the distances from the centre (that is, as AS to
            a mean proportional between AS and BS) that body will continue to
            describe innumerable similar revolutions BFC, CGD, &c., and by its
            intersections will distinguish the radius AS into parts AS, BS, CS,
            DS, &c., that are continually proportional. But the times of the
            revolutions will be as the perimeters of the orbits AEB, BFC, CGD,
            &c., directly, and the velocities at the beginnings A, B, C of
            those orbits inversely; that is as AS3/2,
            BS3/2,
            CS3/2. And the
            whole time in which the body will arrive at the centre, will be to the
            time of the first revolution as the sum of all the continued
            proportionals AS3/2,
            BS3/2,
            CS3/2, going on
            ad infinitum, to the first term AS3/2;
            that is, as the first term AS3/2
            to the difference of the two first AS3/2
            − BS3/2, or as ⅔AS to AB
            very nearly. Whence the whole time may be easily found.
        


        
            Cor. 8. From hence also may be deduced, near
            enough, the motions of bodies in mediums whose density is either
            uniform, or observes any other assigned law. From the centre S, with
            intervals SA, SB, SC, &c., continually proportional, describe as
            many circles; and suppose the time of the revolutions between the
            perimeters of any two of those circles, in the medium whereof we
            treated, to be to the time of the revolutions between the same in the
            medium proposed as the mean density of the proposed medium between
            those circles to the mean density of the medium whereof we treated,
            between the same circles, nearly: and that the secant of the angle in
            which the spiral above determined, in the medium whereof we treated,
            cuts the radius AS, is in the same ratio to the secant of the angle in
            which the new spiral, in the proposed medium, cuts the same radius:
            and also that the number of all the revolutions between the same two
            circles is nearly as the tangents of those angles. If this be done
            every where between every two circles, the motion will be continued
            through all the circles. And by this means one may without difficulty
            conceive at what rate and in what time bodies ought to revolve in any
            regular medium.
        


        
            Cor. 9. And although
            these motions becoming eccentrical should be performed in spirals
            approaching to an oval figure, yet, conceiving the several revolutions
            of those spirals to be at the same distances from each other, and to
            approach to the centre by the same degrees as the spiral above
            described, we may also understand how the motions of bodies may be
            performed in spirals of that kind.
        


    

    
        Proposition xvi. Theorem xiii.


            
                
                    If the density of the medium in each of the places be
                    reciprocally as the distance of the places from the immoveable
                    centre, and the centripetal force be reciprocally as any power of
                    the same distance, I say, that the body may revolve in a spiral
                    intersecting all the radii drawn from that centre in a given angle.
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            This is demonstrated in the same manner as the foregoing Proposition.
            For if the centripetal force in P be reciprocally as any power SPn+1
            of the distance SP whose index is n + 1; it will be
            collected, as above, that the time in which the body describes any arc
            PQ, will be as PQ x PS½n; and
            the resistance in P as Rr

            PQ2 x SPn, or
            as (1 − ½n) x VQ

            PQ x SPn x SQ, and therefore
            as (1 − ½n) x OS

            OP x SPn+1, that is (because
            (1 − ½n) x OS

            OP is a given quantity), reciprocally
            as SPn+1. And therefore, since the velocity is reciprocally
            as SP½n, the density in P will be reciprocally as SP.
        


        
            Cor. 1. The resistance is to the centripetal
            force as (1 − ½n) x OS to OP.
        


        
            Cor. 2. If the centripetal force be
            reciprocally as SP³, 1 − ½n will be = 0; and therefore the
            resistance and density of the medium will be nothing, as in Prop. IX,
            Book I.
        


        
            Cor. 3. If the centripetal force be
            reciprocally as any power of the radius SP, whose index is greater
            than the number 3, the affirmative resistance will be changed into a
            negative.
        


    

    
        Scholium.



        
            This Proposition and the former, which relate to mediums of unequal
            density, are to be understood of the motion of bodies that are so
            small, that the greater density of the medium on one side of the body
            above that on the other is not to be considered. I suppose also the
            resistance, caeteris paribus, to be proportional to its
            density. Whence, in mediums whose force of
            resistance is not as the density, the density must be so much
            augmented or diminished, that either the excess of the resistance may
            be taken away, or the defect supplied.
        


    

    
        Proposition xvii. Problem iv.


            
                
                    To find the centripetal force and the resisting force of the
                    medium, by which a body, the law of the velocity being given,
                    shall revolve in a given spiral.
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            Let that spiral be PQR. From the velocity, with which the body goes
            over the very small arc PQ, the time will be given; and from the
            altitude TQ, which is as the centripetal force, and the square of the
            time, that force will be given. Then from the difference RSr
            of the areas PSQ and QSR described in equal particles of time, the
            retardation of the body will be given; and from the retardation will
            be found the resisting force and density of the medium.
        


    

    
        Proposition xviii. Problem V.


            
                
                    The law of centripetal force being given, to find the density
                    of the medium in each of the places thereof, by which a body may
                    describe a given spiral.
                
            


        

        
            From the centripetal force the velocity in each place must be found;
            then from the retardation of the velocity the density of the medium is
            found, as in the foregoing Proposition.
        


        
            But I have explained the method of managing these Problems in the
            tenth Proposition and second Lemma of this Book; and will no longer
            detain the reader in these perplexed disquisitions. I shall now add
            some things relating to the forces of progressive bodies, and to the
            density and resistance of those mediums in which the motions hitherto
            treated of, and those akin to them, are performed.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.3




    
        Section iii.


        Of the motion of bodies in eccentric conic sections.


    

    
        Proposition xi. Problem vi.


            
                
                    If a body revolves in an ellipsis; it is required to find
                    the law of the centripetal force tending to the focus of the ellipsis.
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            Let S be the focus of the ellipsis. Draw SP cutting the diameter DK
            of the ellipsis in E, and the ordinate Qv in x; and
            complete the parallelogram QxPR. It is evident that EP is
            equal to the greater semi-axis AC: for drawing HI from the other focus
            H of the ellipsis parallel to EC, because CS, CH are equal, ES, EI
            will be also equal; so that EP is the half sum of PS, PI, that is
            (because of the parallels HI, PR, and the equal angles IPR, HPZ), of
            PS, PH, which taken together are equal to the whole axis 2AC. Draw QT
            perpendicular to SP, and putting L for the principal latus rectum of
            the ellipsis (or for  
            2BC2

            AC ), we shall have L x QR to L x Pv
            as QR to Pv, that is, as PE or AC to PC; and L x Pv
            to GvP as L to Gv; and GvP to Qv²
            as PC² to CD²; and by (Corol. 2, Lem. VII) the points Q and P
            coinciding, Qv² is to Qx² in the ratio of equality;
            and Qx² or Qv² is to QT² as EP² to PF², that is, as
            CA² to PF², or (by Lem. XII) as CD² to CB². And compounding all those
            ratios together, we shall have L x QR to
            QT² as AC x L x PC² x CD², or 2CB²
            x PC² x CD² to PC x Gv x CD² x CB²,
            or as 2PC to Gv. But the points Q and P coinciding, 2PC and Gv
            are equal. And therefore the quantities L x QR
            and QT², proportional to these, will be also equal. Let those equals
            be drawn into SP2

            QR, and L x SP² will become equal to 
            SP2 x QT2

            QR. And therefore (by Corol. 1 and 5, Prop. VI) the
            centripetal force is reciprocally as L x SP², that is, reciprocally in
            the duplicate ratio of the distance SP.   Q.E.I.
        


        The same otherwise.


        
            Since the force tending to the centre of the ellipsis, by which the
            body P may revolve in that ellipsis, is (by Corol. 1, Prop. X.) as the
            distance CP of the body from the centre C of the ellipsis; let CE be
            drawn parallel to the tangent PR of the ellipsis; and the force by
            which the same body P may revolve about any other point's of the
            ellipsis, if CE and PS intersect in E, will be as 
            PE3

            SP2 (by Cor. 3, Prop. VII.);
            that is, if the point S is the focus of the ellipsis, and therefore PE
            be given as SP² reciprocally.   Q.E.I.
        


        
            With the same brevity with which we reduced the fifth Problem to the
            parabola, and hyperbola, we might do the like here: but because of the
            dignity of the Problem and its use in what follows. I shall confirm
            the other cases by particular demonstrations.
        


    

    
        Proposition xii. Problem vii.


            
                
                    Suppose a body to move in an hyperbola; it is required to
                    find the law of the centripetal force tending to the focus of that
                    figure.
                
            


        

        
            Let CA, CB be the semi-axes of the hyperbola; PG, KD other conjugate
            diameters; PF a perpendicular to the diameter KD; and Qv an
            ordinate to the diameter GP. Draw SP cutting the diameter DK in E, and
            the ordinate Qv in x, and complete the
            parallelogram QRPx. It is evident that EP is equal to the
            semi-transverse axis AC; for drawing HI, from the other focus H of the
            hyperbola, parallel to EC, because CS, CH are equal, ES, EI will be
            also equal; so that EP is the half difference 
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            of PS, PI; that is (because of the parallels
            IH, PR, and the equal angles IPR, HPZ), of PS, PH, the difference of
            which is equal to the whole axis 2AC. Draw QT perpendicular to SP; and
            putting L for the principal latus rectum of the hyperbola (that is,
            for 2BC2

            AC, we shall have L x QR to L x Pv
            as QR to Pv, or Px to Pv, that is (because
            of the similar triangles Pxv, PEC), as PE to PC, or AC to PC.
            And L x Pv will be to Gv x Pv as L to Gv;
            and (by the properties of the conic sections) the rectangle GvP
            is to Qv² as PC² to CD²; and by (Cor. 2, Lem. VII.), Qv²
            to Qx² the points Q and P coinciding, becomes a ratio of
            equality; and Qx² or Qv² is to QT² as EP² to PF²,
            that is, as CA² to PF², or (by Lem. XII.) as CD² to CB²: and,
            compounding all those ratios together, we shall have L x QR to QT² as
            AC x L x PC² x CD², or 2CB² x PC² x CD² to PC x Gv x CD² x
            CB², or as 2PC to Gv. But the points P and Q coinciding, 2PC
            and Gv are equal. And therefore the quantities L x QR and
            QT², proportional to them, will be also equal. Let those equals be
            drawn into SP2

            QR, and we shall have L x SP² equal to 
            SP2 x QT2

            QR. And therefore (by Cor. I and 5, Prop. VI.) the
            centripetal force is reciprocally as L x SP², that is, reciprocally in
            the duplicate ratio of the distance SP.   Q.E.I.
        



        The same otherwise.


        
            Find out the force tending from the centre C of the hyperbola. This
            will be proportional to the distance CP. But from thence (by Cor. 3,
            Prop. VII.) the force tending to the focus S will be as 
            PE3

            SP2, that is, because PE is
            given reciprocally as SP².   Q.E.I.
        


        
             And the same way may it be demonstrated,
            that the body having its centripetal changed into a centrifugal force,
            will move in the conjugate hyperbola.
        


    

    
        Lemma xiii.


            
                
                    The latus rectum of a parabola belonging to any vertex is
                    quadruple the distance of that vertex from the focus of the
                    figure.
                
            


        

        This is demonstrated by the writers on the conic sections.


    

    
        Lemma xiv.


            
                
                    The perpendicular, let fall from the focus of a parabola on its
                    tangent, is a mean proportional between the distances of the focus
                    from the point of contact, and from the principal vertex of the figure.
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            For, let AP be the parabola, S its focus, A its principal vertex, P
            the point of contact, PO an ordinate to the principal diameter, PM the
            tangent meeting the principal diameter in M, and SN the perpendicular
            from the focus on the tangent: join AN, and because of the equal lines
            MS and SP, MN and NP, MA and AO, the right lines AN, OP, will be
            parallel; and thence the triangle SAN will be right-angled at A, and
            similar to the equal triangles SNM, SNP; therefore PS is to SN as SN
            to SA.   Q.E.D.
        


        
            Cor. 1. PS² is to SN² as PS to SA.


        
            Cor. 2. And because SA is given, SN² will be
            as PS.
        


        
            Cor. 3. And the concourse of any tangent PM,
            with the right line SN. drawn from the focus perpendicular on the
            tangent, falls in the right line AN that touches the parabola in the
            principal vertex.
        


    

    
        Proposition xiii. Problem viii.


            
                
                    If a body moves in the perimeter of a parabola; it is required
                    to find the law of the centripetal force tending to the focus of that figure.
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            Retaining the construction of the preceding Lemma, let P be the body
            in the perimeter of the parabola; and from the place Q, into which it
            is next to succeed, draw QR parallel and QT perpendicular to SP, as
            also Qv parallel to the tangent, and meeting the diameter PG
            in v, and the distance SP in x.
            Now, because of the similar triangles Pxv, SPM, and of the
            equal sides SP, SM of the one, the sides Px or QR and Pv
            of the other will be also equal. But (by the conic sections) the
            square of the ordinate Qv is equal to the rectangle under the
            latus rectum and the segment Pv of the diameter; that is (by
            Lem. XIII.), to the rectangle 4PS x Pv, or 4PS x QR; and the
            points P and Q coinciding, the ratio of Qv to Qx (by
            Cor. 2, Lem. VII.,) becomes a ratio of equality. And therefore Qx²,
            in this case, becomes equal to the rectangle 4PS x QR. But (because of
            the similar triangles QxT, SPN), Qx² is to QT² as
            PS² to SN², that is (by Cor. 1, Lem. XIV.), as PS to SA; that is, as
            4PS x QR to 4SA x QR, and therefore (by Prop. IX. Lib. V., Elem.) QT²
            and 4SA x QR are equal. Multiply these equals by 
            SP2

            QR, and SP2 x
            QT2

            QR will become equal to SP² x 4SA: and therefore (by Cor. 1
            and 5, Prop. VI.), the centripetal force is reciprocally as SP² x 4SA;
            that is, because 4SA is given; reciprocally in the duplicate ratio of
            the distance SP.   Q.E.I.
        


        
            Cor. 1. From the three last Propositions it
            follows, that if any body P goes from the place P with any velocity in
            the direction of any right line PR, and at the same time is urged by
            the action of a centripetal force that is reciprocally proportional to
            the square of the distance of the places from the centre, the body
            will move in one of the conic sections, having its focus in the centre
            of force; and the contrary. For the focus, the point of contact, and
            the position of the tangent, being given, a conic section may be
            described, which at that point shall have a given curvature. But the
            curvature is given from the centripetal force and velocity of the body
            being given; and two orbits, mutually touching one the other, cannot
            be described by the same centripetal force and the same velocity.
        


        
            Cor. 2. If the velocity with which the body
            goes from its place P is such, that in any infinitely small moment of
            time the lineola PR may be thereby described; and the centripetal
            force such as in the same time to move the same body through the space
            QR; the body will move in one of the conic sections, whose principal
            latus rectum is the quantity QT2

            QR in its ultimate state, when the
            lineolae PR, QR are diminished in infinitum. In these
            Corollaries I consider the circle as an ellipsis; and I except the
            case where the body descends to the centre in a right line.
        


    

    
        Proposition xiv. Theorem vi.


            
                
                    If several bodies revolve about one common centre, and the
                    centripetal force is reciprocally in the duplicate ratio of the
                    distance of places from the centre; I say, that the principal
                    latera recta of their orbits are in the duplicate ratio of the areas,
                    which the bodies by radii drawn to the centre describe in the same time.
                
            


        

        
        [image: Mathematical Principles of Natural Philosophy figure: 121]

        
            For (by Cor. 2, Prop. XIII) the latus rectum L is equal to the
            quantity QT2

            QR in its ultimate state when the
            points P and Q coincide. But the lineola QR in a given time is as the
            generating centripetal force; that is (by supposition), reciprocally
            as SP² . And therefore QT2

            QR is as QT² x SP²; that is, the latus
            rectum L is in the duplicate ratio of the area QT x SP.
              Q.E.D.
        


        
            Cor. Hence the whole area of the ellipsis,
            and the rectangle under the axes, which is proportional to it, is in
            the ratio compounded of the subduplicate ratio of the latus rectum,
            and the ratio of the periodic time. For the whole area is as the area
            QT x SP, described in a given time, multiplied by the periodic time.
        


    

    
        Proposition xv. Theorem vii.


            
                
                    The same things being supposed, I say, that the periodic times
                    in ellipses are in the sesquiplicate ratio of their greater axes.
                
            


        

        
            For the lesser axis is a mean proportional between the greater axis
            and the latus rectum; and, therefore, the rectangle under the axes is
            in the ratio compounded of the subduplicate ratio of the latus rectum
            and the sesquiplicate ratio of the greater axis. But this rectangle
            (by Cor. 3. Prop. XIV) is in a ratio compounded of the subduplicate
            ratio of the latus rectum, and the ratio of the periodic time. Subduct
            from both sides the subduplicate ratio of the latus rectum, and there
            will remain the sesquiplicate ratio of the greater axis, equal to the
            ratio of the periodic time.   Q.E.D.
        


        
            Cor. Therefore the periodic times in ellipses
            are the same as in circles whose diameters are equal to the greater
            axes of the ellipses.
        


    

    
        Proposition xvi. Theorem viii.


            
                
                    The same things being supposed, and right lines being drawn to
                    the bodies that shall touch the orbits, and perpendiculars being
                    let fall on those tangents from the common focus; I say, that the
                    velocities of the bodies are in a ratio compounded of the ratio of
                    the perpendiculars inversely, and the subduplicate ratio of the
                    principal latera recta directly.
                
            


        

        
            From the focus S draw SY perpendicular to the tangent PR, and the
            velocity of the body P will be reciprocally in the subduplicate ratio
            of the quantity SY2

            L. For that velocity is as the
            infinitely small arc PQ described 
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            in a given moment of time, that is (by Lem. VII), as the tangent PR;
            that is (because of the proportionals PR to QT, and SP to SY), as
            SP x QT

            SY; or as SY reciprocally, and SP x QT
            directly; but SP x QT is as the area described in the given time, that
            is (by Prop. XIV), in the subduplicate ratio of the latus rectum.
              Q.E.D.
        


        
            Cor. 1. The principal latera recta are in a
            ratio compounded of the duplicate ratio of the perpendiculars and the
            duplicate ratio of the velocities.
        


        
            Cor. 2. The velocities of bodies, in their
            greatest and least distances from the common focus, are in the ratio
            compounded of the ratio of the distances inversely, and the
            subduplicate ratio of the principal latera recta directly. For those
            perpendiculars are now the distances.
        


        
            Cor. 3. And therefore the velocity in a conic
            section, at its greatest or least distance from the focus, is to the
            velocity in a circle, at the same distance from the centre, in the
            subduplicate ratio of the principal latus rectum to the double of that
            distance.
        


        
            Cor. 4. The velocities of the bodies
            revolving in ellipses, at their mean distances from the common focus,
            are the same as those of bodies revolving in circles, at the same
            distances; that is (by Cor. 6, Prop. IV), reciprocally in the
            subduplicate ratio of the distances. For the perpendiculars are now
            the lesser semi-axes, and these are as mean proportionals between the
            distances and the latera recta. Let this ratio inversely be compounded
            with the subduplicate ratio of the latera recta directly, and we shall
            have the subduplicate ratio of the distance inversely.
        


        
            Cor. 5. In the same figure, or even in
            different figures, whose principal latera recta are equal, the
            velocity of a body is reciprocally as the perpendicular let fall from
            the focus on the tangent.
        


        
            Cor. 6. In a parabola, the velocity is
            reciprocally in the subduplicate ratio of the distance of the body
            from the focus of the figure; it is more variable in the ellipsis, and
            less in the hyperbola, than according to this ratio. For (by Cor. 2,
            Lem. XIV) the perpendicular let fall from the focus on the tangent of
            a parabola is in the subduplicate ratio of the distance. In the
            hyperbola the perpendicular is less variable; in the ellipsis more.
        


        
            Cor. 7. In a parabola, the velocity of a body
            at any distance from the focus is to the velocity of a body revolving
            in a circle, at the same distance from the centre, in the subduplicate
            ratio of the number 2 to 1; in the ellipsis it is less, and in the
            hyperbola greater, than according to this ratio, (by Cor. 2 of this
            Prop.) the velocity at the vertex of a parabola is in this
            ratio, and (by Cor. 6 of this Prop. and Prop. IV) the same proportion
            holds in all distances. And hence, also, in a parabola, the velocity
            is everywhere equal to the velocity of a body revolving in a circle at
            half the distance; in the ellipsis it is less, and in the hyperbola
            greater.
        


        
            Cor. 8. The velocity of a body revolving in
            any conic section is to the velocity of a body revolving in a circle,
            at the distance of half the principal latus rectum of the section, as
            that distance to the perpendicular let fall from the focus on the
            tangent of the section. This appears from Cor. 5.
        


        
            Cor. 9. Wherefore since (by Cor. 6, Prop.
            IV), the velocity of a body revolving in this circle is to the
            velocity of another body revolving in any other circle reciprocally in
            the subduplicate ratio of the distances; therefore, ex aequo,
            the velocity of a body revolving in a conic section will be to the
            velocity of a body revolving in a circle at the same distance as a
            mean proportional between that common distance, and half the principal
            latus rectum of the section, to the perpendicular let fall from the
            common focus upon the tangent of the section.
        


    

    
        Proposition xvii. Problem ix.


            
                
                    Supposing the centripetal force to be reciprocally proportional
                    to the squares of the distances of places from the centre, and
                    that the absolute quantity of that force is known; it is required
                    to determine the line which a body will describe that is let go
                    from a given place with a given velocity in, the direction of a given right line.
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            Let the centripetal force tending to the point S be such as will make
            the body p revolve in any given orbit pq; and
            suppose the velocity of this body in the place p is known.
            Then from the place P suppose the body P to be let with a given
            velocity in the direction of the line PR; but by virtue of a
            centripetal force to be immediately turned aside from that right line
            into the conic section PQ. This, the right line PR will therefore
            touch in P. Suppose likewise that the right line pr touches
            the orbit pq in p, and if from S you suppose
            perpendiculars let fall on those tangents, the principal latus rectum
            of the conic section (by Cor. 1, Prop. XVI) will be to the principal
            latus rectum of that orbit in a ratio compounded of the duplicate
            ratio of the perpendiculars, and the duplicate ratio of the
            velocities; and is therefore given. Let this latus rectum be L; the
            focus S of the conic section is also given.
            Let the angle RPH be the complement of the angle RPS to two right; and
            the line PH, in which the other focus H is placed, is given by
            position. Let fall SK perpendicular on PH, and erect the conjugate
            semi-axis BC; this done, we shall have SP2
            − 2KPH + PH2 = SH2
            = 4CH2 = 4BH2
            − 4BC2 = (SP + PH2)
            − L x (SP + PH) = SP2 + 2SPH +
            PH2 − L x (SP + PH). Add on both sides 2KPH
            − SP2 − PH2 + L x (SP + PH), and we
            shall have L x (SP + PH) = 2SPH + 2KPH, or
            SP + PH to PH, as 2SP + 2KP to L. Whence PH is given both in length
            and position. That is, if the velocity of the body in P is such that
            the latus rectum L is less than 2SP + 2KP, PH will lie on the same
            side of the tangent PR with the line SP; and therefore the figure will
            be an ellipsis, which from the given foci S, H, and the principal axis
            SP + PH, is given also. But if the velocity of the body is so great,
            that the latus rectum L becomes equal to 2SP + 2KP, the length PH will
            be infinite; and therefore, the figure will be a parabola, which has
            its axis SH parallel to the line PK, and is thence given. But if the
            body goes from its place P with a yet greater velocity, the length PH
            is to be taken on the other side the tangent; and so the tangent
            passing between the foci, the figure will be an hyperbola having its
            principal axis equal to the difference of the lines SP and PH, and
            thence is given. For if the body, in these cases, revolves in a conic
            section so found, it is demonstrated in Prop. XI, XII, and XIII, that
            the centripetal force will be reciprocally as the square of the
            distance of the body from the centre of force S; and therefore we have
            rightly determined the line PQ, which a body let go from a given place
            P with a given velocity, and in the direction of the right line PR
            given by position, would describe with such a force.
              Q.E.F.
        


        
            Cor. 1. Hence in every conic section, from
            the principal vertex D, the latus rectum L, and the focus S given, the
            other focus H is given, by taking DH to DS as the latus rectum to the
            difference between the latus rectum and 4DS. For the proportion, SP +
            PH to PH as 2SP + 2KP to L, becomes, in the case of this Corollary, DS
            + DH to DH as 4DS to L, and by division DS to DH as 4DS − L to L.
        


        
            Cor. 2. Whence if the velocity of a body in
            the principal vertex D is given, the orbit may be readily found; to
            wit, by taking its latus rectum to twice the distance DS, in the
            duplicate ratio of this given velocity to the velocity of a body
            revolving in a circle at the distance DS (by Cor. 3, Prop. XVI.), and
            then taking DH to DS as the latus rectum to the difference between the
            latus rectum and 4DS.
        


        
            Cor. 3. Hence also if a body move in any
            conic section, and is forced out of its orbit by any impulse, you may
            discover the orbit in which it will afterwards pursue its course. For
            by compounding the proper motion of the body
            with that motion, which the impulse alone would generate, you will
            have the motion with which the body will go off from a given place of
            impulse in the direction of a right line given in position.
        


        
            Cor. 4. And if that body is continually
            disturbed by the action of some foreign force, we may nearly know its
            course, by collecting the changes which that force introduces in some
            points, and estimating the continual changes it will undergo in the
            intermediate places, from the analogy that appears in the progress of
            the series.
        


    

    
        Scholium.
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            If a body P, by means of a centripetal force tending to any given
            point R, move in the perimeter of any given conic section whose centre
            is C; and the law of the centripetal force is required: draw CG
            parallel to the radius RP, and meeting the tangent PG of the orbit in
            G; and the force required (by Cor. 1, and Schol. Prop. X., and Cor. 3,
            Prop. VII.) will be as CG3

            RP2.
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Book 2.7




    
        Section vii.


        Of the motion of fluids, and the resistance made to projected bodies.



    

    
        Proposition xxxii. Theorem xxvi.


            
                
                    Suppose two similar systems of bodies consisting of an equal
                    number of particles, and let the correspondent particles be
                    similar and proportional, each in one system to each in the other,
                    and have a like situation among themselves, and the same given
                    ratio of density to each other; and let them begin to move among
                    themselves in proportional times, and with like motions (that is,
                    those in one system among one another, and those in the other
                    among one another). And if the particles that are in the same
                    system do not touch one another, except it the moments of
                    reflexion; nor attract, nor repel each other, except with
                    accelerative forces that are as the diameters of the correspondent
                    particles inversely, and the squares of the velocities directly; I
                    say, that the particles of those systems will continue to move
                    among themselves with like motions and in proportional times.
                
            


        

        
            Like bodies in like situations are said to be moved among themselves
            with like motions and in proportional times, when their situations at
            the end of those times are always found alike in respect of each
            other; as suppose we compare the particles in one system with the
            correspondent particles in the other. Hence the times will be
            proportional, in which similar and proportional parts of similar
            figures will be described by correspondent particles. Therefore if we
            suppose two systems of this kind, the correspondent particles, by
            reason of the similitude of the motions at their beginning, will
            continue to be moved with like motions, so long as they move without
            meeting one another; for if they are acted on by no forces,they will
            go on uniformly in right lines, by the 1st Law. But if they do agitate
            one another with some certain forces, and those forces are as the
            diameters of the correspondent particles inversely and the squares of
            the velocities directly, then, because the particles are in like
            situations, and their forces are proportional, the whole forces with
            which correspondent particles are agitated, and which are compounded
            of each of the agitating forces (by Corol. 2 of the Laws), will have
            like directions, and have the same effect as if they respected centres
            placed alike among the particles; and those whole forces will be to
            each other as the several forces which compose them, that is, as the
            diameters of the correspondent particles inversely, and the squares of
            the velocities directly: and therefore will cause
            
            correspondent particles to continue to describe like figures. These things will be
            so (by Cor. 1 and 8, Prop. IV., Book 1), if those centres are at rest
            but if they are moved, yet by reason of the similitude of the
            translations, their situations among the particles of the system will
            remain similar, so that the changes introduced into the figures
            described by the particles will still be similar. So that the motions
            of correspondent and similar particles will continue similar till
            their first meeting with each other; and thence will arise similar
            collisions, and similar reflexions; which will again beget similar
            motions of the particles among themselves (by what was just now
            shown), till they mutually fall upon one another again, and so on ad infinitum.
        


        
            Cor. 1. Hence if any two bodies, which are
            similar and in like situations to the correspondent particles of the
            systems, begin to move amongst them in like manner and in proportional
            times, and their magnitudes and densities be to each other as the
            magnitudes and densities of the corresponding particles, these bodies
            will continue to be moved in like manner and in proportional times:
            for the case of the greater parts of both systems and of the particles
            is the very same.
        


        
            Cor. 2. And if all the similar and similarly
            situated parts of both systems be at rest among themselves; and two of
            them, which are greater than the rest, and mutually correspondent in
            both systems, begin to move in lines alike posited, with any similar
            motion whatsoever, they will excite similar motions in the rest of the
            parts of the systems, and will continue to move among those parts in
            like manner and in proportional times; and will therefore describe
            spaces proportional to their diameters.
        


    

    
        Proposition xxxiii. Theorem xxvii.


            
                
                    The same things faring supposed, I say, that the greater parts
                    of the systems are resisted in a ratio compounded of the duplicate
                    ratio of their velocities, and the duplicate ratio of their
                    diameters, and the simple ratio of the density of the parts of the systems.
                
            


        

        
            For the resistance arises partly from the centripetal or centrifugal
            forces with which the particles of the system mutually act on each
            other, partly from the collisions and reflexions of the particles and
            the greater parts. The resistances of the first kind are to each other
            as the whole motive forces from which they arise, that is, as the
            whole accelerative forces and the quantities of matter in
            corresponding parts; that is (by the supposition), as the squares of
            the velocities directly, and the distances of the corresponding
            particles inversely, and the quantities of matter in the correspondent
            parts directly: and therefore since the distances of the particles in
            one system are to the correspondent distances of the particles of the
            other as the diameter of one particle or part in the former system to
            the diameter of the correspondent particle or
            part in the other, and since the quantities of matter are as the
            densities of the parts and the cubes of the diameters; the resistances
            are to each other as the squares of the velocities and the squares of
            the diameters and the densities of the parts of the systems.
              Q.E.D.   The resistances of the latter sort are
            as the number of correspondent reflexions and the forces of those
            reflexions conjunctly; but the number of the reflexions are to each
            other as the velocities of the corresponding parts directly and the
            spaces between their reflexions inversely. And the forces of the
            reflexions are as the velocities and the magnitudes and the densities
            of the corresponding parts conjunctly; that is, as the velocities and
            the cubes of the diameters and the densities of the parts. And,
            joining all these ratios, the resistances of the corresponding parts
            are to each other as the squares of the velocities and the squares of
            the diameters and the densities of the parts conjunctly.
              Q.E.D.
        


        
            Cor. 1. Therefore if those systems are two
            elastic fluids, like our air, and their parts are at rest among
            themselves; and two similar bodies proportional in magnitude and
            density to the parts of the fluids, and similarly situated among those
            parts, be any how projected in the direction of lines similarly
            posited; and the accelerative forces with which the particles of the
            fluids mutually act upon each other are as the diameters of the bodies
            projected inversely and the squares of their velocities directly;
            those bodies will excite similar motions in the fluids in proportional
            times, and will describe similar spaces and proportional to their
            diameters.
        


        
            Cor. 2. Therefore in the same fluid a
            projected body that moves swiftly meets with a resistance that is, in
            the duplicate ratio of its velocity, nearly. For if the forces with
            which distant particles act mutually upon one another should be
            augmented in the duplicate ratio of the velocity, the projected body
            would be resisted in the same duplicate ratio accurately; and
            therefore in a medium, whose parts when at a distance do not act
            mutually with any force on one another, the resistance is in the
            duplicate ratio of the velocity accurately. Let there be, therefore,
            three mediums A, B, C, consisting of similar and equal parts regularly
            disposed at equal distances. Let the parts of the mediums A and B
            recede from each other with forces that are among themselves as T and
            V; and let the parts of the medium C be entirely destitute of any such
            forces. And if four equal bodies D, E, F, G, move in these mediums,
            the two first D and E in the two first A and B, and the other two F
            and G in the third C; and if the velocity of the body D be to the
            velocity of the body E, and the velocity of the body F to the velocity
            of the body G, in the subduplicate ratio of the force T to the force
            V; the resistance of the body D to the resistance of the body E, and
            the resistance of the body F to the resistance of the body G, will be
            in the duplicate ratio of the velocities; and therefore the resistance
            of the body D will be to the resistance of the body F as the
            resistance of the body E to the resistance of
            the body G. Let the bodies D and F be equally swift, as also the
            bodies E and G; and, augmenting the velocities of the bodies D and F
            in any ratio, and diminishing the forces of the particles of the
            medium B in the duplicate of the same ratio, the medium B will
            approach to the form and condition of the medium C at pleasure; and
            therefore the resistances of the equal and equally swift bodies E and
            G in these mediums will perpetually approach to equality so that their
            difference will at last become less than any given. Therefore since
            the resistances of the bodies D and F are to each other as the
            resistances of the bodies E and G, those will also in like manner
            approach to the ratio of equality. Therefore the bodies D and F, when
            they move with very great swiftness, meet with resistances very nearly
            equal; and therefore since the resistance of the body F is in a
            duplicate ratio of the velocity, the resistance of the body D will be
            nearly in the same ratio.
        


        
            Cor. 3. The resistance of a body moving very
            swift in an elastic fluid is almost the same as if the parts of the
            fluid were destitute of their centrifugal forces, and did not fly from
            each other; if so be that the elasticity of the fluid arise from the
            centrifugal forces of the particles, and the velocity be so great as
            not to allow the particles time enough to act.
        


        
            Cor. 4. Therefore, since the resistances of
            similar and equally swift bodies, in a medium whose distant parts do
            not fly from each other, are as the squares of the diameters, the
            resistances made to bodies moving with very great and equal velocities
            in an elastic fluid will be as the squares of the diameters, nearly.
        


        
            Cor. 5. And since similar, equal, and equally
            swift bodies, moving through mediums of the same density, whose
            particles do not fly from each other mutually, will strike against an
            equal quantity of matter in equal times, whether the particles of
            which the medium consists be more and smaller, or fewer and greater,
            and therefore impress on that matter an equal quantity of motion, and
            in return (by the 3d Law of Motion) suffer an equal re-action from the
            same, that is, are equally resisted; it is manifest, also, that in
            elastic fluids of the same density, when the bodies move with extreme
            swiftness, their resistances are nearly equal, whether the fluids
            consist of gross parts, or of parts ever so subtile. For the
            resistance of projectiles moving with exceedingly great celerities is
            not much diminished by the subtilty of the medium.
        


        
            Cor. 6. All these things are so in fluids
            whose elastic force takes its rise from the centrifugal forces of the
            particles. But if that force arise from some other cause, as from the
            expansion of the particles after the manner of wool, or the boughs of
            trees, or any other cause, by which the particles are hindered from
            moving freely among themselves, the resistance, by reason of the
            lesser fluidity of the medium, will be greater than in the Corollaries
            above.
        



        


    

    
        Proposition xxxiv. Theorem xxviii.


            
                
                    If in a rare medium, consisting of equal particles freely
                    disposed at equal distances front each other, a globe and a
                    cylinder described on equal diameters move with equal velocities
                    in the direction of the axis of the cylinder, the resistance of
                    the globe will be but half so great as that of the cylinder.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 327]

        
            For since the action of the medium upon the body is the same (by Cor.
            5 of the Laws) whether the body move in a quiescent medium, or whether
            the particles of the medium impinge with the same velocity upon the
            quiescent body, let us consider the body as if it were quiescent, and
            see with what force it would be impelled by the moving medium. Let,
            therefore, ABKI represent a spherical body described from the centre O
            with the semi-diameter CA, and let the particles of the medium impinge
            with a given velocity upon that spherical body in the directions of
            right lines parallel to AC; and let FB be one of those right lines. In
            FB take LB equal to the semi-diameter CB, and draw BD touching the
            sphere in B. Upon KC and BD let fall the perpendiculars BE, LD; and
            the force with which a particle of the medium, impinging on the globe
            obliquely in the direction FB, would strike the globe in B, will be to
            the force with which the same particle, meeting the cylinder ONGQ,
            described about the globe with the axis ACI, would strike it
            perpendicularly in b, as LD to LB, or BE to BC. Again; the
            efficacy of this force to move the globe, according to the direction
            of its incidence FB or AC, is to the efficacy of the same to move the
            globe, according to the direction of its determination, that is, in
            the direction of the right line BC in which it impels the globe
            directly, as BE to BC. And, joining these ratios, the efficacy of a
            particle, falling upon the globe obliquely in the direction of the
            right line FB to move the globe in the direction of its incidence, is
            to the efficacy of the same particle falling in the same line
            perpendicularly on the cylinder, to move it in the same direction, as
            BE² to BC². Therefore if in bE, which is perpendicular to
            the circular base of the cylinder NAO, and equal to the radius AC, we
            take bH equal to BE2

            CB; then bH will be to bE
            as the effect of the particle upon the globe to the effect of the
            particle upon the cylinder. And therefore the solid which is formed by
            all the right lines bH will be to the solid formed by all
            the right lines bE as the effect of all the particles upon
            the globe to the effect of all the particles upon the cylinder. But
            the former of these solids is a paraboloid
            whose vertex is C, its axis CA, and latus rectum CA, and the latter
            solid is a cylinder circumscribing the paraboloid; and it is known
            that a paraboloid is half its circumscribed cylinder. Therefore the
            whole force of the medium upon the globe is half of the entire force
            of the same upon the cylinder. And therefore if the particles of the
            medium are at rest, and the cylinder and globe move with equal
            velocities, the resistance of the globe will be half the resistance of
            the cylinder.   Q.E.D.
        


    

    
        Scholium.



        
            By the same method other figures may be compared together as to their
            resistance; and those may be found which are most apt to continue
            their motions in resisting mediums. As if upon the circular base CEBH
            from the centre O, with the radius OC, and the altitude OD, one would
            construct a frustum CBGF of a cone, which should meet with less
            resistance than any other frustum constructed with the same base and
            altitude, and going forwards towards D in the direction of its axis:
            bisect the altitude OD in Q, and produce OQ to S, so that QS may be
            equal to QC, and S will be the vertex of the cone whose frustum is
            sought.
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            Whence, by the bye, since the angle CSB is always acute, it follows,
            that, if the solid ADBE be generated by the convolution of an
            elliptical or oval figure ADBE about its axis AB, and the generating
            figure be touched by three right lines FG, GH, HI, in the points P, B,
            and I, so that GH shall be perpendicular to the axis in the point of
            contact B, and FG, HI may be inclined to GH in the angles FGB, BHI of
            135 degrees: the solid arising from the convolution of the figure
            ADFGHIE about the same axis AB will be less resisted than the former
            solid; if so be that both move forward in the direction of their axis
            AB, and that the extremity B of each go foremost. Which Proposition I
            conceive may be of use in the building of ships.
        


        
            If the figure DNFG be such a curve, that if, from any point thereof,
            as N, the perpendicular NM be let fall on the axis AB, and from the
            given point G there be drawn the right line GR parallel to a right
            line touching the figure in N, and cutting the axis produced in R, MN
            becomes to GR as GR³ to 4BR x GB²; the solid described by the
            revolution of tins figure about its axis AB,
            moving in the before-mentioned rare medium from A towards B, will be
            less resisted than any other circular solid whatsoever, described of
            the same length and breadth.
        


    

    
        Proposition xxxv. Problem vii.


            
                
                    If a rare medium consist of very small quiescent particles of
                    equal magnitudes, and freely disposed at equal distances from one
                    another: to find the resistance of a globe moving uniformly
                    forward in this medium.
                
            


        

        
            Case 1. Let a cylinder described with the
            same diameter and altitude be conceived to go forward with the same
            velocity in the direction of its axis through the same medium; and let
            us suppose that the particles of the medium, on which the globe or
            cylinder falls, fly back with as great a force of reflexion as
            possible. Then since the resistance of the globe (by the last
            Proposition) is but half the resistance of the cylinder, and since the
            globe is to the cylinder as 2 to 3, and since the cylinder by falling
            perpendicularly on the particles, and reflecting them with the utmost
            force, communicates to them a velocity double to its own; it follows
            that the cylinder, in moving forward uniformly half the length of its
            axis, will communicate a motion to the particles which is to the whole
            motion of the cylinder as the density of the medium to the density of
            the cylinder; and that the globe, in the time it describes one length
            of its diameter in moving uniformly forward, will communicate the same
            motion to the particles; and in the time that it describes two thirds
            of its diameter, will communicate a motion to the particles which is
            to the whole motion of the globe as the density of the medium to the
            density of the globe. And therefore the globe meets with a resistance,
            which is to the force by which its whole motion may be either taken
            away or generated in the time in which it describes two thirds of its
            diameter moving uniformly forward, as the density of the medium to the
            density of the globe.
        


        
            Case 2. Let us suppose that the particles of
            the medium incident on the globe or cylinder are not reflected; and
            then the cylinder falling perpendicularly on the particles will
            communicate its own simple velocity to them, and therefore meets a
            resistance but half so great as in the former case, and the globe also
            meets with a resistance but half so great.
        


        
            Case 3. Let us suppose the particles of the
            medium to fly back from the globe with a force which is neither the
            greatest, nor yet none at all, but with a certain mean force; then the
            resistance of the globe will be in the same mean ratio between the
            resistance in the first case and the resistance in the second.
              Q.E.I.
        


        
            Cor. 1. Hence if the globe and the particles
            are infinitely hard, and destitute of all elastic force, and therefore
            of all force of reflexion; the resistance of the globe will be to the
            force by which its whole motion may be
            destroyed or generated, in the time that the globe describes four
            third parts of its diameter, as the density of the medium to the
            density of the globe.
        


        
            Cor. 2. The resistance of the globe, caeteris
            paribus, is in the duplicate ratio of the velocity.
        


        
            Cor. 3. The resistance of the globe, caeteris
            paribus, is in the duplicate ratio of the diameter.
        


        
            Cor. 4. The resistance of the globe is, caeteris
            paribus, as the density of the medium.
        


        
            Cor. 5. The resistance of the globe is in a
            ratio compounded of the duplicate ratio of the velocity, and the
            duplicate ratio of the diameter, and the ratio of the density of the
            medium.
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            Cor. 6. The motion of the globe and its
            resistance may be thus expounded. Let AB be the time in which the
            globe may, by its resistance uniformly continued, lose its whole
            motion. Erect AD, BC perpendicular to AB. Let BC be that whole motion,
            and through the point C, the asymptotes being AD, AB, describe the
            hyperbola CF. Produce AB to any point E. Erect the perpendicular EF
            meeting the hyperbola in F. Complete the parallelogram CBEG, and draw
            AF meeting BC in H. Then if the globe in any time BE, with its first
            motion BC uniformly continued, describes in a non-resisting medium the
            space CBEG expounded by the area of the parallelogram, the same in a
            resisting medium will describe the space CBEF expounded by the area of
            the hyperbola; and its motion at the end of that time will be
            expounded by EF, the ordinate of the hyperbola, there being lost of
            its motion the part FG. And its resistance at the end of the same time
            will be expounded by the length BH, there being lost of its resistance
            the part CH. All these things appear by Cor. 1 and 3, Prop. V., Book
            II.
        


        
            Cor. 7. Hence if the globe in the time T by
            the resistance R uniformly continued lose its whole motion M, the same
            globe in the time t in a resisting medium, wherein the
            resistance R decreases in a duplicate ratio of the velocity, will lose
            out of its motion M the part tM

            T+t, the part 
            TM

            T+t remaining; and will describe a
            space which is to the space described in the same time t,
            with the uniform motion M, as the logarithm of the number 
            T+t

            T multiplied by the number
            2,302585092994 is to the number t

            T, because the hyperbolic area BCFE is
            to the rectangle BCGE in that proportion.
        



        


    

    
        Scholium.



        
            I have exhibited in this Proposition the resistance and retardation
            of spherical projectiles in mediums that are not continued, and shewn
            that this resistance is to the force by which the whole motion of the
            globe may be destroyed or produced in the time in which the globe can
            describe two thirds of its diameter; with a velocity uniformly
            continued, as the density of the medium to the density of the globe,
            if so be the globe and the particles of the medium be perfectly
            elastic, and are endued with the utmost force of reflexion; and that
            this force, where the globe and particles of the medium are infinitely
            hard and void of any reflecting force, is diminished one half. But in
            continued mediums, as water, hot oil, and quicksilver, the globe as it
            passes through them does not immediately strike against all the
            particles of the fluid that generate the resistance made to it, but
            presses only the particles that lie next to it, which press the
            particles beyond, which press other particles, and so on; and in these
            mediums the resistance is diminished one other half. A globe in these
            extremely fluid mediums meets with a resistance that is to the force
            by which its whole motion may be destroyed or generated in the time
            wherein it can describe, with that motion uniformly continued, eight
            third parts of its diameter, as the density of the medium to the
            density of the globe. This I shall endeavour to shew in what follows.
        


    

    
        Proposition xxxvi. Problem viii.


            
                
                    To define the motion of water running out of a cylindrical
                    vessel through a hole made at the bottom.
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            Let ACDB be a cylindrical vessel, AB the mouth of it, CD the bottom
            parallel to the horizon, EF a circular hole in the middle of the
            bottom, G the centre of the hole, and GH the axis of the cylinder
            perpendicular to the horizon. And suppose a cylinder of ice APQB to be
            of the same breadth with the cavity of the vessel, and to have the
            same axis, and to descend perpetually with an uniform motion, and that
            its parts, as soon as they touch the superficies AB, dissolve into
            water, and flow down by their weight into the vessel, and in their
            fall compose the cataract or column of water ABNFEM, passing through
            the hole EF, and filling up the same exactly. Let the uniform velocity
            of the descending ice and of the contiguous water in the circle AB be
            that which the water would acquire by falling through the space IH;
            and let IH and HG lie in the same right line; and through
            the point I let there be drawn the right line
            KL parallel to the horizon and meeting the ice on both the sides thereof
            in K and L. Then the velocity of the water running out at the hole EF will be
            the same that it would acquire by falling from I through the space IG.
            Therefore, by Galileo's Theorems, IG will be to IH in the duplicate ratio
            of the velocity of the water that runs out at the hole to the velocity
            of the water in the circle AB, that is, in the duplicate ratio of the
            circle AB to the circle EF; those circles being reciprocally as the
            velocities of the water which in the same time and in equal quantities
            passes severally through each of them, and completely fills them both.
            We are now considering the velocity with which the water tends to the
            plane of the horizon. But the motion parallel to the same, by which
            the parts of the falling water approach to each other, is not here
            taken notice of; since it is neither produced by gravity, nor at all
            changes the motion perpendicular to the horizon which the gravity
            produces. We suppose, indeed, that the parts of the water cohere a
            little, that by their cohesion they may in falling approach to each
            other with motions parallel to the horizon in order to form one single
            cataract, and to prevent their being divided into several: but the
            motion parallel to the horizon arising from this cohesion does not
            come under our present consideration.
        


        
            Case 1. Conceive now the whole cavity in the
            vessel, which encompasses the falling water ABNFEM, to be full of ice,
            so that the water may pass through the ice as through a funnel. Then
            if the water pass very near to the ice only, without touching it; or,
            which is the same thing, if by reason of the perfect smoothness of the
            surface of the ice, the water, though touching it, glides over it with
            the utmost freedom, and without the least resistance; the water will
            run through the hole EF with the same velocity as before, and the
            whole weight of the column of water ABNFEM will be all taken up as
            before in forcing out the water, and the bottom of the vessel will
            sustain the weight of the ice encompassing that column.
        


        
            Let now the ice in the vessel dissolve into water; yet will the
            efflux of the water remain, as to its velocity, the same as before. It
            will not be less, because the ice now dissolved will endeavour to
            descend; it will not be greater, because the ice, now become water,
            cannot descend without hindering the descent of other water equal to
            its own descent. The same force ought always to generate the same
            velocity in the effluent water.
        


        
            But the hole at the bottom of the vessel, by reason of the oblique
            motions of the particles of the effluent water, must be a little
            greater than before. For now the particles of the water do not all of
            them pass through the hole perpendicularly, but, flowing down on all
            parts from the sides of the vessel, and converging towards the hole,
            pass through it with oblique motions; and in tending downwards meet in
            a stream whose diameter is a little smaller below the hole than at the
            hole itself; its diameter being to the diameter
            of the hole as 5 to 6, or as 5½ to 6½, very nearly, if I took the
            measures of those diameters right. I procured a very thin flat plate,
            having a hole pierced in the middle, the diameter of the circular hole
            being 5

            8 parts of an inch. And that the stream
            of running waters might not be accelerated in falling, and by that
            acceleration become narrower, I fixed this plate not to the bottom,
            but to the side of the vessel, so as to make the water go out in the
            direction of a line parallel to the horizon. Then, when the vessel was
            full of water, I opened the hole to let it run out; and the diameter
            of the stream, measured with great accuracy at the distance of about
            half an inch from the hole, was 21

            40 of an inch. Therefore the diameter
            of this circular hole was to the diameter of the stream very nearly as
            25 to 21. So that the water in passing through the hole converges on
            all sides, and, after it has run out of the vessel, becomes smaller by
            converging in that manner, and by becoming smaller is accelerated till
            it comes to the distance of half an inch from the hole, and at that
            distance flows in a smaller stream and with greater celerity than in
            the hole itself, and this in the ratio of 25 x 25 to 21 x 21, or 17 to
            12, very nearly; that is, in about the subduplicate ratio of 2 to 1.
            Now it is certain from experiments, that the quantity of water running
            out in a given time through a circular hole made in the bottom of a
            vessel is equal to the quantity, which, flowing with the aforesaid
            velocity, would run out in the same time through another circular
            hole, whose diameter is to the diameter of the former as 21 to 25. And
            therefore that running water in passing through the hole itself has a
            velocity downwards equal to that which a heavy body would acquire in
            falling through half the height of the stagnant water in the vessel,
            nearly. But, then, after it has run out, it is still accelerated by
            converging, till it arrives at a distance from the hole that is nearly
            equal to its diameter, and acquires a velocity greater than the other
            in about the subduplicate ratio of 2 to 1; which velocity a heavy body
            would nearly acquire by falling through the whole height of the
            stagnant water in the vessel.
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            Therefore in what follows let the diameter of the stream be
            represented by that lesser hole which we called EF. And imagine
            another plane VW above the hole EF, and parallel to the plane there
            of, to be placed at a distance equal to the diameter of the same hole,
            and to be pierced through with a greater hole ST, of such a magnitude
            that a stream which will exactly fill the lower hole EF may pass
            through it; the diameter of which hole will therefore be to the
            diameter of the lower hole as 25 to 21, nearly. By this means the
            water will run perpendicularly out at the lower hole; and the quantity
            of the water running out will be, according to the magnitude of
            this last hole, the same, very nearly, which the solution of the
            Problem requires. The space included between the two planes and the
            falling stream may be considered as the bottom of the vessel. But, to
            make the solution more simple and mathematical, it is better to take
            the lower plane alone for the bottom of the vessel, and to suppose
            that the water which flowed through the ice as through a funnel, and
            ran out of the vessel through the hole EF made in the lower plane,
            preserves its motion continually, and that the ice continues at rest.
            Therefore in what follows let ST be the diamter of a circular hole
            described from the centre Z, and let the stream run out of the vessel
            through that hole, when the water in the vessel is all fluid. And let
            EF be the diameter of the hole, which the stream, in falling through,
            exactly fills up, whether the water runs out of the vessel by that
            upper hole ST, or flows through the middle of the ice in the vessel,
            as through a funnel. And let the diameter of the upper hole ST be to
            the diameter of the lower EF as about 25 to 21, and let the
            perpendicular distance between the planes of the holes be equal to the
            diameter of the lesser hole EF. Then the velocity of the water
            downwards, in running out of the vessel through the hole ST, will be
            in that hole the same that a body may acquire by falling from half the
            height IZ; and the velocity of both the falling streams will be in the
            hole EF, the same which a body would acquire by falling from the whole
            height IG.
        


        
            Case 2. If the hole EF be not in the middle
            of the bottom of the vessel, but in some other part thereof, the water
            will still run out with the same velocity as before, if the magnitude
            of the hole be the same. For though an heavy body takes a longer time
            in descending to the same depth, by an oblique line, than by a
            perpendicular line, yet in both cases it acquires in its descent the
            same velocity; as Galileo has demonstrated.
        


        
            Case 3. The velocity of the water is the same
            when it runs out through a hole in the side of the vessel. For if the
            hole be small, so that the interval between the superficies AB and KL
            may vanish as to sense, and the stream of water horizontally issuing
            out may form a parabolic figure: from the latus rectum of this
            parabola may be collected, that the velocity of the effluent water is
            that which a body may acquire by falling the height IG or HG of the
            stagnant water in the vessel. For, by making an experiment, I found
            that if the height of the stagnant water above the hole were 20
            inches, and the height of the hole above a plane parallel to the
            horizon were also 20 inches, a stream of water springing out from
            thence would fall upon the plane, at the distance of 37 inches, very
            nearly, from a perpendicular let fall upon that plane from the hole.
            For without resistance the stream would have fallen upon the plane at
            the distance of 40 inches, the latus rectum of the parabolic stream
            being 80 inches.
        


        
            Case 4. If the effluent water tend upward, it
            will still issue forth with the same velocity. For the small stream of
            water springing upward; ascends with a
            perpendicular motion to GH or GI, the height of the stagnant water in
            the vessel; excepting in so far as its ascent is hindered a little by
            the resistance of the air; and therefore it springs out with the same
            velocity that it would acquire in falling from that height. Every
            particle of the stagnant water is equally pressed on all sides (by
            Prop. XIX., Book II), and, yielding to the pressure, tends always with
            an equal force, whether it descends through the hole in the bottom of
            the vessel, or gushes out in an horizontal direction through a hole in
            the side, or passes into a canal, and springs up from thence through a
            little hole made in the upper part of the canal. And it may not only
            be collected from reasoning, but is manifest also from the well-known
            experiments just mentioned, that the velocity with which the water
            runs out is the very same that is assigned in this Proposition.
        


        
            Case 5. The velocity of the effluent water is
            the same, whether the figure of the hole be circular, or square, or
            triangular, or any other figure equal to the circular; for the
            velocity of the effluent water does not depend upon the figure of the
            hole, but arises from its depth below the plane KL.
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            Case 6. If the lower part of the vessel ABDC
            be immersed into stagnant water, and the height of the stagnant water
            above the bottom of the vessel be GR, the velocity with which the
            water that is in the vessel will run out at the hole EF into the
            stagnant water will be the same which the water would acquire by
            falling from the height IR; for the weight of all the water in the
            vessel that is below the superficies of the stagnant water will be
            sustained in equilibrio by the weight of the stagnant water, and
            therefore does riot at all accelerate the motion of the descending
            water in the vessel. This case will also appear by experiments,
            measuring the times in which the water will run out.
        


        
            Cor. 1. Hence if CA the depth of the water be
            produced to K, so that AK may be to CK in the duplicate ratio of the
            area of a hole made in any part of the bottom to the area of the
            circle AB, the velocity of the effluent water will be equal to the
            velocity which the water would acquire by falling from the height KC.
        


        
            Cor. 2. And the force with which the whole
            motion of the effluent water may be generated is equal to the weight
            of a cylindric column of water, whose base is the hole EF, and its
            altitude 2GI or 2CK. For the effluent water, in the time it becomes
            equal to this column, may acquire, by falling by its own weight from
            the height GI, a velocity equal to that with which it runs out.
        


        
            Cor. 3. The weight of all the water in the
            vessel ABDC is to that part of the weight
            which is employed in forcing out the water as the sum of the circles
            AB and EF to twice the circle EF. For let IO be a mean proportional
            between IH and IG, and the water running out at the hole EF will, in
            the time that a drop falling from I would describe the altitude IG,
            become equal to a cylinder whose base is the circle EF and its
            altitude 2IG, that is, to a cylinder whose base is the circle AB, and
            whose altitude is 2IO. For the circle EF is to the circle AB in the
            subduplicate ratio of the altitude IH to the altitude IG; that is, in
            the simple ratio of the mean proportional IO to the altitude IG.
            Moreover, in the time that a drop falling from I can describe the
            altitude IH, the water that runs out will hare become equal to a
            cylinder whose base is the circle AB, and its altitude 2IH; and in the
            time that a drop falling from I through H to G describes HG, the
            difference of the altitudes, the effluent water, that is, the water
            contained within the solid ABNFEM, will be equal to the difference of
            the cylinders, that is, to a cylinder whose base is AB, and its
            altitude 2HO. And therefore all the water contained in the vessel ABDC
            is to the whole falling water contained in the said solid ABNFEM as HG
            to 2HO, that is, as HO + OG to 2HO, or IH + IO to 2IH. But the weight
            of all the water in the solid ABNFEM is employed in forcing out the
            water: and therefore the weight of all the water in the vessel is to
            that part of the weight that is employed in forcing out the water as
            IH + IO to 2IH, and therefore as the sum of the circles EF and AB to
            twice the circle EF.
        


        
            Cor. 4. And hence the weight of all the water
            in the vessel ABDC is to the other part of the weight which is
            sustained by the bottom of the vessel as the sum of the circles AB and
            EF to the difference of the same circles.
        


        
            Cor. 5. And that part of the weight which the
            bottom of the vessel sustains is to the other part of the weight
            employed in forcing out the water as the difference of the circles AB
            and EF to twice the lesser circle EF, or as the area of the bottom to
            twice the hole.
        


        
            Cor. 6. That part of the weight which presses
            upon the bottom is to the whole weight of the water perpendicularly
            incumbent thereon as the circle AB to the sum of the circles AB and
            EF, or as the circle AB to the excess of twice the circle AB above the
            area of the bottom. For that part of the weight which presses upon the
            bottom is to the weight of the whole water in the vessel as the
            difference of the circles AB and EF to the sum of the same circles (by
            Cor. 4); and the weight of the whole water in the vessel is to the
            weight of the whole water perpendicularly incumbent on the bottom as
            the circle AB to the difference of the circles AB and EF. Therefore, ex
            aequo perturbatè, that part of the weight which presses upon
            the bottom is to the weight of the whole water perpendicularly
            incumbent thereon as the circle AB to the sum
            of the circles AB and EF, or the excess of twice the circle AB above
            the bottom.
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            Cor. 7. If in the middle of the hole EF there
            be placed the little circle PQ described about the centre G, and
            parallel to the horizon, the weight of water which that little circle
            sustains is greater than the weight of a third part of a cylinder of
            water whose base is that little circle and its height GH. For let
            ABNFEM be the cataract or column of falling water whose axis is GH, as
            above, and let all the water, whose fluidity is not requisite for the
            ready and quick descent of the water, be supposed to A be congealed,
            as well round about the cataract, as above the little circle. And let
            PHQ be the column of water congealed above the little circle, whose
            vertex is H, and its altitude GH. And suppose this cataract to fall
            with its whole weight downwards, and not in the least to lie against
            or to press PHQ, but to glide freely by it without any friction,
            unless, perhaps, just at the very vertex of the ice, where the
            cataract at the beginning of its fall may tend to a concave figure.
            And as the congealed water AMEC, BNFD, lying round the cataract, is
            convex in its internal superficies AME, BNF, towards the falling
            cataract, so this column PHQ will be convex towards the cataract also,
            and will therefore be greater than a cone whose base is that little
            circle PQ and its altitude GH; that is, greater than a third part of a
            cylinder described with the same base and altitude. Now that little
            circle sustains the weight of this column, that is, a weight greater
            than the weight of the cone, or a third part of the cylinder.
        


        
            Cor. 8. The weight of water which the circle
            PQ, when very small, sustains, seems to be less than the weight of two
            thirds of a cylinder of water whose base is that little circle, and
            its altitude HG. For, things standing as above supposed, imagine the
            half of a spheroid described whose base is that little circle, and its
            semi-axis or altitude HG. This figure will be equal to two thirds of
            that cylinder, and will comprehend within it the column of congealed
            water PHQ, the weight of which is sustained by that little circle. For
            though the motion of the water tends directly downwards, the external
            superficies of that column must yet meet the base PQ in an angle
            somewhat acute, because the water in its fall is perpetually
            accelerated, and by reason of that acceleration become narrower.
            Therefore, since that angle is less than a right one, this column in
            the lower parts thereof will lie within the hemi-spheroid. In the
            upper parts also it will be acute or pointed; because to make it
            otherwise, the horizontal motion of the water must be at the vertex
            infinitely more swift than its motion towards the horizon. And the
            less this circle PQ is, the more acute will the
            vertex of this column be; and the circle being diminished in
            infinitum the angle PHQ will be diminished in infinitum,
            and therefore the column will lie within the hemi-spheroid. Therefore
            that column is less than that hemi-spheroid, or than two-third parts
            of the cylinder whose base is that little circle, and its altitude GH.
            Now the little circle sustains a force of water equal to the weight of
            this column, the weight of the ambient water being employed in causing
            its efflux out at the hole.
        


        
            Cor. 9. The weight of water which the little
            circle PQ sustains, when it is very small, is very nearly equal to the
            weight of a cylinder of water whose base is that little circle, and
            its altitude ½GH; for this weight is an arithmetical mean between the
            weights of the cone and the hemi-spheroid above mentioned. But if that
            little circle be not very small, but on the contrary increased till it
            be equal to the hole EF, it will sustain the weight of all the water
            lying perpendicularly above it, that is, the weight of a cylinder of
            water whose base is that little circle, and its altitude GH.
        


        
            Cor. 10. And (as far as I can judge) the
            weight which this little circle sustains is always to the weight of a
            cylinder of water whose base is that little circle, and its altitude
            ½GH, as EF² to EF² − ½PQ², or as the circle EF to the excess of this
            circle above half the little circle PQ, very nearly.
        


    

    
        Lemma iv.


            
                
                    If a cylinder move uniformly forward in the direction of its
                    length, the resistance made thereto is not at all changed by
                    augmenting or diminishing that length; and is therefore the same
                    with the resistance of a circle, described with the same diameter,
                    and moving forward with the same velocity in the direction, of a
                    right line perpendicular to its plane.
                
            


        

        
            For the sides are not at all opposed to the motion; and a cylinder
            becomes a circle when its length is diminished in infinitum.
        


    

    
        Proposition xxxvii. Theorem xxix.


            
                
                    If a cylinder move uninformly forward in a compressed,
                    infinite, and non-elastic fluid, in the direction of its length,
                    the resistance arising from the magnitude of its transverse
                    section is to the force by which its whole motion may be destroyed
                    or generated, in the time that it moves four times its length, as
                    the density of the medium to the density of the cylinder, nearly.
                
            


        

        
            For let the vessel ABDC touch the surface of stagnant water with its
            bottom CD, and let the water run out of this vessel into the stagnant
            water through the cylindric canal EFTS perpendicular co the horizon;
            and let the little circle PQ be placed parallel to the horizon any where in the
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            middle of the canal; and produce CA to K, so that AK may be to CK in the
            duplicate of the ratio, which the excess of the orifice of the canal
            EF above the little circle PQ bears to the circle AB. Then it is
            manifest (by Case 5, Case 6, and Cor. 1, Prop. XXXVI) that the
            velocity of the water passing through the annular space between the
            little circle and the sides of the vessel will be the very same which
            the water would acquire by falling, and in its fall describing the
            altitude KC or IG.
        


        
            And (by Cor. 10, Prop. XXXVI) if the breadth of the vessel be
            infinite, so that the lineola HI may vanish, and the altitudes IG, HG
            become equal; the force of the water that flows down and presses upon
            the circle will be to the weight of a cylinder whose base is that
            little circle, and the altitude ½IG, as EF² to EF² − ½PQ², very
            nearly. For the force of the water flowing downward uniformly through
            the whole canal will be the same upon the little circle PQ in
            whatsoever part of the canal it be placed.
        


        
            Let now the orifices of the canal EF, ST be closed, and let the
            little circle ascend in the fluid compressed on every side, and by its
            ascent let it oblige the water that lies above it to descend through
            the annular space between the little circle and the sides of the
            canal. Then will the velocity of the ascending little circle be to the
            velocity of the descending water as the difference of the circles EF
            and PQ, is to the circle PQ; and the velocity of the ascending little
            circle will be to the sum of the velocities, that is, to the relative
            velocity of the descending water with which it passes by the little
            circle in its ascent, as the difference of the circles EF and PQ to
            the circle EF, or as EF² − PQ² to EF². Let that relative velocity be
            equal to the velocity with which it was shewn above that the water
            would pass through the annular space, if the circle were to remain
            unmoved, that is, to the velocity which the water would acquire by
            falling, and in its fall describing the altitude IG; and the force of
            the water upon the ascending circle will be the same as before (by
            Cor. 5, of the Laws of Motion); that is, the resistance of the
            ascending little circle will be to the weight of a cylinder of water
            whose base is that little circle, and its altitude ½IG, as EF² to EF²
            − ½PQ², nearly. But the velocity of the little circle will be to the
            velocity which the water acquires by falling, and in its fall
            describing the altitude IG, as EF² − PQ² to EF² .
        


        
            Let the breadth of the canal be increased in infinitum; and
            the ratios between EF² − PQ² and EF², and between EF² and EF² − ½PQ²,
            will become at last ratios of equality. And therefore the velocity of
            the little circle will now be the same which the water would acquire
            in falling, and in its fall describing the altitude IG: and the
            resistance will become equal to the weight of
            a cylinder whose base is that little circle, and its altitude half the
            altitude IG, from which the cylinder must fall to acquire the velocity
            of the ascending circle; and with this velocity the cylinder in the
            time of its fall will describe four times its length. But the
            resistance of the cylinder moving forward with this velocity in the
            direction of its length is the same with the resistance of the little
            circle (by Lem. IV), and is therefore nearly equal to the force by
            which its motion may be generated while it describes four times its
            length.
        


        
            If the length of the cylinder be augmented or diminished, its motion,
            and the time in which it describes four times its length, will be
            augmented or diminished in the same ratio, and therefore the force by
            which the motion so increased or diminished, may be destroyed or
            generated, will continue the same; because the time is increased or
            diminished in the same proportion; and therefore that force remains
            still equal to the resistance of the cylinder, because (by Lem. IV)
            that resistance will also remain the same.
        


        
            If the density of the cylinder be augmented or diminished, its
            motion, and the force by which its motion may be generated or
            destroyed in the same time, will be augmented or diminished in the
            same ratio. Therefore the resistance of any cylinder whatsoever will
            be to the force by which its whole motion may be generated or
            destroyed, in the time during which it moves four times its length, as
            the density of the medium to the density of the cylinder, nearly.
              Q.E.D.
        


        
            A fluid must be compressed to become continued; it must be continued
            and non-elastic, that all the pressure arising from its compression
            may be propagated in an instant; and so, acting equally upon all parts
            of the body moved, may produce no change of the resistance. The
            pressure arising from the motion of the body is spent in generating a
            motion in the parts of the fluid, and this creates the resistance. But
            the pressure arising from the compression of the fluid, be it ever so
            forcible, if it be propagated in an instant, generates no motion in
            the parts of a continued fluid, produces no change at all of motion
            therein; and therefore neither augments nor lessens the resistance.
            This is certain, that the action of the fluid arising from the
            compression cannot be stronger on the hinder parts of the body moved
            than on its fore parts, and therefore cannot lessen the resistance
            described in this proposition. And if its propagation be infinitely
            swifter than the motion of the body pressed, it will not be stronger
            on the fore parts than on the hinder parts. But that action will be
            infinitely swifter, and propagated in an instant, if the fluid be
            continued and non-elastic.
        


        
            Cor. 1. The resistances, made to cylinders
            going uniformly forward in the direction of their lengths through
            continued infinite mediums are in a ratio
            compounded of the duplicate ratio of the velocities and the duplicate
            ratio of the diameters, and the ratio of the density of the mediums.
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            Cor. 2. If the breadth of the canal be not
            infinitely increased but the cylinder go forward in the direction of
            its length through an included quiescent medium, its axis all the
            while coinciding with the axis of the canal, its resistance will be to
            the force by which its whole motion, in the time in which it describes
            four times its length, may be generated or destroyed, in a ratio
            compounded of the ratio of EF² to EF² − ½PQ² once, and the ratio of
            EF² to EF² − PQ² twice, and the ratio of the density of the medium to
            the density of the cylinder.
        


        
            Cor. 3. The same thing supposed, and that a
            length L is to the quadruple of the length of the cylinder in a ratio
            compounded of the ratio EF² − ½PQ² to EF² once, and the ratio of EF² −
            PQ² to EF² twice; the resistance of the cylinder will be to the force
            by which its whole motion, in the time during which it describes the
            length L, may be destroyed or generated, as the density of the medium
            to the density of the cylinder.
        


    

    
        Scholium.



        
            In this proposition we have investigated that resistance alone which
            arises from the magnitude of the transverse section of the cylinder,
            neglecting that part of the same which may arise from the obliquity of
            the motions. For as, in Case 1, of Prop. XXXVI., the obliquity of the
            motions with which the parts of the water in the vessel converged on
            every side to the hole EF hindered the efflux of the water through the
            hole, so, in this Proposition, the obliquity of the motions, with
            which the parts of the water, pressed by the antecedent extremity of
            the cylinder, yield to the pressure, and diverge on all sides, retards
            their passage through the places that lie round that antecedent
            extremity, toward the hinder parts of the cylinder, and causes the
            fluid to be moved to a greater distance; which increases the
            resistance, and that in the same ratio almost in which it diminished
            the efflux of the water out of the vessel, that is, in the duplicate
            ratio of 25 to 21, nearly. And as, in Case 1, of that Proposition, we
            made the parts of the water pass through the hole EF perpendicularly
            and in the greatest plenty, by supposing all the water in the vessel
            lying round the cataract to be frozen, and that part of the water
            whose motion was oblique, and useless to remain without motion, so in
            this Proposition, that the obliquity of the motions may be taken away,
            and the parts of the water may give the freest passage to the
            cylinder, by yielding to it with the most direct and quick motion
            possible, so that only so much resistance may remain as
            arises from the magnitude of the transverse section, and which is
            incapable of diminution, unless by diminishing the diameter of the
            cylinder; we must conceive those parts of the fluid whose motions are
            oblique and useless, and produce resistance, to be at rest among
            themselves at both extremities of the cylinder, and there to cohere,
            and be joined to the cylinder.
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            Let ABCD be a rectangle, and let AE and BE be two parabolic arcs,
            described with the axis AB, and with a latus rectum that is to the space HG,
            which must be described by the cylinder in falling,
            in order to acquire the velocity with which it moves,
            as HG to ½AB. Let CF and DF be two other parabolic arcs
            described with the axis CD, and a latus rectum quadruple of the
            former; and by the convolution of the figure about the axis EF let
            there be generated a solid, whose middle part ABDC is the cylinder we
            are here speaking of, and whose extreme parts ABE and CDF contain the
            parts of the fluid at rest among themselves, and concreted into two
            hard bodies, adhering to the cylinder at each end like a head and
            tail. Then if this solid EACFDB move in the direction of the length of
            its axis FE toward the parts beyond E, the resistance will be the same
            which we have here determined in this Proposition, nearly; that is, it
            will have the same ratio to the force with which the whole motion of
            the cylinder may be destroyed or generated, in the time that it is
            describing the length 4AC with that motion uniformly continued, as the
            density of the fluid has to the density of the cylinder, nearly. And
            (by Cor. 7, Prop. XXXVI) the resistance must be to this force in the
            ratio of 2 to 3, at the least.
        


    

    
        Lemma V.


            
                
                    If a cylinder, a sphere, and a spheroid, of equal breadths be
                    placed successively in the middle of a cylindric canal, so that
                    their axes may coincide with the axis of the canal, these bodies
                    will equally hinder the passage of the water through the canal.
                
            


        

        
            For the spaces lying between the sides of the canal, and the
            cylinder, sphere, and spheroid, through which the water passes, are
            equal; and the water will pass equally through equal spaces.
        


        
            This is true, upon the supposition that all the water above the
            cylinder, sphere, or spheroid, whose fluidity is not necessary to make
            the passage of the water the quickest possible, is congealed, as was
            explained above in Cor. 7, Prop. XXXVI.
        



        


    

    
        Lemma vi.


            
                
                    The same supposition remaining, the fore-mentioned bodies are
                    equally acted on by the water flowing through the canal.
                
            


        

        
            This appears by Lem. V and the third Law. For the water and the
            bodies act upon each other mutually and equally.
        


    

    
        Lemma vii.


            
                
                    If the water be at rest in the canal, and these bodies move
                    with equal velocity and the contrary way through the canal, their
                    resistances will be equal among themselves.
                
            


        

        
            This appears from the last Lemma, for the relative motions remain the
            same among themselves.
        


    

    
        Scholium.



        
            The case is the same of all convex and round bodies, whose axes
            coincide with the axis of the canal. Some difference may arise from a
            greater or less friction; but in these Lemmata we suppose
            the bodies to be perfectly smooth, and the medium to be void of all
            tenacity and friction; and that those parts of the fluid which by
            their oblique and superfluous motions may disturb, hinder, and retard
            the flux of the water through the canal, are at rest among themselves;
            being fixed like water by frost, and adhering to the fore and hinder
            parts of the bodies in the manner explained in the Scholium of the
            last Proposition; for in what follows we consider the very least
            resistance that round bodies described with the greatest given
            transverse sections can possibly meet with.
        


        
            Bodies swimming upon fluids, when they move straight forward, cause
            the fluid to ascend at their fore parts and subside at their hinder
            parts, especially if they are of an obtuse figure; and thence they
            meet with a little more resistance than if they were acute at the head
            and tail. And bodies moving in elastic fluids, if they are obtuse
            behind and before, condense the fluid a little more at their fore
            parts, and relax the same at their hinder parts; and therefore meet
            also with a little more resistance than if they were acute at the head
            and tail. But in these Lemmas and Propositions we are not treating of
            elastic but non-elastic fluids; not of bodies floating on the surface
            of the fluid, but deeply immersed therein. And when the resistance of
            bodies in non-elastic fluids is once known, we may then augment this
            resistance a little in elastic fluids, as our air; and in the surfaces
            of stagnating fluids, as lakes and seas.
        


    

    
        Proposition xxxviii. Theorem xxx.


            
                If a globe move uniformly forward in a compressed, infinite,
                and non-elastic fluid, its resistance is to the force by which its
                whole motion may be destroyed or generated, in the time that it
                describes eight third parts of its diameter, as the density of the
                fluid to the density of the globe, very nearly.
                 For
                the globe is to its circumscribed cylinder as two to three; and
                therefore the force which can destroy all the motion of the
                cylinder, while the same cylinder is describing the length of four
                of its diameters, will destroy all the motion of the globe, while
                the globe is describing two thirds of this length, that is, eight
                third parts of its own diameter. Now the resistance of the cylinder
                is to this force very nearly as the density of the fluid to the
                density of the cylinder or globe (by Prop. XXXVII), and the
                resistance of the globe is equal to the resistance of the cylinder
                (by Lem. V, VI, and VII).   Q.E.D.
            


        

        
            Cor. 1. The resistances of globes in infinite
            compressed mediums are in a ratio compounded of the duplicate ratio of
            the velocity, and the duplicate ratio of the diameter, and the ratio
            of the density of the mediums.
        


        
            Cor. 2. The greatest velocity, with which a
            globe can descend by its comparative weight through a resisting fluid,
            is the same which it may acquire by falling with the same weight, and
            without any resistance, and in its fall describing a space that is, to
            four third parts of its diameter as the density of the globe to the
            density of the fluid. For the globe in the time of its fall, moving
            with the velocity acquired in falling, will describe a space that will
            be to eight third parts of its diameter as the density of the globe to
            the density of the fluid; and the force of its weight which generates
            this motion will be to the force that can generate the same motion, in
            the time that the globe describes eight third parts of its diameter,
            with the same velocity as the density of the fluid to the density of
            the globe; and therefore (by this Proposition) the force of weight
            will be equal to the force of resistance, and therefore cannot
            accelerate the globe.
        


        
            Cor. 3. If there be given both the density of
            the globe and its velocity at the beginning of the motion, and the
            density of the compressed quiescent fluid in which the globe moves,
            there is given at any time both the velocity of the globe and its
            resistance, and the space described by it (by Cor. 7, Prop. XXXV).
        


        
            Cor. 4. A globe moving in a compressed
            quiescent fluid of the same density with itself will lose half its
            motion before it can describe the length of two of its diameters (by
            the same Cor. 7).
        


    

    
        Proposition xxxix. Theorem xxxi.


            
                If a globe move uniformly forward through a fluid inclosed and
                compressed in a cylindric canal, its resistance is to the force by
                which its whole motion may be generated or destroyed, in the time
                in which it describes eight third parts of its diameter, in a
                ratio compounded of the ratio of the orifice of the canal to the
                excess of that orifice above half the greatest circle of the
                globe; and the duplicate ratio of the orifice of the canal, to the
                excess of that orifice above the greatest circle of the globe; and
                the ratio of the density of the fluid to the density of the globe,
                nearly.
                
                This appears by Cor. 2,
                Prop. XXXVII, and the demonstration proceeds in the same manner as
                in the foregoing Proposition.
            


        

    

    
        Scholium.



        
            In the last two Propositions we suppose (as was done before in Lem.
            V) that all the water which precedes the globe, and whose fluidity
            increases the resistance of the same, is congealed. Now if that water
            becomes fluid, it will somewhat increase the resistance. But in these
            Propositions that increase is so small, that it may be neglected,
            because the convex superficies of the globe produces the very same
            effect almost as the congelation of the water.
        


    

    
        Proposition xl. Problem ix.


            
                
                    To find by phenomena the resistance of a globe moving through a
                    perfectly fluid compressed medium.
                
            


        

        
            Let A be the weight of the globe in vacuo, B its weight in
            the resisting medium, D the diameter of the globe. F a space which is
            to 4/3D as the
            density of the globe to the density of the medium, that is, as A to A
            − B, G the time in which the globe falling with the weight B without
            resistance describes the space F, and H the velocity which the body
            acquires by that fall. Then H will be the greatest velocity with which
            the globe can possibly descend with the weight B in the resisting
            medium, by Cor. 2, Prop XXXVIII; and the resistance which the globe
            meets with, when descending with that velocity, will be equal to its
            weight B; and the resistance it meets with in any other velocity will
            be to the weight B in the duplicate ratio of that velocity to the
            greatest velocity H, by Cor. 1, Prop. XXXVIII.
        


        
            This is the resistance that arises from the inactivity of the matter
            of the fluid. That resistance which arises from the elasticity,
            tenacity, and friction of its parts, may be thus investigated.
        


        
            Let the globe be let fall so that it may descend in the fluid by the
            weight B; and let P be the time of falling, and let that time be
            expressed in seconds, if the time G be given in seconds. Find the
            absolute number N agreeing to the logarithm 0,4342944819
            2P

            G, and let L be the logarithm of the number 
            N + 1

            N; and the velocity acquired in falling will be 
            N − 1

            N + 1H, and the height described will be 
            2PF

            G − 1,3862943611F + 4,605170186LF. If the fluid be
            of a sufficient depth, we may neglect the term 4,605170186LF; and
            2PF

            G − 1,3862943611F will be the altitude described,
            nearly. These things appear by Prop. IX, Book II, and its Corollaries,
            and are true upon this supposition, that the globe meets with no other
            resistance but that which arises from the inactivity of matter. Now if
            it really meet with any resistance of another kind, the descent will
            be slower, and from the quantity of that retardation will be known the
            quantity of this new resistance.
        


        
            That the velocity and descent of a body falling in a fluid might more
            easily be known, I have composed the following table; the first column
            of which denotes the times of descent; the second shews the velocities
            acquired in falling, the greatest velocity being 100000000: the third
            exhibits the spaces described by falling in those times, 2F being the
            space which the body describes in the time G with the greatest
            velocity; and the fourth gives the spaces described with the greatest
            velocity in the same times. The numbers in the fourth column are
            2P

            G, and by subducting the number 1,3862944 − 4,6051702L, are
            found the numbers in the third column; and these numbers must be
            multiplied by the space F to obtain the spaces described in falling. A
            fifth column is added to all these, containing the spaces described in
            the same times by a body falling in vacuo with the force of
            B its comparative weight.
        


        
            
                
                    		
                        The Times

                        P
                    
                    		
                        Velocities of the

                        body falling

                        in the fluid
                    
                    		
                        The spaces

                        described

                        in falling

                        in the fluid
                    
                    		
                        The spaces

                        described with

                        the greatest

                        motion
                    
                    		
                        The spaces

                        described

                        by falling

                        In vacuo
                    
                


            
            
                
                    		
                        0,001G

                        0,01G

                        0,1G

                        0,2G

                        0,3G

                        0,4G

                        0,5G

                        0,6G

                        0,7G

                        0,8G

                        0,9G

                        1G

                        2G

                        3G

                        4G

                        5G

                        6G

                        7G

                        8G

                        9G

                        10G
                    
                    		
                        9999929/30

                        999967

                        9966799

                        19737532

                        29131261

                        37994896

                        46211716

                        53704957

                        60436778

                        66403677

                        71629787

                        76159416

                        96402758

                        99505475

                        99932930

                        99990920

                        99998771

                        99999834

                        99999980

                        99999997

                        999999993/5
                    
                    		
                        0,000001F

                        0,0001F

                        0,0099834F

                        0,0397361F

                        0,0886815F

                        0,1559070F

                        0,2402290F

                        0,3402706F

                        0,4545405F

                        0,5815071F

                        0,7196609F

                        0,8675617F

                        2,6500055F

                        4,6186570F

                        6,6143765F

                        8,6137964F

                        10,6137179F

                        12,6137073F

                        14,6137059F

                        16,6137057F

                        18,6137056F
                    
                    		
                        0,002F

                        0,02F

                        0,2F

                        0,4F

                        0,6F

                        0,8F

                        1,0F

                        1,2F

                        1,4F

                        1,6F

                        1,8F

                        2F

                        4F

                        6F

                        8F

                        10F

                        12F

                        14F

                        16F

                        18F

                        20F
                    
                    		
                        0,000001F

                        0,0001F

                        0,01F

                        0,04F

                        0,09F

                        0,16F

                        0,25F

                        0,36F

                        0,49F

                        0,64F

                        0,81F

                        1F

                        4F

                        9F

                        16F

                        25F

                        36F

                        49F

                        64F

                        81F

                        100F
                    
                


            
        



         


    

    
        Scholium.


        

        
            In order to investigate the resistances of fluids from experiments, I
            procured a square wooden vessel, whose length and breadth on the
            inside was 9 inches English measure, and its depth 9 feet ½;
            this I filled with rainwater: and having provided globes made up of
            wax, and lead included therein, I noted the times of the descents of
            these globes, the height through which they descended being 112
            inches. A solid cubic foot of English measure contains 76
            pounds troy weight of rainwater; and a solid inch contains 
            19

            36 ounces troy weight, or 253⅓ grains;
            and a globe of water of one inch in diameter contains 132,645 grains
            in air, or 132,8 grains in vacuo; and any other globe will
            be as the excess of its weight in vacuo above its weight in
            water.
        


        
            Exper. 1. A globe whose weight was 156¼
            grains in air, and 77 grains in water, described the whole height of
            112 inches in 4 seconds. And, upon repeating the experiment, the globe
            spent again the very same time of 4 seconds in falling.
        


        
            The weight of this globe in vacuo is 156 
            13

            38 grains; and the excess of this
            weight above the weight of the globe in water is 79 
            13

            38 grains. Hence the diameter of the
            globe appears to be 0,84224 parts of an inch. Then it will be, as that
            excess to the weight of the globe in vacuo, so is the
            density of the water to the density of the globe; and so is 8/3
            parts of the diameter of the globe (viz. 2,24597 inches) to the space
            2F, which will be therefore 4,4256 inches. Now a globe falling in
            vacuo with its whole weight of 156 13

            38 grains in one second of time will
            describe 193⅓ inches; and falling in water in the same time with the
            weight of 77 grains without resistance, will describe 95,219 inches;
            and in the time G, which is to one second of time in the subduplicate
            ratio of the space F, or of 2,2128 inches to 95,219 inches, will
            describe 2,2128 inches, and will acquire the greatest velocity H with
            which it is capable of descending in water. Therefore the time G is
            0″.15244. And in this time G, with that greatest velocity H, the globe
            will describe the space 2F, which is 4,4256 inches; and therefore in 4
            seconds will describe a space of 116,1245 inches. Subduct the space
            1,3862944F, or 3,0676 inches, and there will remain a space of
            113,0569 inches, which the globe falling through water in a very wide
            vessel will describe in 4 seconds. But this space, by reason of the
            narrowness of the wooden vessel before mentioned, ought to be
            diminished in a ratio compounded of the subduplicate ratio of the
            orifice of the vessel to the excess of this orifice above half a great
            circle of the globe, and of the simple ratio of the same orifice to
            its excess above a great circle of the globe, that is, in a ratio of 1
            to 0,9914. This done, we have a space of 112,08 inches, which a globe
            falling through the water in this wooden vessel in 4 seconds of time
            ought nearly to describe by this theory; but it described 112 inches
            by the experiment.
        


        
            Exper. 2. Three equal
            globes, whose weights were severally 76⅓ grains in air, and 5 1/16
            grains in water, were let fall successively; and every one fell
            through the water in 15 seconds of time, describing in its fall a
            height of 112 inches.
        


        
            By computation, the weight of each globe in vacuo is 76
            5

            12 grains; the excess of this weight
            above the weight in water is 71 grains 17

            48; the diameter of the globe 0,81296
            of an inch; 8/3 parts
            of this diameter 2,16789 inches; the space 2F is 2,3217 inches; the
            space which a globe of 5 1/16
            grains in weight would describe in one second without resistance,
            12,808 inches, and the time G0″,301056. Therefore the globe, with the
            greatest velocity it is capable of receiving from a weight of 5
            1/16 grains in its descent
            through water, will describe in the time 0″,301056 the space of 2,3217
            inches; and in 15 seconds the space 115,678 inches. Subduct the space
            1,3862944F, or 1,609 indies, and there remains the space 114.069
            inches, which therefore the falling globe ought to describe in the
            same time, if the vessel were very wide. But because our vessel was
            narrow, the space ought to be diminished by about 0,895 of an inch.
            And so the space will remain 113,174 inches, which a globe falling in
            this vessel ought nearly to de scribe in 15 seconds, by the theory.
            But by the experiment it described 112 inches. The difference is not
            sensible.
        


        
            Exper. 3. Three equal globes, whose weights
            were severally 121 grains in air, and 1 grain in water, were
            successively let fall; and they fell through the water in the times
            46″, 47″, and 50″, describing a height of 112 inches.
        


        
            By the theory, these globes ought to have fallen in about 40″. Now
            whether their falling more slowly were occasioned from hence, that in
            slow motions the resistance arising from the force of inactivity does
            really bear a less proportion to the resistance arising from other
            causes; or whether it is to be attributed to little bubbles that might
            chance to stick to the globes, or to the rarefaction of the wax by the
            warmth of the weather, or of the hand that let them fall; or, lastly,
            whether it proceeded from some insensible errors in weighing the
            globes in the water, I am not certain. Therefore the weight of the
            globe in water should be of several grains, that the experiment may be
            certain, and to be depended on.
        


        
            Exper. 4. I began the foregoing experiments
            to investigate the resistances of fluids, before I was acquainted with
            the theory laid down in the Propositions immediately preceding.
            Afterward, in order to examine the theory after it was discovered, I
            procured a wooden vessel, whose breadth on the inside was 8⅔ inches,
            and its depth 15 feet and ⅓. Then I made four globes of wax, with lead
            included, each of which weighed 139¼ grains in air, and 7 
            1

            8 grains in water. These I let fall,
            measuring the times of their falling in the water with a pendulum
            oscillating to half seconds. The globes were cold, and had remained so
            some time, both when they were weighed and
            when they were let fall; because warmth rarefies the wax, and by
            rarefying it diminishes the weight of the globe in the water; and wax,
            when rarefied, is not instantly reduced by cold to its former density.
            Before they were let fall, they were totally immersed under water,
            lest, by the weight of any part of them that might chance to be above
            the water, their descent should be accelerated in its beginning. Then,
            when after their immersion they were perfectly at rest, they were let
            go with the greatest care, that they might not receive any impulse
            from the hand that let them down. And they fell successively in the
            times of 47½, 48½, 50, and 51 oscillations, describing a height of 15
            feet and 2 inches. But the weather was now a little colder than when
            the globes were weighed, and therefore I repeated the experiment
            another day; and then the globes fell in the times of 49; 49½, 50. and
            53; and at a third trial in the times of 49½, 50, 51, and 53
            oscillations. And by making the experiment several times over, I found
            that the globes fell mostly in the times of 49½ and 50 oscillations.
            When they fell slower, I suspect them to have been retarded by
            striking against the sides of the vessel.
        


        
            Now, computing from the theory, the weight of the globe in vacuo
            is 139 2

            5 grains; the excess of this weight
            above the weight of the globe in water 132 11

            40 grains; the diameter of the globe
            0,99868 of an inch; 8/3
            parts of the diameter 2,66315 inches; the space 2F 2,8066 inches; the
            space which a globe weighing 7 1

            8 grains falling without resistance
            describes in a second of time 9,88164 inches; and the time GO″,376843.
            Therefore the globe with the greatest velocity with which it is
            capable of descending through the water by the force of a weight of 7
            1

            8 grains, will in the time 0″,376843
            describe a space of 2,8066 inches, and in one second of time a space
            of 7,44766 inches, and in the time 25″, or in 50 oscillations, the
            space 186,1915 inches. Subduct the space 1,386294F, or 1,9454 inches,
            and there will remain the space 184,2461 inches which the globe will
            describe in that time in a very wide vessel. Because our vessel was
            narrow, let this space be diminished in a ratio compounded of the
            subduplicate ratio of the orifice of the vessel to the excess of this
            orifice above half a great circle of the globe, and of the simple
            ratio of the same orifice to its excess above a great circle of the
            globe; and we shall have the space of 181,86 inches, which the globe
            ought by the theory to describe in this vessel in the time of 50
            oscillations, nearly. But it described the space of 182 inches, by
            experiment, in 49½ or 50 oscillations.
        


        
            Exper. 5. Four globes weighing 1543/8
            grains in air, and 21½ grains in water, being let fall several times,
            fell in the times of 28½, 29, 29½, and 30, and sometimes of 31, 32,
            and 33 oscillations, describing a height of 15 feet and 2 inches.
        


        
            They ought by the theory to have fallen in the time of 29
            oscillations, nearly.
        


        
            Exper. 6. Five
            globes, weighing 212 ⅜ grains in air, and 79½ in water,
            being several times let fall, fell in the times of 15, 15½, 16, 17,
            and 18 oscillations, describing a height of 15 feet and 2 inches.
        


        
            By the theory they ought to have fallen in the time of 15
            oscillations, nearly.
        


        
            Exper. 7. Four globes, weighing 2933/8
            grains in air, and 35 7/8
            grains in water, being let fall several times, fell in the times of
            29½, 30, 30½, 31, 32, and 33 oscillations, describing a height of 15
            feet and 1 inch and ½.
        


        
            By the theory they ought to have fallen in the time of 28
            oscillations, nearly.
        


        
            In searching for the cause that occasioned these globes of the same
            weight and magnitude to fall, some swifter and some slower, I hit upon
            this; that the globes, when they were first let go and began to fall,
            oscillated about their centres; that side which chanced to be the
            heavier descending first, and producing an oscillating motion. Now by
            oscillating thus, the globe communicates a greater motion to the water
            than if it descended without any oscillations; and by this
            communication loses part of its own motion with which it should
            descend; and therefore as this oscillation is greater or less, it will
            be more or less retarded. Besides, the globe always recedes from that
            side of itself which is descending in the oscillation, and by so
            receding comes nearer to the sides of the vessel, so as even to strike
            against them sometimes. And the heavier the globes are, the stronger
            this oscillation is; and the greater they are, the more is the water
            agitated by it. Therefore to diminish this oscillation of the globes,
            I made new ones of lead and wax, sticking the lead in one side of the
            globe very near its surface; and I let fall the globe in such a
            manner, that, as near as possible, the heavier side might be lowest at
            the beginning of the descent. By this means the oscillations became
            much less than before, and the times in which the globes fell were not
            so unequal: as in the following experiments.
        


        
            Exper. 8. Four globes weighing 139 grains in
            air, and 6½ in water, were let fall several times, and fell mostly in
            the time of 51 oscillations, never in more than 52, or in fewer than
            50, describing a height of 182 inches.
        


        
            By the theory they ought to fall in about the time of 52 oscillations


        
            Exper. 9. Four globes weighing 273¼ grains in
            air, and 140¾ in water, being several times let fall, fell in never
            fewer than 12, and never more than 13 oscillations, describing a
            height of 182 inches.
        


        
            These globes by the theory ought to have fallen in the time of 11⅓
            oscillations, nearly.
        


        
            Exper. 10. Four globes, weighing 384 grains
            in air, and 119½ in water, being let fall several times, fell in the
            times of 17¾ 18, 18½, and 19 oscillations, describing a height of 181½
            inches. And when they fell in the time of 19
            oscillations, I sometimes heard them hit against the sides of the
            vessel before they reached the bottom.
        


        
            By the theory they ought to have fallen in the time of 155/9
            oscillations, nearly.
        


        
            Exper. 11. Three equal globes, weighing 48
            grains in the air, and 3 29

            32 in water, being several times let
            fall, fell in the times of 43½, 44, 44½, 45, and 46 oscillations, and
            mostly in 44 and 45, describing a height of 182½ inches, nearly.
        


        
            By the theory they ought to have fallen in the time of 46
            oscillations and5/9, nearly.
        


        
            Exper. 12. Three equal globes, weighing 141
            grains in air, and 43/8 in water, being let fall
            several times, fell in the times of 61, 62, 63, 64, and 65
            oscillations, describing a space of 182 inches.
        


        
            And by the theory they ought to have fallen in 64½ oscillations
            nearly.
        


        
            From these experiments it is manifest, that when the globes fell
            slowly, as in the second, fourth, fifth, eighth, eleventh, and twelfth
            experiments, the times of falling are rightly exhibited by the theory;
            but when the globes fell more swiftly, as in the sixth, ninth, and
            tenth experiments, the resistance was somewhat greater than in the
            duplicate ratio of the velocity. For the globes in falling oscillate a
            little; and this oscillation, in those globes that are light and fall
            slowly, soon ceases by the weakness of the motion; but in greater and
            heavier globes, the motion being strong, it continues longer, and is
            not to be checked by the ambient water till after several
            oscillations. Besides, the more swiftly the globes move, the less are
            they pressed by the fluid at their hinder parts; and if the velocity
            be perpetually increased, they will at last leave an empty space
            behind them, unless the compression of the fluid be increased at the
            same time. For the compression of the fluid ought to be increased (by
            Prop. XXXII and XXXIII) in the duplicate ratio of the velocity, in
            order to preserve the resistance in the same duplicate ratio. But
            because this is not done, the globes that move swiftly are not so much
            pressed at their hinder parts as the others; and by the defect of this
            pressure it comes to pass that their resistance is a little greater
            than in a duplicate ratio of their velocity.
        


        
            So that the theory agrees with the phaenomena of bodies falling in
            water. It remains that we examine the phaenomena of bodies falling in air.
        


        
            Exper. 13. From the top of St. Paul's
            Church in London, in June 1710, there were let
            fall together two glass globes, one full of quicksilver, the other of
            air; and in their fall they described a height of 220 English
            feet. A wooden table was suspended upon iron hinges on one side, and
            the other side of the same was supported by a wooden pin. The two
            globes lying upon this table were let fall together by pulling out the
            pin by means of an iron wire reaching from thence quite down to the
            ground; so that, the pin being removed, the
            table, which had then no support but the iron hinges, fell downward,
            and turning round upon the hinges, gave leave to the globes to drop
            off from it. At the same instant, with the same pull of the iron wire
            that took out the pin, a pendulum oscillating to seconds was let go,
            and began to oscillate. The diameters and weights of the globes, and
            their times of falling, are exhibited in the following table.
        


        
            
                
                    		The globes filled with mercury

                    		The globes full of air

                


                
                    		Weights
                    		Diameters
                    		Times in
falling
                    		Weights
                    		Diameters
                    		Times in
falling
                


            
            
                
                    		
                        908 grains

                        983 grains

                        866 grains

                        747 grains

                        808 grains

                        784 grains
                    
                    		
                        0,8 of an inch

                        0,8 of an inch

                        0,8 of an inch

                        0,75 of an inch

                        0,75 of an inch

                        0,75 of an inch
                    
                    		
                        4″

                        4-

                        4

                        4+

                        4

                        4+
                    
                    		
                        510 grains

                        642 grains

                        599 grains

                        515 grains

                        483 grains

                        641 grains
                    
                    		
                        5,1 inches

                        5,2 inches

                        5,1 inches

                        5,0 inches

                        5,0 inches

                        5,2 inches
                    
                    		
                        8″½

                        8

                        8

                        8¼

                        8½

                        8
                    
                


            
        


        
            But the times observed must be corrected; for the globes of mercury
            (by Galileo's theory), in 4 seconds of time, will describe
            257 English feet, and 220 feet in only 3″ 42‴. So that the
            wooden table, when the pin was taken out, did not turn upon its hinges
            so quickly as it ought to have done; and the slowness of that
            revolution hindered the descent of the globes at the beginning. For
            the globes lay about the middle of the table, and indeed were rather
            nearer to the axis upon which it turned than to the pin. And hence the
            times of falling were prolonged about 18‴; and therefore ought to be
            corrected by subducting that excess, especially in the larger globes,
            which, by reason of the largeness of their diameters, lay longer upon
            the revolving table than the others. This being done, the times in
            which the six larger globes fell will come forth 8″ 12‴, 7″ 42‴, 7″
            42‴, 7″ 57‴, 8″ 12‴ and 7″ 42‴.
        


        
            Therefore the fifth in order among the globes that were full of air
            being 5 inches in diameter, and 483 grains in weight, fell in 8″ 12‴,
            describing a space of 220 feet. The weight of a bulk of water equal to
            this globe is 16600 grains; and the weight of an equal bulk of air is
            16600

            860 grains, or 193/10
            grains; and therefore the weight of the globe in vacua is
            5023/10 grains; and this weight is to the weight
            of a bulk of air equal to the globe as 5023/10
            to 193/10; and so is 2F to 8/3
            of the diameter of the globe, that is, to 13⅓ inches. Whence 2F
            becomes 28 feet 11 inches. A globe, falling in vacua with
            its whole weight of 5023/10 grains, will in one
            second of time describe 193⅓ inches as above; and with the weight of
            483 grains will describe 185,905 inches; and with that weight 483
            grains in vacua will describe the space F, or 14 feet 5½
            inches, in the time of 57‴ 58″″, and acquire the greatest velocity it
            is capable of descending with in the air. With this velocity the globe
            in 8″ 12‴ of time will describe 245 feet and 5⅓ inches. Subduct
            1,3863F, or 20 feet and ½ an inch, and there remain 225 feet 5 inches.
            This space, therefore, the falling globe ought by the theory
            to describe in 8″ 12‴. But by the experiment it described a space of
            220 feet. The difference is insensible.
        


        
            By like calculations applied to the other globes full of air, I
            composed the following table.
        


        
            
                
                    		The weights
of the
globe
                    		The
diameters
                    		The times falling
from a height
of 220 feet
                    		The spaces which
they would describe
by the theory
                    		The
excesses
                


            
            
                
                    		
                        510 grains

                        642 grains

                        599 grains

                        515 grains

                        483 grains

                        641 grains
                    
                    		
                        5,1 inches

                        5,2 inches

                        5,1 inches

                        5 inches

                        5 inches

                        5,2 inches
                    
                    		
                        8″ 12‴

                        7″ 42‴

                        7″ 42‴

                        7″ 57‴

                        8″ 12‴

                        7″ 42‴
                    
                    		
                        226 feet 11 inch.

                        230 feet 9 inch.

                        227 feet 10 inch.

                        224 feet 5 inch.

                        225 feet 5 inch

                        230 feet 7 inch.
                    
                    		
                        6 feet 11 inch

                        10 feet 9 inch

                        7 feet 0 inch

                        4 feet 5 inch

                        5 feet 5 inch

                        10 feet 7 inch
                    
                


            
        


        
            Exper. 14. Anno 1719, in the month
            of July, Dr. Desaguliers made some experiments of
            this kind again, by forming hogs' bladders into spherical orbs; which
            was done by means of a concave wooden sphere, which the bladders,
            being wetted well first, were put into. After that being blown full of
            air, they were obliged to fill up the spherical cavity that contained
            them; and then, when dry, were taken out. These were let fall from the
            lantern on the top of the cupola of the same church, namely, from a
            height of 272 feet; and at the same moment of time there was let fall
            a leaden globe, whose weight was about 2 pounds troy weight.
            And in the mean time some persons standing in the upper part of the
            church where the globes were let fall observed the whole times of
            falling; and others standing on the ground observed the differences of
            the times between the fall of the leaden weight and the fall of the
            bladder. The times were measured by pendulums oscillating to half
            seconds. And one of those that stood upon the ground had a machine
            vibrating four times in one second; and another had another machine
            accurately made with a pendulum vibrating four times in a second also.
            One of those also who stood at the top of the church had a like
            machine; and these instruments were so contrived, that their motions
            could be stopped or renewed at pleasure. Now the leaden globe fell in
            about four seconds and ¼ of time; and from the addition of this time
            to the difference of time above spoken of, was collected the whole
            time in which the bladder was falling. The times which the five
            bladders spent in falling, after the leaden globe had reached the
            ground, were, the first time, 14¾″, 12¾″, 145/8″,
            17¾″, and 167/8″; and the second time, 14½″,
            14¼″, 14″, 19″, and 16¾″. Add to these 4¼″, the time in which the
            leaden globe was falling, and the whole times in which the five
            bladders fell were, the first time, 19″, 17″, 187/8″,
            22″, and 211/8″; and the second time, 18¾″,
            18½″, 18¼″, 23¼″, and 21″. The times observed at the top of the church
            were, the first time, 193/8″, 17¼″, 18¾″, 221/8″,
            and 215/8″; and the second time, 19″, 185/8″,
            183/8″, 24″, and 21¼″. But the bladders did not
            always fall directly down, but sometimes fluttered a little in the
            air, and waved to and fro, as they were
            descending. And by these motions the times of their falling were
            prolonged, and increased by half a second sometimes, and sometimes by
            a whole second. The second and fourth bladder fell most directly the
            first time, and the first and third the second time. The fifth bladder
            was wrinkled, and by its wrinkles was a little retarded. I found their
            diameters by their circumferences measured with a very fine thread
            wound about them twice. In the following table I have compared the
            experiments with the theory; making the density of air to be to the
            density of rain-water as 1 to 860, and computing the spaces which by
            the theory the globes ought to describe in falling.
        


        
            
                
                    		The weight
of the
bladders
                    		The
diameters
                    		The times
of falling
from a height
of 272 feet
                    		The spaces which by
the theory ought to
have been described
in those times
                    		The difference
between the theory
and the experiments
                


            
            
                
                    		
                        128 grains

                        156 grains

                        137½ grains

                        97½ grains

                        991/8 grains
                    
                    		
                        5,28 inches

                        5,19 inches

                        5,3 inches

                        5,26 inches

                        5 inches
                    
                    		
                        19″

                        17″

                        18″

                        22″

                        211/8″
                    
                    		
                        271 feet 11 in.

                        272 feet 0½ in.

                        272 feet 7 in.

                        277 feet 4 in.

                        282 feet 0 in.
                    
                    		
                        - 0 ft 1 in.

                        + 0 ft 0½ in.

                        + 0 ft 7 in.

                        + 5 ft 4 in.

                        + 10 ft 0 in.
                    
                


            
        


        
            Our theory, therefore, exhibits rightly, within a very little, all
            the resistance that globes moving either in air or in water meet with;
            which appears to be proportional to the densities of the fluids in
            globes of equal velocities and magnitudes.
        


        
            In the Scholium subjoined to the sixth Section, we shewed, by
            experiments of pendulums, that the resistances of equal and equally
            swift globes moving in air, water, and quicksilver, are as the
            densities of the fluids. We here prove the same more accurately by
            experiments of bodies falling in air and water. For pendulums at each
            oscillation excite a motion in the fluid always contrary to the motion
            of the pendulum in its return; and the resistance arising from this
            motion, as also the resistance of the thread by which the pendulum is
            suspended, makes the whole resistance of a pendulum greater than the
            resistance deduced from the experiments of falling bodies. For by the
            experiments of pendulums described in that Scholium, a globe of the
            same density as water in describing the length of its semidiameter in
            air would lose the 1

            3342 part of its motion. But by the
            theory delivered in this seventh Section, and confirmed by experiments
            of falling bodies, the same globe in describing the same length would
            lose only a part of its motion equal to 1

            4586, supposing the density of water to
            be to the density of air as 860 to 1. Therefore the resistances were
            found greater by the experiments of pendulums (for the reasons just
            mentioned) than by the experiments of falling globes; and that in the
            ratio of about 4 to 3. Bat yet since the resistances of pendulums
            oscillating in air, water, and quicksilver, are alike increased by
            like causes, the proportion of the resistances in these mediums will
            be rightly enough exhibited by the experiments
            of pendulums, as well as by the experiments of falling bodies. And
            from all this it may be concluded, that the resistances of bodies,
            moving in any fluids whatsoever, though of the most extreme fluidity,
            are, caeteris paribus, as the densities of the fluids.
        


        
            These things being thus established, we may now determine what part
            of its motion any globe projected in any fluid whatsoever would nearly
            lose in a given time. Let D be the diameter of the globe, and V its
            velocity at the beginning of its motion, and T the time in which a
            globe with the velocity V can describe in vacuo a space that
            is, to the space 8/3D
            as the density of the globe to the density of the fluid; and the globe
            projected in that fluid will, in any other time t lose the
            part tV

            T+t, the part 
            TV

            T+t remaining; and will describe a
            space, which will be to that described in the same time in vacuo
            with the uniform velocity V, as the logarithm of the number 
            T+t

            T multiplied by the number 2,302585093
            is to the number t

            T, by Cor. 7, Prop. XXXV. In slow
            motions the resistance may be a little less, because the figure of a
            globe is more adapted to motion than the figure of a cylinder
            described with the same diameter. In swift motions the resistance may
            be a little greater, because the elasticity and compression of the
            fluid do not increase in the duplicate ratio of the velocity. But
            these little niceties I take no notice of.
        


        
            And though air, water, quicksilver, and the like fluids, by the
            division of their parts in infinitum, should be subtilized,
            and become mediums infinitely fluid, nevertheless, the resistance they
            would make to projected globes would be the same. For the resistance
            considered in the preceding Propositions arises from the inactivity of
            the matter; and the inactivity of matter is essential to bodies, and
            always proportional to the quantity of matter. By the division of the
            parts of the fluid the resistance arising from the tenacity and
            friction of the parts may be indeed diminished; but the quantity of
            matter will not be at all diminished by this division; and if the
            quantity of matter be the same, its force of inactivity will be the
            same; and therefore the resistance here spoken of will be the same, as
            being always proportional to that force. To diminish this resistance,
            the quantity of matter in the spaces through which the bodies move
            must be diminished; and therefore the celestial spaces, through which
            the globes of the planets and comets are perpetually passing towards
            all parts, with the utmost freedom, and without the least sensible
            diminution of their motion, must be utterly void of any corporeal
            fluid, excepting, perhaps, some extremely rare vapours and the rays of
            light.
        


        
            Projectiles excite a motion in fluids as they
            pass through them, and this motion arises from the excess of the
            pressure of the fluid at the fore parts of the projectile above the
            pressure of the same at the hinder parts; and cannot be less in
            mediums infinitely fluid than it is in air, water, and quicksilver, in
            proportion to the density of matter in each. Now this excess of
            pressure does, in proportion to its quantity, not only excite a motion
            in the fluid, but also acts upon the projectile so as to retard its
            motion; and therefore the resistance in every fluid is as the motion
            excited by the projectile in the fluid; and cannot be less in the most
            subtile aether in proportion to the density of that aether, than it is
            in air, water, and quicksilver, in proportion to the densities of
            those fluids.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Chapter 2





    Axioms, or Laws of Motion.




    
        Law I.


            
                
                    Every body perseveres in its state of rest, or of uniform
                    motion in a right line, unless it is compelled to change that
                    state by forces impressed thereon.
                
            


        

        
            Projectiles
            persevere in their motions, so
            far as they are not retarded by the resistance of the air, or
            impelled downwards by the force of gravity. A top, whose parts by
            their cohesion are perpetually drawn aside from rectilinear motions,
            does not cease its rotation, otherwise than as it is retarded by the
            air. The greater bodies of the planets and comets, meeting with less
            resistance in more free spaces, preserve their motions both
            progressive and circular for a much longer time.
        


    

    
        Law ii.


            
                
                    The alteration of motion is ever proportional to the motive
                    force impressed; and is made in the direction of the right line
                    in which that force is impressed.
                
            


        

        
            If any force generates a motion, a double force will generate
            double the motion, a triple force triple the motion, whether that
            force be impressed altogether and at once, or gradually and
            successively. And this motion (being always directed the same way
            with the generating force), if the body moved before, is added to or
            subducted from the former motion, according as they directly
            conspire with or are directly contrary to each other; or obliquely
            joined, when they are oblique, so as to produce a new motion
            compounded from the determination of both.
        


    

    
        Law iii.


            
                
                    To every action there is always opposed an equal reaction: or
                    the mutual actions of two bodies upon each other are always
                    equal, and directed to contrary parts.
                
            


        

        
            Whatever draws or presses another is as much drawn or pressed by
            that other. If you press a stone with your finger, the finger is
            also pressed by the stone. If a horse draws a stone tied to a rope,
            the horse (if I may so say) will be equally drawn back towards the
            stone: for the distended rope, by the same endeavour to relax or
            unbend itself, will draw the horse as much towards the stone, as it
            does the stone towards the horse, and will obstruct the progress of
            the one as much as it advances that of the other. 
            If a body impinge upon another, and by its force change the motion of
            the other, that body also (because of the equality of the mutual
            pressure) will undergo an equal change, in its own motion, towards
            the contrary part. The changes made by these actions are equal, not
            in the velocities but in the motions of bodies; that is to say, if
            the bodies are not hindered by any other impediments. For, because
            the motions are equally changed, the changes of the velocities made
            towards contrary parts are reciprocally proportional to the bodies.
            This law takes place also in attractions, as will be proved in the
            next scholium.
        


    

    
        Corollary I.


            
                
                    A body by two forces conjoined will describe the diagonal of
                    a parallelogram, in the same time that it would describe the
                    sides, by those forces apart.
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            If a body in a given time, by the force M impressed apart in the
            place A, should with an uniform motion be carried from A to B; and
            by the force N impressed apart in the same place, should be carried
            from A to C; complete the parallelogram ABCD, and, by both forces
            acting together, it will in the same time be carried in the diagonal
            from A to D. For since the force N acts in the direction of the line
            AC, parallel to BD, this force (by the second law) will not at all
            alter the velocity generated by the other force M, by which the body
            is carried towards the line BD. The body therefore will arrive at
            the line BD in the same time, whether the force N be impressed or
            not; and therefore at the end of that time it will be found
            somewhere in the line BD. By the same argument, at the end of the
            same time it will be found somewhere in the line CD. Therefore it
            will be found in the point D, where both lines meet. But it will
            move in a right line from A to D, by Law I.
        


    

    
        Corollary ii.


            
                
                    And hence is explained the composition of any one direct
                    force AD, out of any two oblique forces AC and CD; and, on the
                    contrary, the resolution of any one direct force AD into two
                    oblique forces AC and CD: which composition and resolution are
                    abundantly confirmed from mechanics.
                
            


        

        
            As if the unequal radii OM and ON drawn from the centre O of any
            wheel, should sustain the weights A and P by the cords MA and NP;
            and the forces of those weights to move the wheel were required.
            Through the centre O draw the right line KOL, meeting the cords
            perpendicularly in K and L; and from the centre O, with OL the
            greater of the distances 
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            OK and OL, describe a circle, meeting the cord MA in D: and drawing
            OD, make AC parallel and DC perpendicular thereto. Now, it being
            indifferent whether the points K, L, D, of the cords be fixed to the
            plane of the wheel or not, the weights will have the same effect
            whether they are suspended from the points K and L, or from D and L.
            Let the whole force of the weight A be represented by the line AD,
            and let it be resolved into the forces AC and CD; of which the force
            AC, drawing the radius OD directly from the centre, will have no
            effect to move the wheel: but the other force DC, drawing the radius
            DO perpendicularly, will have the same effect as if it drew
            perpendicularly the radius OL equal to OD; that is, it will have the
            same effect as the weight P, if that weight is to the weight A as
            the force DC is to the force DA; that is (because of the similar
            triangles ADC, DOK), as OK to OD or OL. Therefore the weights A and
            P, which are reciprocally as the radii OK and OL that lie in the
            same right line, will be equipollent, and so remain in equilibrio;
            which is the well known property of the balance, the lever, and the
            wheel. If either weight is greater than in this ratio, its force to
            move the wheel will be so much greater.
        


        
            If the weight p, equal to the weight P, is partly
            suspended by the cord Np, partly sustained by the oblique
            plane pG; draw pH, NH, the former perpendicular
            to the horizon, the latter to the plane pG; and if the
            force of the weight p tending downwards is represented by
            the line pH, it may be resolved into the forces pN,
            HN. If there was any plane pQ, perpendicular to the cord pN,
            cutting the other plane pG in a line parallel to the
            horizon, and the weight p was supported only by those
            planes pQ, pG, it would press those planes
            perpendicularly with the forces pN; HN; to wit, the plane
            pQ with the force pN, and the plane pG
            with the force HN. And therefore if the plane pQ was taken
            away, so that the weight might stretch the cord, because the cord,
            now sustaining the weight, supplies the place of the plane that was
            removed, it will be strained by the same force pN which
            pressed upon the plane before. Therefore, the tension of this
            oblique cord pN will be to that of the other perpendicular
            cord PN as pN to pH. And therefore if the weight
            p is to the weight A in a ratio compounded of the
            reciprocal ratio of the least distances of the cords PN, AM, from
            the centre of the wheel, and of the direct ratio of pH to
            pN, the weights will have the same effect towards moving
            the wheel, and will therefore sustain each other; as any one may
            find by experiment.
        


        
            But the weight p pressing upon those two oblique planes,
            may be considered as a wedge between the two internal surfaces of a
            body split by it; and hence the forces of the wedge and the mallet
            may be determined; for because the force
            with which the weight p presses the plane pQ is
            to the force with which the same, whether by its own gravity, or by
            the blow of a mallet, is impelled in the direction of the line pH
            towards both the planes, as pN to pH; and to the
            force with which it presses the other plane pG, as pN
            to NH. And thus the force of the screw may be deduced from a like
            resolution of forces; it being no other than a wedge impelled with
            the force of a lever. Therefore the use of this Corollary spreads
            far and wide, and by that diffusive extent the truth thereof is
            farther confirmed. For on what has been said depends the whole
            doctrine of mechanics variously demonstrated by different authors.
            For from hence are easily deduced the forces of machines, which are
            compounded of wheels, pullies, levers, cords, and weights, ascending
            directly or obliquely, and other mechanical powers; as also the
            force of the tendons to move the bones of animals.
        


    

    
        Corollary iii.


            
                
                    The quantity of motion, which is collected by taking the sum
                    of the motions directed towards the same parts, and the
                    difference of those that are directed to contrary parts, suffers
                    no change from the action of bodies among themselves.
                
            


        

        
            For action and its opposite re-action are equal, by Law III, and
            therefore, by Law II, they produce in the motions equal changes
            towards opposite parts. Therefore if the motions are directed
            towards the same parts, whatever is added to the motion of the
            preceding body will be subducted from the motion of that which
            follows; so that the sum will be the same as before. If the bodies
            meet, with contrary motions, there will be an equal deduction from
            the motions of both; and therefore the difference of the motions
            directed towards opposite parts will remain the same.
        


        
            Thus if a spherical body A with two parts of velocity is triple of
            a spherical body B which follows in the same right line with ten
            parts of velocity, the motion of A will be to that of B as 6 to 10.
            Suppose, then, their motions to be of 6 parts and of 10 parts, and
            the sum will be 16 parts. Therefore, upon the meeting of the bodies,
            if A acquire 3, 4, or 5 parts of motion, B will lose as many; and
            therefore after reflexion A will proceed with 9, 10, or 11 parts,
            and B with 7, 6, or 5 parts; the sum remaining always of 16 parts as
            before. If the body A acquire 9, 10, 11, or 12 parts of motion, and
            therefore after meeting proceed with 15, 16, 17, or 18 parts, the
            body B, losing so many parts as A has got, will either proceed with
            1 part, having lost 9, or stop and remain at rest, as having lost
            its whole progressive motion of 10 parts; or it will go back with 1
            part, having not only lost its whole motion, but (if I may so say)
            one part more; or it will go back with 2 parts, because a
            progressive motion of 12 parts is taken off. And so the sums of the
            conspiring motions 15+1, or 16+0, and the differences of the
            contrary motions 17−1 and 18−2, will always
            be equal to 16 parts, as they were before the meeting and reflexion
            of the bodies. But, the motions being known with which the bodies
            proceed after reflexion, the velocity of either will be also known,
            by taking the velocity after to the velocity before reflexion, as
            the motion after is to the motion before. As in the last case, where
            the motion of the body A was of 6 parts before reflexion and of 18
            parts after, and the velocity was of 2 parts before reflexion, the
            velocity thereof after reflexion will be found to be of 6 parts; by
            saying, as the 6 parts of motion before to 18 parts after, so are 2
            parts of velocity before reflexion to 6 parts after.
        


        
            But if the bodies are either not spherical, or, moving in different
            right lines, impinge obliquely one upon the other, and their motions
            after reflexion are required, in those cases we are first to
            determine the position of the plane that touches the concurring
            bodies in the point of concourse, then the motion of each body (by
            Corol. II) is to be resolved into two, one perpendicular to that
            plane, and the other parallel to it. This done, because the bodies
            act upon each other in the direction of a line perpendicular to this
            plane, the parallel motions are to be retained the same after
            reflexion as before; and to the perpendicular motions we are to
            assign equal changes towards the contrary parts; in such manner that
            the sum of the conspiring and the difference of the contrary motions
            may remain the same as before. From such kind of reflexions also
            sometimes arise the circular motions of bodies about their own
            centres. But these are cases which I do not consider in what
            follows; and it would be too tedious to demonstrate every particular
            that relates to this subject.
        


    

    
        Corollary iv.


            
                
                    The common centre of gravity of two or more bodies does not
                    alter its state of motion or rest by the actions of the bodies
                    among themselves; and therefore the common centre of gravity of
                    all bodies acting upon each other (excluding outward actions and
                    impediments) is either at rest, or moves uniformly in a right line.
                
            


        

        
            For if two points proceed with an uniform motion in right lines,
            and their distance be divided in a given ratio, the dividing point
            will be either at rest, or proceed uniformly in a right line. This
            is demonstrated hereafter in Lem. XXIII and its Corol., when the
            points are moved in the same plane; and by a like way of arguing, it
            may be demonstrated when the points are not moved in the same plane.
            Therefore if any number of bodies move uniformly in right lines, the
            common centre of gravity of any two of them is either at rest, or
            proceeds uniformly in a right line; because the line which connects
            the centres of those two bodies so moving is divided at that common
            centre in a given ratio. In like manner the common centre of those
            two and that of a third body will be either at rest or moving
            uniformly in a right line because at that centre the distance
            between the common centre of the two bodies,
            and the centre of this last, is divided in a given ratio. In like
            manner the common centre of these three, and of a fourth body, is
            either at rest, or moves uniformly in a right line; because the
            distance between the common centre of the three bodies, and the
            centre of the fourth is there also divided in a given ratio, and so
            on in infinitum. Therefore, in a system of bodies where
            there is neither any mutual action among themselves, nor any foreign
            force impressed upon them from without, and which consequently move
            uniformly in right lines, the common centre of gravity of them all
            is either at rest or moves uniformly forward in a right line.
        


        
            Moreover, in a system of two bodies mutually acting upon each
            other, since the distances between their centres and the common
            centre of gravity of both arc reciprocally as the bodies, the
            relative motions of those bodies, whether of approaching to or of
            receding from that centre, will be equal among themselves. Therefore
            since the changes which happen to motions are equal and directed to
            contrary parts, the common centre of those bodies, by their mutual
            action between themselves, is neither promoted nor retarded, nor
            suffers any change as to its state of motion or rest. But in a
            system of several bodies, because the common centre of gravity of
            any two acting mutually upon each other suffers no change in its
            state by that action: and much less the common centre of gravity of
            the others with which that action does not intervene; but the
            distance between those two centres is divided by the common centre
            of gravity of all the bodies into parts reciprocally proportional to
            the total sums of those bodies whose centres they are: and therefore
            while those two centres retain their state of motion or rest, the
            common centre of all does also retain its state: it is manifest that
            the common centre of all never suffers any change in the state of
            its motion or rest from the actions of any two bodies between
            themselves. But in such a system all the actions of the bodies among
            themselves either happen between two bodies, or are composed of
            actions interchanged between some two bodies; and therefore they do
            never produce any alteration in the common centre of all as to its
            state of motion or rest. Wherefore since that centre, when the
            bodies do not act mutually one upon another, either is at rest or
            moves uniformly forward in some right line, it will, notwithstanding
            the mutual actions of the bodies among themselves, always persevere
            in its state, either of rest, or of proceeding uniformly in a right
            line, unless it is forced out of this state by the action of some
            power impressed from without upon the whole system. And therefore
            the same law takes place in a system consisting of many bodies as in
            one single body, with regard to their persevering in their state of
            motion or of rest. For the progressive motion, whether of one single
            body, or of a whole system of bodies, is always to be estimated from
            the motion of the centre of gravity.
        


    

    
        Corollary V.


            
                The motions of bodies included in a given space are
                the same among themselves, whether that
                space is at rest, or moves uniformly forwards in a right line
                without any circular motion.
            


        

        
            For the differences of the motions tending towards the same parts,
            and the sums of those that tend towards contrary parts, are, at
            first (by supposition), in both cases the same; and it is from those
            sums and differences that the collisions and impulses do arise with
            which the bodies mutually impinge one upon another. Wherefore (by
            Law II), the effects of those collisions will be equal in both
            cases; and therefore the mutual motions of the bodies among
            themselves in the one case will remain equal to the mutual motions
            of the bodies among themselves in the other. A clear proof of which
            we have from the experiment of a ship; where all motions happen
            after the same manner, whether the ship is at rest, or is carried
            uniformly forwards in a right line.
        


    

    
        Corollary vi.


            
                If bodies, any how moved among themselves, are urged
                in the direction of parallel lines by equal accelerative forces,
                they will all continue to move among themselves, after the same,
                manner as if they had been urged by no such forces.
            


        

        
            For these forces acting equally (with respect to the quantities of
            the bodies to be moved), and in the direction of parallel lines,
            will (by Law II) move all the bodies equally (as to velocity), and
            therefore will never produce any change in the positions or motions
            of the bodies among themselves.
        


    

    
        Scholium.


        

        
            Hitherto I have laid down such principles as have been received by
            mathematicians, and are confirmed by abundance of experiments. By
            the first two Laws and the first two Corollaries, Galileo discovered
            that the descent of bodies observed the duplicate ratio of the time,
            and that the motion of projectiles was in the curve of a parabola;
            experience agreeing with both, unless so far as these motions are a
            little retarded by the resistance of the air. When a body is
            falling, the uniform force of its gravity acting equally, impresses,
            in equal particles of time, equal forces upon that body, and
            therefore generates equal velocities; and in the whole time
            impresses a whole force, and generates a whole velocity proportional
            to the time. And the spaces described in proportional times are as
            the velocities and the times conjunctly; that is, in a duplicate
            ratio of the times. And when a body is thrown upwards, its uniform
            gravity impresses forces and takes off velocities proportional to
            the times; and the times of ascending to the greatest heights are as
            the velocities to be taken off, and those heights are as the
            velocities and the times conjunctly, or in the duplicate ratio of
            the velocities. And if a body be projected in any direction, the
            motion arising from its projection is compounded with the
            motion
            arising from its gravity. As if the body A by its motion of
            projection alone could describe in a given time the right line AB,
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            and with its motion of falling alone could
            describe in the same time the altitude AC; complete the
            paralellogram
            ABDC, and the body by that compounded motion will at the end of the
            time be found in the place D; and the curve line AED, which that
            body describes, will be a parabola, to which the right line AB will
            be a tangent in A; and whose ordinate BD will be as the square of
            the line AB. On the same Laws and Corollaries depend those things
            which have been demonstrated concerning the times of the vibration
            of pendulums, and are confirmed by the daily experiments of pendulum
            clocks. By the same, together with the third Law, Sir Christ. Wren,
            Dr. Wallis, and Mr. Huygens, the greatest geometers of our times,
            did severally determine the rules of the congress and reflexion of
            hard bodies, and much about the same time communicated their
            discoveries to the Royal Society, exactly agreeing among themselves
            as to those rules. Dr. Wallis, indeed, was something more early in
            the publication; then followed Sir Christopher Wren, and, lastly,
            Mr. Huygens. But Sir Christopher Wren confirmed the truth of the
            thing before the Royal Society by the experiment of pendulums, which
            Mr. Mariotte soon after thought fit to explain in a treatise
            entirely upon that subject. But to bring this experiment to an
            accurate agreement with the theory, we are to have a due regard as
            well to the resistance of the air as to the elastic force of the
            concurring bodies. Let the spherical bodies A, B be suspended by the
            parallel and
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            equal strings AC, BD, from the
            centres C, D. About these centres, with those intervals, describe
            the semicircles EAF, GBH, bisected by the radii CA, DB. Bring the
            body A to any point R of the arc EAF, and (withdrawing the body B)
            let it go from thence, and after one oscillation suppose it to
            return to the point V: then RV will be the retardation arising from
            the resistance of the air. Of this RV let ST be a fourth part,
            situated in the middle, to wit, so as RS and TV may be equal, and RS
            may be to ST as 3 to 2, then will ST represent very nearly the
            retardation during the descent from S to A. Restore the body B to
            its place: and, supposing the body A to be let fall from the point
            S, the velocity thereof in the place of reflexion A, without
            sensible error, will be the same as if it had descended in
            vacuo from the point T. Upon which account this velocity may
            be represented by the chord of the arc TA. For it is a proposition
            well known to geometers, that the velocity of a pendulous body in
            the lowest point is as the chord of the arc which it has described
            in its descent. After reflexion, suppose the
            body A comes to the place s, and the body B to the place k.
            Withdraw the body B, and find the place v, from which if
            the body A, being let go, should after one oscillation return to the
            place r, st may be a fourth part of rv,
            so placed in the middle thereof as to leave rs equal to tv,
            and let the chord of the arc tA. represent the velocity
            which the body A had in the place A immediately after reflexion. For
            t will be the true and correct place to which the body A
            should have ascended, if the resistance of the air had been taken
            off. In the same way we are to correct the place k to
            which the body B ascends, by finding the place l to which
            it should have ascended in vacuo. And thus everything may
            be subjected to experiment, in the same manner as if we were really
            placed in vacuo. These things being done, we are to take
            the product (if I may so say) of the body A, by the chord of the arc
            TA (which represents its velocity), that we may have its motion in
            the place A immediately before reflexion; and then by the chord of
            the arc tA, that we may have its motion in the place A
            immediately after reflexion. And so we are to take the product of
            the body B by the chord of the arc Bl, that we may have the
            motion of the same immediately after reflexion. And in like manner,
            when two bodies are let go together from different places, we are to
            find the motion of each, as well before as after reflexion; and then
            we may compare the motions between themselves, and collect the
            effects of the reflexion. Thus trying the thing with pendulums of
            ten feet, in unequal as well as equal bodies, and making the bodies
            to concur after a descent through large spaces, as of 8, 12, or 16
            feet, I found always, without an error of 3 inches, that when the
            bodies concurred together directly, equal changes towards the
            contrary parts were produced in their motions, and, of consequence,
            that the action and reaction were always equal. As if the body A
            impinged upon the body B at rest with 9 parts of motion, and losing
            7, proceeded after reflexion with 2, the body B was carried
            backwards with those 7 parts. If the bodies concurred with contrary
            motions, A with twelve parts of motion, and B with six, then if A
            receded with 2, B receded with 8; to wit, with a deduction of 14
            parts of motion on each side. For from the motion of A subducting
            twelve parts, nothing will remain; but subducting 2 parts more, a
            motion will be generated of 2 parts towards the contrary way; and
            so, from the motion of the body B of 6 parts, subducting 14 parts, a
            motion is generated of 8 parts towards the contrary way. But if the
            bodies were made both to move towards the same way, A, the swifter,
            with 14 parts of motion, B, the slower, with 5, and after reflexion
            A went on with 5, B likewise went on with 14 parts; 9 parts being
            transferred from A to B. And so in other cases. By the congress and
            collision of bodies, the quantity of motion, collected from the sum
            of the motions directed towards the same way, or from the difference
            of those that were directed towards contrary ways, was never
            changed. For the error of an inch or two in measures may be easily
            ascribed to the difficulty of executing
            everything with accuracy. It was not easy to let go the two
            pendulums so exactly together that the bodies should impinge one
            upon the other in the lowermost place AB; nor to mark the places s,
            and k, to which the bodies ascended after congress. Nay,
            and some errors, too, might have happened from the unequal density
            of the parts of the pendulous bodies themselves, and from the
            irregularity of the texture proceeding from other causes.
        


        
            But to prevent an objection that may perhaps be alledged against
            the rule, for the proof of which this experiment was made, as if
            this rule did suppose that the bodies were either absolutely hard,
            or at least perfectly elastic (whereas no such bodies are to be
            found in nature), I must add, that the experiments we have been
            describing, by no means depending upon that quality of hardness, do
            succeed as well in soft as in hard bodies. For if the rule is to be
            tried in bodies not perfectly hard, we are only to diminish the
            reflexion in such a certain proportion as the quantity of the
            elastic force requires. By the theory of Wren and Huygens, bodies
            absolutely hard return one from another with the same velocity with
            which they meet. But this may be affirmed with more certainty of
            bodies perfectly elastic. In bodies imperfectly elastic the velocity
            of the return is to be diminished together with the elastic force;
            because that force (except when the parts of bodies are bruised by
            their congress, or suffer some such extension as happens under the
            strokes of a hammer) is (as far as I can perceive) certain and
            determined, and makes the bodies to return one from the other with a
            relative velocity, which is in a given ratio to that relative
            velocity with which they met. This I tried in balls of wool, made up
            tightly, and strongly compressed. For, first, by letting go the
            pendulous bodies, and measuring their reflexion, I determined the
            quantity of their elastic force; and then, according to this force,
            estimated the reflexions that ought to happen in other cases of
            congress. And with this computation other experiments made
            afterwards did accordingly agree; the balls always receding one from
            the other with a relative velocity, which was to the relative
            velocity with which they met as about 5 to 9. Balls of steel
            returned with almost the same velocity: those of cork with a
            velocity something less; but in balls of glass the proportion was as
            about 15 to 16. And thus the third Law, so far as it regards
            percussions and reflexions, is proved by a theory exactly agreeing
            with experience.
        


        
            In attractions, I briefly demonstrate the thing after this manner.
            Suppose an obstacle is interposed to hinder the congress of any two
            bodies A, B, mutually attracting one the other: then if either body,
            as A, is more attracted towards the other body B, than that other
            body B is towards the first body A, the obstacle will be more
            strongly urged by the pressure of the body A than by the pressure of
            the body B, and therefore will not remain in equilibrio: but the
            stronger pressure will prevail, and will make the system of the two
            bodies, together with the obstacle, to move directly towards
            the parts on which B lies; and in free spaces, to go forward in
            infinitum with a motion perpetually accelerated; which is
            absurd and contrary to the first Law. For, by the first Law, the
            system ought to persevere in its state of rest, or of moving
            uniformly forward in a right line: and therefore the bodies must
            equally press the obstacle, and be equally attracted one by the
            other. I made the experiment on the loadstone and iron. If these,
            placed apart in proper vessels, are made to float by one another in
            standing water, neither of them will propel the other; but, by being
            equally attracted, they will sustain each other's pressure, and rest
            at last in an equilibrium.
        


        
            So the gravitation betwixt the earth and its parts is mutual. Let
            the earth FI be cut by any plane EG into two parts EGF and EGI, and
            their [image: Mathematical Principles of Natural Philosophy figure: 93]
            weights one towards the other
            will be mutually equal. For if by another plane HK, parallel to the
            former EG, the greater part EGI is cut into two parts EGKH and HKI,
            whereof HKI is equal to the part EFG, first cut off, it is evident
            that the middle part EGKH, will have no propension by its proper
            weight towards either side, but will hang as it were, and rest in an
            equilibrium betwixt both. But the one extreme part HKI will with its
            whole weight bear upon and press the middle part towards the other
            extreme part EGF; and therefore the force with which EGI, the sum of
            the parts HKI and EGKH, tends towards the third part EGF, is equal
            to the weight of the part HKI, that is, to the weight of the third
            part EGF. And therefore the weights of the two parts EGI and EGF,
            one towards the other, are equal, as I was to prove. And indeed if
            those weights were not equal, the whole earth floating in the
            non-resisting aether would give way to the greater weight, and,
            retiring from it, would be carried off in infinitum.
        


        
            And as those bodies are equipollent in the congress and reflexion,
            whose velocities are reciprocally as their innate forces, so in the
            use of mechanic instruments those agents are equipollent, and
            mutually sustain each the contrary pressure of the other, whose
            velocities, estimated according to the determination of the forces,
            are reciprocally as the forces.
        


        
            So those weights are of equal force to move the arms of a balance;
            which during the play of the balance are reciprocally as their
            velocities upwards and downwards; that is, if the ascent or descent
            is direct, those weights are of equal force, which are reciprocally
            as the distances of the points at which they are suspended from the
            axis of the balance; but if they are turned aside by the
            interposition of oblique planes, or other obstacles, and made to
            ascend or descend obliquely, those bodies will be equipollent, which
            are reciprocally as the heights of their ascent and descent taken
            according to the perpendicular; and that on account of the
            determination of gravity downwards.
        


        
            
            And in like manner in the pully, or in a
            combination of pullies, the force of a hand drawing the rope
            directly, which is to the weight, whether ascending directly or
            obliquely, as the velocity of the perpendicular ascent of the weight
            to the velocity of the hand that draws the rope, will sustain the
            weight.
        


        
            In clocks and such like instruments, made up from a combination of
            wheels, the contrary forces that promote and impede the motion of
            the wheels, if they are reciprocally as the velocities of the parts
            of the wheel on which they are impressed, will mutually sustain the
            one the other.
        


        
            The force of the screw to press a body is to the force of the hand
            that turns the handles by which it is moved as the circular velocity
            of the handle in that part where it is impelled by the hand is to
            the progressive velocity of the screw towards the pressed body.
        


        
            The forces by which the wedge presses or drives the two parts of
            the wood it cleaves are to the force of the mallet upon the wedge as
            the progress of the wedge in the direction of the force impressed
            upon it by the mallet is to the velocity with which the parts of the
            wood yield to the wedge, in the direction of lines perpendicular to
            the sides of the wedge. And the like account is to be given of all
            machines.
        


        
            The power and use of machines consist only in this, that by
            diminishing the velocity we may augment the force, and the contrary:
            from whence in all sorts of proper machines, we have the solution of
            this problem; To move a given weight with a given power,
            or with a given force to overcome any other given resistance. For if
            machines are so contrived that the velocities of the agent and
            resistant are reciprocally as their forces, the agent will just
            sustain the resistant, but with a greater disparity of velocity will
            overcome it. So that if the disparity of velocities is so great as
            to overcome all that resistance which commonly arises either from
            the attrition of contiguous bodies as they slide by one another, or
            from the cohesion of continuous bodies that are to be separated, or
            from the weights of bodies to be raised, the excess of the force
            remaining, after all those resistances are overcome, will produce an
            acceleration of motion proportional thereto, as well in the parts of
            the machine as in the resisting body. But to treat of mechanics is
            not my present business. I was only willing to show by those
            examples the great extent and certainty of the third Law of motion.
            For if we estimate the action of the agent from its force and
            velocity conjunctly, and likewise the reaction of the impediment
            conjunctly from the velocities of its several parts, and from the
            forces of resistance arising from the attrition, cohesion, weight,
            and acceleration of those parts, the action and reaction in the use
            of all sorts of machines will be found always equal to one another.
            And so far as the action is propagated by the intervening
            instruments, and at last impressed upon the resisting body, the
            ultimate determination of the action will be always contrary to the
            determination of the reaction.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.2





    
        Section ii.


        Of the Invention of Centripetal Forces.


    


    
        Proposition i. Theorem I.


            
                
                    The areas, which revolving bodies describe by radii drawn to an
                    immovable centre of force do lie in the same immovable planes, and
                    are proportional to the times in which they are described.
                
            


        

        
            For suppose the time to be divided into equal parts, and in the first
            part of that time let the body by its innate force describe the right
            line AB In the second part of that time, the same would (by Law I.),
            if not hindered, proceed directly to c, along the line Bc
            equal to AB; so that by the radii AS, BS, cS, drawn to the
            centre, the equal areas ASB, BSc, would be described.
            
            [image: Mathematical Principles of Natural Philosophy figure: 105]
            But when the body is arrived at
            B, suppose that a centripetal force acts at once with a great impulse;
            and, turning aside the body from the right line Bc, compels
            it afterwards to continue its motion along the right line BC. Draw cC
            parallel to BS meeting BC in C; and at the end of the second part of
            the time, the body (by Cor. I. of the Laws) will be found in C, in the
            same plane with the triangle ASB. Join SC, and, because SB and Cc
            are parallel, the triangle SBC will be equal to the triangle SBc,
            and therefore also to the triangle SAB. By the like argument, if the
            centripetal force acts successively in C, D, E. &c.; and makes the
            body, in each single particle of time, to describe the right lines CD,
            DE, EF, &c., they will all lie in the same plane; and the triangle
            SCD will be equal to the triangle SBC, and SDE to SCD, and SEF to SDE.
            And therefore, in equal times, equal areas are described in one
            immovable plane: and, by composition, any sums SADS, SAFS, of those
            areas, are one to the other as the times in which they are described.
            Now let the number of those triangles be augmented, and their breadth
            diminished in infinitum; and (by Cor. 4, Lem. III.) their
            ultimate perimeter ADF will be a curve line: and therefore the
            centripetal force, by which the body is perpetually drawn back from
            the tangent of this curve, will act continually; and any described
            areas SADS, SAFS, which are always proportional to the times of
            description, will, in this case also, be proportional to those times.
              Q.E.D.
        


        
            Cor. 1. The velocity of a body attracted
            towards an immovable centre, in spaces void of resistance, is
            reciprocally as the perpendicular let fall from that centre on the
            right line that touches the orbit. For the velocities in those places
            A, B, C, D, E, are as the bases AB, BC, CD, DE, EF, of equal
            triangles; and these bases are reciprocally as the perpendiculars let
            fall upon them.
        


        
            Cor. 2. If the chords AB, BC of two arcs,
            successively described in equal times by the same body, in spaces void
            of resistance, are completed into a parallelogram ABCV, and the
            diagonal BV of this parallelogram; in the position which it ultimately
            acquires when those arcs are diminished in infinitum, is
            produced both ways, it will pass through the centre of force.
        


        
            Cor. 3. If the chords AB, BC, and DE, EF, of
            arcs described in equal times, in spaces void
            of resistance, are completed into the parallelograms ABCV, DEFZ; the
            forces in B and E are one to the other in the ultimate ratio of the
            diagonals BV, EZ, when those arcs are diminished in infinitum. For the
            motions BC and EF of the body (by Cor. 1 of the Laws) are compounded
            of the motions Bc, BV, and Ef, EZ: but BV and EZ,
            which are equal to Cc and Ff, in the demonstration
            of this Proposition, were generated by the impulses of the centripetal
            force in B and E, and are therefore proportional to those impulses.
        


        
            Cor. 4. The forces by which bodies, in spaces
            void of resistance, are drawn back from rectilinear motions, and
            turned into curvilinear orbits, are one to another as the versed sines
            of arcs described in equal times; which versed sines tend to the
            centre of force, and bisect the chords when those arcs are diminished
            to infinity. For such versed sines are the halves of the diagonals
            mentioned in Cor. 3.
        


        
            Cor. 5. And therefore those forces are to the
            force of gravity as the said versed sines to the versed sines
            perpendicular to the horizon of those parabolic arcs which projectiles
            describe in the same time.
        


        
            Cor. 6. And the same things do all hold good
            (by Cor. 5 of the Laws), when the planes in which the bodies are
            moved, together with the centres of force which are placed in those
            planes, are not at rest, but move uniformly forward in right lines.
        


    

    
        Proposition ii. Theorem ii.


            
                
                    Every body that moves in any curve line described in a plane,
                    and by a radius, drawn to a point either immovable, or moving
                    forward with an uniform rectilinear motion, describes about that
                    point areas proportional to the times, is urged by a centripetal
                    force directed to that point.
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            Case. 1. For every body that moves in a curve
            line, is (by Law 1) turned aside from its rectilinear course by the
            action of some force that impels it. And that force by which the body
            is turned off from its rectilinear course, and is made to describe, in
            equal times, the equal least triangles SAB, SBC, SCD, &c., about
            the immovable point S (by Prop. XL. Book 1, Elem. and Law II), acts in
            the place B, according to the direction of a line parallel to
            cC, that is, in the direction of the line BS, and in the
            place C, according to the direction of a line parallel to dD,
            that is, in the direction of the line CS, &c.; and therefore acts
            always in the direction of lines tending to the immovable point S.
              Q.E.D.
        


        
            Case. 2. And (by Cor. 5 of the Laws) it is
            indifferent whether the superfices in which a body describes a
            curvilinear figure be quiescent, or moves together with the body, the
            figure described, and its point S, uniformly forward in right lines.
        


        
            Cor. 1. In non-resisting spaces or mediums,
            if the areas are not proportional to the times, the forces are not
            directed to the point in which the radii meet; but deviate therefrom in
            consequentia, or towards the parts to which the motion is
            directed, if the description of the areas is accelerated; but in
            antecedentia, if retarded.
        


        
            Cor. 2. And even in resisting mediums, if the
            description of the areas is accelerated, the directions of the forces
            deviate from the point in which the radii meet; towards the parts to
            which the motion tends.
        


    

    
        Scholium.



        
            A body may be urged by a centripetal force compounded of several
            forces; in which case the meaning of the Proposition is, that the
            force which results out of all tends to the point S. But if any force
            acts perpetually in the direction of lines perpendicular to the
            described surface, this force will make the body to deviate from the
            plane of its motion: but will neither augment nor diminish the
            quantity of the described surface, and is therefore to be neglected in
            the composition of forces.
        


    

    
        Proposition iii. Theorem iii.


            
                
                    Every body, that by a radius drawn to the centre of another
                    body, how soever moved, describes areas about that centre
                    proportional to the times, is urged by a force compounded out of
                    the centripetal force tending to that other body, and of all the
                    accelerative force by which that other body is impelled.
                
            


        

        
            Let L represent the one, and T the other body; and (by Cor. 6 of the
            Laws) if both bodies are urged in the direction of parallel lines, by
            a new force equal and contrary to that by which the second body T is
            urged, the first body L will go on to describe about the other body T
            the same areas as before: but the force by which that other body T was
            urged will be now destroyed by an equal and contrary force; and
            therefore (by Law I.) that other body T, now left to itself, will
            either rest, or move uniformly forward in a right line: and the first
            body L impelled by the difference of the forces, that is, by the force
            remaining, will go on to describe about the other body T areas
            proportional to the times. And therefore (by Theor. II.) the
            difference of the forces is directed to the other body T as its
            centre.   Q.E.D
        


        
            Cor. 1. Hence if the
            one body L, by a radius drawn to the other body T, describes areas
            proportional to the times; and from the whole force, by which the
            first body L is urged (whether that force is simple, or, according to
            Cor. 2 of the Laws, compounded out of several forces), we subduct (by
            the same Cor.) that whole accelerative force by which the other body
            is urged; the whole remaining force by which the first body is urged
            will tend to the other body T, as its centre.
        


        
            Cor. 2. And, if these areas are proportional
            to the times nearly, the remaining force will tend to the other body T
            nearly.
        


        
            Cor. 3. And vice versa, if the
            remaining force tends nearly to the other body T, those areas will be
            nearly proportional to the times.
        


        
            Cor. 4. If the body L, by a radius drawn to
            the other body T, describes areas, which, compared with the times, are
            very unequal; and that other body T be either at rest, or moves
            uniformly forward in a right line: the action of the centripetal force
            tending to that other body T is either none at all, or it is mixed and
            compounded with very powerful actions of other forces: and the whole
            force compounded of them all, if they are many, is directed to another
            (immovable or moveable) centre. The same thing obtains, when the other
            body is moved by any motion whatsoever; provided that centripetal
            force is taken, which remains after subducting that whole force acting
            upon that other body T.
        


    

    
        Scholium.



        
            Because the equable description of areas indicates that a centre is
            respected by that force with which the body is most affected, and by
            which it is drawn back from its rectilinear motion, and retained in
            its orbit; why may we not be allowed, in the following discourse, to
            use the equable description of areas as an indication of a centre,
            about which all circular motion is performed in free spaces?
        


    

    
        Proposition iv. Theorem iv.


            
                
                    The centripetal forces of bodies, which by equable motions
                describe different circles, tend to the centres of the same
                circles; and are one to the other as the squares of the arcs
                described in equal times applied to the radii of the circles.
                
            


        

        
            These forces tend to the centres of the circles (by Prop. II., and
            Cor. 2, Prop. I.), and are one to another as the versed sines of the
            least arcs described in equal times (by Cor. 4, Prop. I.); that is, as
            the squares of the same arcs applied to the diameters of the circles
            (by Lem. VII.); and therefore since those arcs are as arcs described
            in any equal times, and the diameters are as the radii, the forces
            will be as the squares of any arcs described in the same time applied
            to the radii of the circles.   Q.E.D.
        


        
            Cor. 1. Therefore, since those arcs are as
            the velocities of the bodies the centripetal
            forces are in a ratio compounded of the duplicate ratio of the
            velocities directly, and of the simple ratio of the radii inversely.
        


        
            Cor. 2. And since the periodic times are in a
            ratio compounded of the ratio of the radii directly, and the ratio of
            the velocities inversely, the centripetal forces, are in a ratio
            compounded of the ratio of the radii directly, and the duplicate ratio
            of the periodic times inversely.
        


        
            Cor. 3. Whence if the periodic times are
            equal, and the velocities therefore as the radii, the centripetal
            forces will be also as the radii; and the contrary.
        


        
            Cor. 4. If the periodic times and the
            velocities are both in the subduplicate ratio of the radii, the
            centripetal forces will be equal among themselves; and the contrary.
        


        
            Cor. 5. If the periodic times are as the
            radii, and therefore the velocities equal, the centripetal forces will
            be reciprocally as the radii; and the contrary.
        


        
            Cor. 6. If the periodic times are in the
            sesquiplicate ratio of the radii, and therefore the velocities
            reciprocally in the subduplicate ratio of the radii, the centripetal
            forces will be in the duplicate ratio of the radii inversely; and the
            contrary.
        


        
            Cor. 7. And universally, if the periodic time
            is as any power Rn of the radius R, and therefore the
            velocity reciprocally as the power Rn−1 of the radius, the
            centripetal force will be reciprocally as the power R2n−1
            of the radius; and the contrary.
        


        
            Cor. 8. The same things all hold concerning
            the times, the velocities, and forces by which bodies describe the
            similar parts of any similar figures that have their centres in a
            similar position with those figures; as appears by applying the
            demonstration of the preceding cases to those. And the application is
            easy, by only substituting the equable description of areas in the
            place of equable motion, and using the distances of the bodies from
            the centres instead of the radii.
        


        
            Cor. 9. From the same demonstration it
            likewise follows, that the arc which a body, uniformly revolving in a
            circle by means of a given centripetal force, describes in any time,
            is a mean proportional between the diameter of the circle, and the
            space which the same body falling by the same given force would
            descend through in the same given time.
        


    

    
        Scholium.



        
            The case of the 6th Corollary obtains in the celestial bodies (as Sir
            Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed);
            and therefore in what follows, I intend to treat more at large of
            those things which relate to centripetal force decreasing in a
            duplicate ratio of the distances from the centres.
        


        
            Moreover, by means of the preceding Proposition and its Corollaries,
            we may discover the proportion of a
            centripetal force to any other known force, such as that of gravity.
            For if a body by means of its gravity revolves in a circle concentric
            to the earth, this gravity is the centripetal force of that body. But
            from the descent of heavy bodies, the time of one entire revolution,
            as well as the arc described in any given time, is given (by Cor. 9 of
            this Prop.). And by such propositions, Mr. Huygens, in his excellent
            book De Horologio Oscillatorio, has compared the force of
            gravity with the centrifugal forces of revolving bodies.
        


        
            The preceding Proposition may be likewise demonstrated after this
            manner. In any circle suppose a polygon to be inscribed of any number
            of sides. And if a body, moved with a given velocity along the sides
            of the polygon, is reflected from the circle at the several angular
            points, the force, with which at every reflection it strikes the
            circle, will be as its velocity: and therefore the sum of the forces,
            in a given time, will be as that velocity and the number of
            reflections conjunctly: that is (if the species of the polygon be
            given), as the length described in that given time, and increased or
            diminished in the ratio of the same length to the radius of the
            circle; that is, as the square of that length applied to the radius;
            and therefore the polygon, by having its sides diminished in
            infinitum, coincides with the circle, as the square of the arc
            described in a given time applied to the radius. This is the
            centrifugal force, with which the body impels the circle; and to which
            the contrary force, wherewith the circle continually repels the body
            towards the centre, is equal.
        


    

    
        Proposition v. Problem I.


            
                
                    There being given, in any places, the velocity with which a
                    body describes a given figure, by means of forces directed to some
                    common centre: to find that centre.
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            Let the three right lines PT, TQV, VR touch the figure described in
            as many points, P, Q, R, and meet in T and V. On the tangents erect
            the perpendiculars PA, QB, RC, reciprocally proportional to the
            velocities of the body in the points P, Q, R, from which the
            perpendiculars were raised; that is, so that PA may be to QB as the
            velocity in Q, to the velocity in P, and QB to RC as the velocity in R
            to the velocity in Q. Through the ends A, B, C, of the perpendiculars
            draw AD, DBE, EC, at right angles, meeting in D and E: and the right
            lines TD, VE produced, will meet in S, the centre required.
        


        
            For the perpendiculars let fall from the centre S on the tangents PT,
            QT, are reciprocally as the velocities of the bodies in the points P
            and Q (by Cor. 1, Prop. I.), and therefore,
            by construction, as the perpendiculars AP, BQ directly; that is, as
            the perpendiculars let fall from the point D on the tangents. Whence
            it is easy to infer that the points S, D, T, are in one right line.
            And by the like argument the points S, E, V are also in one right
            line; and therefore the centre S is in the point where the right lines
            TD, VE meet.   Q.E.D.
        


    

    
        Proposition vi. Theorem V.


            
                
                    In a space void of resistance, if a body revolves in any orbit
                    about an immovable centre, and in the least time describes any arc
                    just then nascent; and the versed sine of that arc is supposed to
                    be drawn bisecting the chord, and produced passing through the
                    centre of force: the centripetal force in the middle of the arc
                    will be as the versed sine directly and the square of the time
                    inversely.
                
            


        

        
            For the versed sine in a given time is as the force (by Cor. 4, Prop.
            1); and augmenting the time in any ratio, because the arc will be
            augmented in the same ratio, the versed sine will be augmented in the
            duplicate of that ratio (by Cor. 2 and 3, Lem. XI.), and therefore is
            as the force and the square of the time. Subduct on both sides the
            duplicate ratio of the time, and the force will be as the versed sine
            directly, and the square of the time inversely.   Q.E.D.
        


        
            And the same thing may also be easily demonstrated by Corol. 4, Lem. X. 
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            Cor. 1. If a body P revolving about the
            centre S describes a curve line APQ, which a right line ZPR touches in
            any point P; and from any other point Q of the curve, QR is drawn
            parallel to the distance SP, meeting the tangent in R; and QT is drawn
            perpendicular to the distance SP; the centripetal force will be
            reciprocally as the solid SP2
            x QT2

            QR, if the solid be taken of that magnitude which it
            ultimately acquires when the points P and Q coincide. For QR is equal
            to the versed sine of double the arc QP, whose middle is P: and double
            the triangle SQP, or SP x QT is
            proportional to the time in which that double arc is described; and
            therefore may be used for the exponent of the time.
        


        
            Cor. 2. By a like reasoning, the centripetal
            force is reciprocally as the solid SY2
            x QP2

            QR; if SY is a perpendicular from the centre of force on PR
            the tangent of the orbit. For the rectangles SY x
            QP and SP x QT are equal.
        


        
            Cor. 3. If the orbit
            is either a circle, or touches or cuts a circle concentrically, that
            is, contains with a circle the least angle of contact or section,
            having the same curvature and the same radius of curvature at the
            point P; and if PV be a chord of this circle, drawn from the body
            through the centre of force; the centripetal force will be
            reciprocally as the solid SP2 x PV.
            For PV is QP2

            QR.
        


        
            Cor. 4. The same things being supposed, the
            centripetal force is as the square of the velocity directly, and that
            chord inversely. For the velocity is reciprocally as the perpendicular
            SY, by Cor. 1. Prop. I.
        


        
            Cor. 5. Hence if any curvilinear figure APQ
            is given, and therein a point S is also given, to which a centripetal
            force is perpetually directed, that law of centripetal force may be
            found, by which the body P will be continually drawn back from a
            rectilinear course, and being detained in the perimeter of that
            figure, will describe the same by a perpetual revolution. That is, we
            are to find, by computation, either the solid 
            SP2 x QT2

            QR or the solid SP2 x PV,
            reciprocally proportional to this force. Examples of this we shall
            give in the following Problems.
        


    

    
        Proposition vii. Problem ii.


            
                
                    If a body revolves in the circumference of a circle; it is
                    proposed to find the law of centripetal force directed to any given point.
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            Let VQPA be the circumference of the circle; S the given point to
            which as to a centre the force tends; P the body moving in the
            circumference; Q the next place into which it is to move; and PRZ the
            tangent of the circle at the preceding place. Through the point S draw
            the chord PV, and the diameter VA of the circle: join AP, and draw QT
            perpendicular to SP, which produced, may meet the tangent PR in Z; and
            lastly, through the point Q, draw LR parallel to SP, meeting the
            circle in L, and the tangent PZ in R. And, because of the similar
            triangles ZQR, ZTP, VPA, we shall have RP², that is, QRL to QT² as AV²
            to PV². And therefore
            QRL x SP2

            AV2 is equal to QT². Multiply those equals by
            SP2
QR,
            and the points P and Q coinciding, for RL write PV; then we shall have
            SP2
            x PV3

            AV2 = SP2
            x QT2

            QR. And therefore (by Cor 1 and 5, Prop. VI.)
             the centripetal force is reciprocally as 
            SP2 x PV3

            AV2; that is (because
            AV² is given), reciprocally as the square of the distance or altitude
            SP, and the cube of the chord PV conjunctly.   Q.E.I.
        


        The same otherwise.


        
            On the tangent PR produced let fall the perpendicular SY; and
            (because of the similar triangles SYP, VPA), we shall have AV to PV as
            SP to SY, and therefore SP
            x PV

            AV = SY, and 
            SP2 x PV3

            AV2 = SY2
            x PV. And therefore (by Corol. 3 and 5, Prop. VI),
            the centripetal force is reciprocally as SP2
            x PV3

            AV2; that is (because AV
            is given), reciprocally as SP2 x PV3.  
            Q.E.I.
        


        
            Cor. 1. Hence if the given point S, to which
            the centripetal force always tends, is placed in the circumference of
            the circle, as at V, the centripetal force will be reciprocally as the
            quadrato-cube (or fifth power) of the altitude SP.
        


        [image: Mathematical Principles of Natural Philosophy figure: 112]

        
            Cor. 2. The force by which the body P in the
            circle APTV revolves about the centre of force S is to the force by
            which the same body P may revolve in the same circle, and in the same
            periodic time, about any other centre of force R, as RP2
            x SP to the cube of the right line SG, which, from the first
            centre of force S is drawn parallel to the distance PR of the body
            from the second centre of force R, meeting the tangent PG of the orbit
            in G. For by the construction of this Proposition, the former force is
            to the latter as RP2 x PT3
            to SP2 x PV3 ; that
            is, as SP x RP2 to 
            SP3 x PV3

            PT3; or (because of the
            similar triangles PSG, TPV) to SG³.
        


        
            Cor. 3. The force by which the body P in any
            orbit revolves about the centre of force S, is to the force by which
            the same body may revolve in the same orbit, and the same periodic
            time, about any other centre of force R, as the solid SP
            x RP2, contained under the distance of the body
            from the first centre of force S, and the square of its distance from
            the second centre of force R, to the cube of the right line SG, drawn
            from the first centre of the force S, parallel to the distance RP of
            the body from the second centre of force R, meeting the tangent PG of
            the orbit in G. For the force in this orbit at any point P is the same
            as in a circle of the same curvature.
        


    

    
        
            Proposition viii. Problem iii.


            
                If a body moves in the semi-circumference PQA; it is
                proposed to find the law of the centripetal force tending to a
                point S, so remote, that all the lines PS, RS drawn
                thereto, may be taken for parallels.
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            From C, the centre of the semi-circle, let the semi-diameter CA he
            drawn, cutting the parallels at right angles in M and N, and join CP.
            Because of the similar triangles CPM, PZT, and RZQ, we shall have CP²
            to PM² as PR² to QT²; and, from the nature of the circle, PR² is equal
            to the rectangle QR x (RN + QN), or, the
            points P, Q, coinciding, to the rectangle QR x 2PM.
            Therefore CP² is to PM² as QR x 2PM to QT²;
            and QT2

            QR = 2PM3

            CP2, and 
            QT2 x SP2

            QR = 2PM3 x
            SP2

            CP2. And therefore (by Corol. 1 and 5;
            Prop. VI.), the centripetal force is reciprocally as 
            2PM3 x SP2

            CP2; that is (neglecting the given ratio 
            2SP2

            CP2 ), reciprocally as PM³.   Q.E.I.
        


        And the same thing is likewise easily inferred from the preceding Proposition.


    

    
        Scholium.



        
            And by a like reasoning, a body will be moved in an ellipsis, or even
            in an hyperbola, or parabola, by a centripetal force which is
            reciprocally ae the cube of the ordinate directed to an infinitely
            remote centre of force.
        


    

    
        Proposition ix. Problem iv.


            
                If a body revolves in a spiral PQS, cutting all the
                radii SP, SQ, &c., in a given angle; it is proposed
                to find the law of the centripetal force tending to the centre of
                that spiral.
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            Suppose the indefinitely small angle PSQ to be given; because, then,
            all the angles are given, the figure SPRQT will be given in specie.
            Therefore the ratio QT

            QR is also given, and QT2

            QR is as QT, that is (because the figure is given in specie),
            as SP. But if the angle PSQ is any way changed, the right line QR,
            subtending the angle of contact QPR (by Lemma
            XI) will be changed in the duplicate ratio of PR or QT. Therefore the
            ratio QT2

            QR remains the same as before, that is, as SP. And 
            QT2 x SP2

            QR is as SP³, and therefore (by Corol. 1 and 5, Prop. VI) the
            centripetal force is reciprocally as the cube of the distance SP.
              Q.E.I.
        


        The same otherwise.


        

        
            The perpendicular SY let fall upon the tangent, and the chord PV of
            the circle concentrically cutting the spiral, are in given ratios to
            the height SP; and therefore SP³ is as SY² x PV, that is (by Corol. 3
            and 5, Prop. VI) reciprocally as the centripetal force.
        


    

    
        Lemma xii.


            
                
                    All parallelograms circumscribed about any conjugate diameters
                    of a given ellipsis or hyperbola are equal among themselves.
                
            


        

        This is demonstrated by the writers on the conic sections.


    

    
        Proposition x. Problem V.


            
                
                    If a body revolves in an ellipsis; it is proposed to find the
                    law of the centripetal force tending to the centre of the ellipsis.
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            Suppose CA, CB to be semi-axes of the ellipsis; GP, DK, conjugate
            diameters; PF, QT perpendiculars to those diameters; Qv an
            ordinate to the diameter GP; and if the parallelogram QvPR be
            completed, then (by the properties of the conic sections) the
            rectangle PvG will be to Qv² as PC² to CD²; and
            (because of the similar triangles QvT, PCF), Qv² to
            QT² as PC² to PF²; and, by composition, the ratio of PvG to
            QT² is compounded of the ratio of PC² to CD², and of the ratio of PC²
            to PF², that is, vG to QT2

            Pv as PC² to 
            CD2 x PF2

            PC2. Put QR for Pv,
            and (by Lem. XII) BC x CA for CD x PF; also (the points P and Q
            coinciding) 2PC for vG; and multiplying the
            extremes and means together, we shall have QT2
            x PC2

            QR equal to 2BC2
            x CA2

            PC. Therefore (by Cor. 5, Prop. VI),
            the centripetal force is reciprocally as 2BC2
            x CA2

            PC; that is (because 2BC2
            x CA2 is given), reciprocally as 
            1

            PC; that is, directly as the distance
            PC.   QEI.
        


        The same otherwise.


        

        
            In the right line PG on the other side of the point T, take the point
            u so that Tu may be equal to Tv; then take
            uV, such as shall be to vG as DC² to PC². And
            because Qv² is to PvG as DC² to PC² (by the conic
            sections), we shall have QV2=Pv x uV.
            Add the rectangle uPv to both sides, and the square
            of the chord of the arc PQ will be equal to the rectangle VPv;
            and therefore a circle which touches the conic section in P, and
            passes through the point Q, will pass also through the point V. Now
            let the points P and Q meet, and the ratio of uV to vG,
            which is the same with the ratio of DC² to PC², will become the ratio
            of PV to PG, or PV to 2PC; and therefore PV will be equal to 
            2DC2

            PC. And therefore the force by which
            the body P revolves in the ellipsis will be reciprocally as 
            2DC2

            PC x PF2 (by Cor. 3, Prop
            VI); that is (because 2DC² x PF² is given) directly as PC.
              Q.E.I.
        


        
            Cor. 1. And therefore the force is as the
            distance of the body from the centre of the ellipsis; and, vice
            versa, if the force is as the distance, the body will move in
            an ellipsis whose centre coincides with the centre of force, or
            perhaps in a circle into which the ellipsis may degenerate.
        


        
            Cor. 2. And the periodic times of the
            revolutions made in all ellipses whatsoever about the same centre will
            be equal. For those times in similar ellipses will be equal (by Corol.
            3 and 8, Prop. IV); but in ellipses that have their greater axis
            common, they are one to another as the whole areas of the ellipses
            directly, and the parts of the areas described in the same time
            inversely; that is, as the lesser axes directly, and the velocities of
            the bodies in their principal vertices inversely; that is, as those
            lesser axes directly, and the ordinates to the same point of the
            common axes inversely; and therefore (because of the equality of the
            direct and inverse ratios) in the ratio of equality.
        


    

    
        Scholium.



        
            If the ellipsis, by having its centre removed to an infinite
            distance, de generates into a parabola, the body will move in this
            parabola; and the force, now tending to a
            centre infinitely remote, will become equable. Which is Galileo's
            theorem. And if the parabolic section of the cone (by changing the
            inclination of the cutting plane to the cone) degenerates into an
            hyperbola, the body will move in the perimeter of this hyperbola,
            having its centripetal force changed into a centrifugal force. And in
            like manner as in the circle, or in the ellipsis, if the forces are
            directed to the centre of the figure placed in the abscissa, those
            forces by increasing or diminishing the ordinates in any given ratio;
            or even by changing the angle of the inclination of the ordinates to
            the abscissa, are always augmented or diminished in the ratio of the
            distances from the centre; provided the periodic times remain equal;
            so also in all figures whatsoever, if the ordinates are augmented or
            diminished in any given ratio, or their inclination is any way
            changed, the periodic time remaining the same, the forces directed to
            any centre placed in the abscissa are in the several ordinates
            augmented or diminished in the ratio of the distances from the centre.
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Book 1.14





    
        Section xiv.


        Of the motion of very small bodies when agitated by centripetal forces tending to the several parts of any very great body.



    


    
        Proposition xciv. Theorem xlviii.


            
                
                    If two similar mediums be separated from each other by a space
                    terminated on both sides by parallel planes, and a body in its
                    passage through that space be attracted or impelled
                    perpendicularly towards either of those mediums, and not agitated
                    or hindered by any other force; and the attraction be every where
                    the same at equal distances from either plane, taken towards the
                    same hand of the plane; I say, that the sine of incidence upon
                    either plane will be to the sine of emergence of the other plane
                    in a given ratio.
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            Case 1. Let Aa and Bb be
            two parallel planes, and let the body light upon the first plane Aa
            in the direction of the line GH, and in its whole passage through the
            intermediate space let it be attracted or impelled towards the medium
            of incidence, and by that action let it be made to describe a curve
            line HI, and let it emerge in the direction of the line IK. Let there
            be erected IM perpendicular to Bb the plane of emergence, and
            meeting the line of incidence GH prolonged in M, and the plane of
            incidence Aa in R; and let the line of emergence KI be
            produced and meet HM in L. About the centre L, with the interval LI,
            let a circle be described cutting both HM in P and Q, and MI produced
            in N; and, first, if the attraction or impulse be supposed uniform,
            the curve HI (by what Galileo has demonstrated) be a
            parabola, whose property is that of a rectangle under
            its given latus rectum and the line IM is equal to the square of HM;
            and moreover the line HM will be bisected in L. Whence if to MI there
            be let fall the perpendicular LO, MO, OR will be equal: and adding the
            equal lines ON, OI, the wholes MN, IR will be equal also. Therefore
            since IR is given, MN is also given, and the rectangle NMI is to the
            rectangle under the latus rectum and IM, that is, to HM² in a given
            ratio. But the rectangle NMI is equal to the rectangle PMQ, that is,
            to the difference of the squares ML², and PL² or LI²; and HM² hath a
            given ratio to its fourth part ML²; therefore the ratio of ML² − LI²
            to ML² is given, and by conversion the ratio of LI² to ML², and its
            subduplicate, the ratio of LI to ML. But in every triangle, as LMI,
            the sines of the angles are proportional to the opposite sides.
            Therefore the ratio of the sine of the angle of incidence LMR to the
            sine of the angle of emergence LIR is given.   Q.E.D.
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            Case 2. Let now the body pass successively
            through several spaces terminated with parallel planes AabB,
            EbcC, &c., and let it be acted on by a force which is
            uniform in each of them separately, but different in the different
            spaces; and by what was just demonstrated, the sine of the angle of
            incidence on the first plane Aa is to the sine of emergence
            from the second plane Bb in a given ratio; and this sine of
            incidence upon the second plane Bb will be to the sine of
            emergence from the third plane Cc in a given ratio; and this
            sine to the sine of emergence from the fourth plane Dd in a
            given ratio; and so on in infinitum; and, by equality, the
            sine of incidence on the first plane to the sine of emergence from the
            last plane in a given ratio. Let now the intervals of the planes be
            diminished, and their number be infinitely increased, so that the
            action of attraction or impulse, exerted according to any assigned
            law, may become continual, and the ratio of the sine of incidence on
            the first plane to the sine of emergence from the last plane being all
            along given, will be given then also.   Q.E.D.
        


    

    
        Proposition xcv. Theorem xlix.


            
                
                    The same things being supposed, I say, that the velocity of the
                    body before its incidence is to its velocity after emergence as
                    the sine of emergence to the sine of incidence.
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            Make AH and Id equal, and erect the perpendiculars AG, dK
            meeting the lines of incidence and emergence GH, IK, in G and K. In GH
            take TH equal to IK, and to the plane Aa let fall a
            perpendicular Tv. And (by Cor. 2 of the Laws of Motion) let
            the motion of the body be resolved into two, one perpendicular to the
            planes Aa, Bb, Cc,
            &c, and another parallel to them. The force of attraction or
            impulse, acting in directions perpendicular to those planes, does not
            at all alter the motion in parallel directions; and therefore the body
            proceeding with this motion will in equal times go through those equal
            parallel intervals that lie between the line AG and the point H, and
            between the point I and the line dK; that is, they will
            describe the lines GH, IK in equal times. Therefore the velocity
            before incidence is to the velocity after emergence as GH to IK or TH,
            that is, as AH or Id to vH; that is (supposing TH
            or IK radius), as the sine of emergence to the sine of incidence.
              Q.E.D.
        


    

    
        Proposition xcvi. Theorem L.


            
                
                    The same things being supposed, and that the motion before
                    incidence is swifter than afterwards; I say, that if the line of
                    incidence be inclined continually, the body will be at last
                    reflected, and the angle of reflexion will be equal to the angle of incidence.
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            For conceive the body passing between the parallel planes Aa,
            Bb, Cc, &c., to describe parabolic arcs as
            above; and let those arcs be HP, PQ, QR, &c. And let the obliquity
            of the line of incidence GH to the first plane Aa be such
            that the sine of incidence may be to the radius of the circle whose
            sine it is, in the same ratio which the same sine of incidence hath to
            the sine of emergence from the plane Dd into the space DdeE;
            and because the sine of emergence is now become equal to radius, the
            angle of emergence will be a right one, and therefore the line of
            emergence will coincide with the plane Dd. Let the body come
            to this plane in the point R; and because the line of emergence
            coincides with that plane, it is manifest that the body can proceed no
            farther towards the plane Ee. But neither can it proceed in
            the line of emergence Rd; because it is perpetually attracted
            or impelled towards the medium of incidence. It will return,
            therefore, between the planes Cc, Dd, describing an
            arc of a parabola QRq, whose principal vertex (by what Galileo
            has demonstrated) is in R, cutting the plane Cc in the same
            angle at q, that it did before at Q; then going on in the
            parabolic arcs qp, ph, &c., similar and equal to the
            former arcs QP, PH, &c., it will cut the rest of the planes in the
            same angles at p, h, &c., as it did before in P, H,
            &c., and will emerge at last with the same obliquity at h
            with which it first impinged on that plane at H. Conceive now the
            intervals of the planes Aa, Bb, Cc, Dd,
            Ee, &c., to be infinitely diminished, and the number in
            finitely increased, so that the action of attraction or impulse,
            exerted according to any assigned law, may become continual; and, the
            angle of emergence remaining all along equal to the angle of
            incidence, will be equal to the same also at last.   Q.E.D.
        


    

    
        
            Scholium.



        
            These attractions bear a great resemblance to the reflexions and
            refractions of light made in a given ratio of the secants, as was
            discovered by Snellius; and consequently in a given ratio of
            the sines, as was exhibited by Des Cartes. For it is now
            certain from the phenomena of Jupiter's Satellites,
            confirmed by the observations of different astronomers, that light is
            propagated in succession, and requires about seven or eight minutes to
            travel from the sun to the earth. Moreover, the rays of light that are
            in our air (as lately was discovered by Grimaldus, by the
            admission of light into a dark room through a small hole, which I have
            also tried) in their passage near the angles of bodies, whether
            transparent or opaque (such as the circular and rectangular edges of
            gold, silver and brass coins, or of knives, or broken pieces of stone
            or glass), are bent or inflected round those bodies as if they were
            attracted to them; and those rays which in their passage come nearest
            to the bodies are the most inflected, as if they were most attracted:
            which tiling I myself have also carefully observed. And those which
            pass at greater distances are less inflected; and those at still
            greater distances are a little inflected the contrary way, and form
            three fringes of colours. In the figure s represents the
            edge of a knife, or any
            [image: Mathematical Principles of Natural Philosophy figure: 246]
            kind of wedge AsB; and gowog, fnunf, emtme,
            dlsld, are rays inflected towards the knife in the arcs owo,
            nvn, mtm, lsl; which inflection is greater or less according to
            their distance from the knife. Now since this inflection of the rays
            is performed in the air without the knife, it follows that the rays
            which fall upon the knife are first inflected in the air before they
            touch the knife. And the case is the same of the rays falling upon
            glass. The refraction, therefore, is made not in the point of
            incidence, but gradually, by a continual inflection of the rays: which
            is done partly in the air before they touch the glass, partly (if I
            mistake not) within the glass, after they have entered it; as is
            represented in the rays ckzc, biyb, ahxa, falling upon r,
            q, p, and inflected between k and z, i and
            y, h and x. Therefore because of the analogy there
            is between the propagation of the rays of light and the motion of
            bodies, I thought it not amiss to add the following Propositions for
            optical uses: not at all considering the nature of the rays of light,
            or inquiring whether they are bodies or not; but only determining the
            trajectories of bodies which are extremely like the trajectories of
            the rays.
        


    

    
        
            Proposition xcvii. Problem xlvii.


            
                
                    Supposing the sine of incidence upon any superficies to be in a
                    given ratio to the sine of emergence; and that the inflection of
                    the paths of those bodies near that superficies is performed in a
                    very short space, which may be considered as a point; it is
                    required to determine such a superficies as may cause all the
                    corpuscles issuing from any one given place to converge to another given place.
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            Let A be the place from whence the corpuscles diverge; B the place to
            which they should converge; CDE the curve line which by its revolution
            round the axis AB describes the superficies sought; D, E, any two
            points of that curve: and EF, EG, perpendiculars let fall on the paths
            of the bodies AD, DB. Let the point D approach to and coalesce with
            the point E; and the ultimate ratio of the line DF by which AD is
            increased, to the line DG by which DB is diminished, will be the same
            as that of the sine of incidence to the sine of emergence. Therefore
            the ratio of the increment of the line AD to the decrement of the line
            DB is given; and therefore if in the axis AB there be taken any where
            the point C through which the curve CDE must pass, and CM the
            increment of AC be taken in that given ratio to CN the decrement of
            BC, and from the centres A, B, with the intervals AM, BN, there be
            described two circles cutting each other in D; that point D will touch
            the curve sought CDE, and, by touching it any where at pleasure, will
            determine that curve.   Q.E.I.
        


        
            Cor. 1. By causing the point A or B to go off
            sometimes in infinitum, and sometimes to move towards other
            parts of the point C, will be obtained all those figures which Cartesius
            has exhibited in his Optics and Geometry relating to refractions. The
            invention of which Cartesius having thought fit to conceal,
            is here laid open in this Proposition.
        


        [image: Mathematical Principles of Natural Philosophy figure: 247b]

        
            Cor. 2. If a body lighting on any superficies
            CD in the direction of a right line AD, drawn according to any law,
            should emerge in the direction of another right line DK; and from the
            point C there be drawn curve lines CP, CQ, always perpendicular to AD,
            DK; the increments of the lines PD, QD, and therefore the lines
            themselves PD, QD, generated by those increments, will be as the sines
            of incidence and emergence to each other, and è contra.
        


    


    
        Proposition xcviii. Problem xlviii.


            
                The same things supposed; if round the axis AB any
                attractive superficies be described as CD, regular or
                irregular, through which the bodies issuing from the given place
                A must pass; it is required to find a second attractive
                superficies EF, which may make those bodies converge to a
                given place B.
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            Let a line joining AB cut the first superficies in C and the second
            in E, the point D being taken any how at pleasure. And supposing the
            sine of incidence on the first superficies to the sine of emergence
            from the same, and the sine of emergence from the second superficies
            to the sine of incidence on the same, to be as any given quantity M to
            another given quantity N; then produce AB to G, so that BG may be to
            CE as M − N to N; and AD to H, so that AH may be equal to AG; and DF
            to K, so that DK may be to DH as N to M. Join KB, and about the centre
            D with the interval DH describe a circle meeting KB produced in L, and
            draw BF parallel to DL; and the point F will touch the line EF, which,
            being turned round the axis AB, will describe the superficies sought.
              Q.E.F.
        


        
            For conceive the lines CP, CQ, to be every where perpendicular to AD,
            DF, and the lines ER, ES to FB, FD respectively, and therefore QS to
            be always equal to CE; and (by Cor. 2, Prop. XCVII) PD will be to QD
            as M to N, and therefore as DL to DK, or FB to FK; and by division as
            DL − FB or PH − PD − FB to FD or FQ − QD; and by composition as PH −
            FB to FQ, that is (because PH and CG, QS and CE, are equal), as CE +
            BG − FR to CE − FS. But (because BG is to CE as M − N to N) it comes
            to pass also that CE + BG is to CE as M to N; and therefore, by
            division, FR is to FS as M to N; and therefore (by Cor. 2, Prop XCVII)
            the superficies EF compels a body, falling upon it in the direction
            DF, to go on in the line FR to the place B.   Q.E.D.
        


    


    
        Scholium.



        
            In the same manner one may go on to three or more superficies. But of
            all figures the spherical is the most proper for optical uses. If the
            object glasses of telescopes were made of two glasses of a sphaerical
            figure, containing water between them, it is not unlikely that the
            errors of the refractions made in the extreme parts of the superficies
            of the glasses may be accurately enough corrected by the refractions
            of the water. Such object glasses are to be preferred before elliptic
            and hyperbolic glasses, not only because they may be formed with more
            ease and accuracy, but because the pencils of rays situate without the
            axis of the glass would be more accurately refracted by them. But the
            different refrangibility of different rays is the real obstacle that
            hinders optics from being made perfect by sphaerical or any other
            figures. Unless the errors thence arising can be corrected, all the
            labour spent in correcting the others is quite thrown away.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 2.6




    
        Section vi.


        Of the motion and resistance of funependulous bodies.



    

    
        Proposition xxiv. Theorem xix.


            
                The quantities of matter in funependulous bodies, whose centres
                of oscillation are equally distant from the centre of suspension,
                are in a ratio compounded of the ratio of the weights and the
                duplicate ratio of the times of the oscillations in vacuo.
            


        

        
            For the velocity which a given force can generate in a given matter
            in a given time is as the force and the time directly, and the matter
            inversely. The greater the force or the time is, or the less the
            matter, the greater velocity will be generated. This is manifest from
            the second Law of Motion. Now if pendulums are of the same length, the
            motive forces in places equally distant from the perpendicular are as
            the weights: and therefore if two bodies by oscillating describe equal
            arcs, and those arcs are divided into equal parts; since the times in
            which the bodies describe each of the correspondent parts of the arcs
            are as the times of the whole oscillations, the velocities in the
            correspondent parts of the oscillations will be to each other as the
            motive forces and the whole times of the oscillations directly, and
            the quantities of matter reciprocally: and therefore the quantities of
            matter are as the forces and the times of the oscillations directly
            and the velocities reciprocally. But the velocities reciprocally are
            as the times, and therefore the times directly and the velocities
            reciprocally are as the squares of the times; and therefore the
            quantities of matter are as the motive forces and the squares of the
            times, that is, as the weights and the squares of the times.
              Q.E.D.
        


        
            Cor. 1. Therefore if the times are equal, the
            quantities of matter in each of the bodies are as the weights.
        


        
            Cor. 2. If the weights are equal, the
            quantities of matter will be as the squares of the times.
        


        
            Cor. 3. If the quantities of matter are
            equal, the weights will be reciprocally as the squares of the times.
        


        
            Cor. 4. Whence since the squares of the
            times, caeteris paribus, are as the lengths of the
            pendulums, therefore if both the times and quantities of matter are
            equal, the weights will be as the lengths of the pendulums.
        


        
            Cor. 5. And
            universally, the quantity of matter in the pendulous body is as the
            weight and the square of the time directly, and the length of the
            pendulum inversely.
        


        
            Cor. 6. But in a non-resisting medium, the
            quantity of matter in the pendulous body is as the comparative weight
            and the square of the time directly, and the length of the pendulum
            inversely. For the comparative weight is the motive force of the body
            in any heavy medium, as was shewn above; and therefore does the same
            thing in such a non-resisting medium as the absolute weight does in a
            vacuum.
        


        
            Cor. 7. And hence appears a method both of
            comparing bodies one among another, as to the quantity of matter in
            each; and of comparing the weights of the same body in different
            places, to know the variation of its gravity. And by experiments made
            with the greatest accuracy, I have always found the quantity of matter
            in bodies to be proportional to their weight.
        


    

    
        Proposition xxv. Theorem xx.


            
                
                    Funependulous bodies that are, in any medium, resisted in the
                    ratio of the moments of time, and funependulous bodies that move
                    in a non-resisting medium of the same specific gravity, perform
                    their oscillations in a cycloid in the same time, and describe
                    proportional parts of arcs together.
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            Let AB be an arc of a cycloid, which a body D, by vibrating in a
            non-resisting medium, shall describe in any time. Bisect that arc in
            C, so that C may be the lowest point thereof; and the accelerative
            force with which the body is urged in any place D, or d or
            E, will be as the length of the arc CD, or Cd, or CE. Let
            that force be expressed by that same arc; and since the resistance is
            as the moment of the time, and therefore given, let it be expressed by
            the given part CO of the cycloidal arc, and take the arc Od
            in the same ratio to the arc CD that the arc OB has to the arc CB: and
            the force with which the body in d is urged in a resisting
            medium, being the excess of the force Cd above the resistance
            CO, will be expressed by the arc Od, and will therefore be to
            the force with which the body D is urged in a non-resisting medium in
            the place D, as the arc Od to the arc CD; and therefore also
            in the place B, as the arc OB to the arc CB. Therefore if two bodies
            D, d go from the place Bc and are urged by these forces;
            since the forces at the beginning are as the arc CB and OB, the first
            velocities and arcs first described will be in the same ratio. Let
            those arcs be BD and Bd, and the remaining arcs CD,
            Od, will be in the same ratio. Therefore the forces, being
            proportional to those arcs CD, Od, will remain in the same
            ratio as at the beginning, and therefore the bodies will continue
            describing together arcs in the same ratio. Therefore the forces and
            velocities and the remaining arcs CD, Od, will be always as
            the whole arcs CB, OB, and therefore those remaining arcs will be
            described together. Therefore the two bodies D and d will
            arrive together at the places C and O; that which moves in the
            non-resisting medium, at the place C, and the other, in the resisting
            medium, at the place O. Now since the velocities in C and O are as the
            arcs CB, OB, the arcs which the bodies describe when they go farther
            will be in the same ratio. Let those arcs be CE and Oe. The
            force with which the body D in a non-resisting medium is retarded in E
            is as CE, and the force with which the body d in the
            resisting medium is retarded in e, is as the sum of the
            force Ce and the resistance CO, that is, as Oe; and
            therefore the forces with which the bodies are retarded are as the
            arcs CB, OB, proportional to the arcs CE, Oe; and therefore
            the velocities, retarded in that given ratio, remain in the same given
            ratio. Therefore the velocities and the arcs described with those
            velocities are always to each other in that given ratio of the arcs CB
            and OB; and therefore if the entire arcs AB, aB are taken in
            the same ratio, the bodies D and d will describe those arcs
            together, and in the places A and a will lose all their
            motion together. Therefore the whole oscillations are isochronal, or
            are performed in equal times; and any parts of the arcs, as BD, Bd,
            or BE, Be, that are described together, are proportional to
            the whole arcs BA, Ba.   Q.E.D.
        


        
            Cor. Therefore the swiftest motion in a
            resisting medium does not fall upon the lowest point C, but is found
            in that point O, in which the whole arc described Ba is
            bisected. And the body, proceeding from thence to a, is
            retarded at the same rate with which it was accelerated before in its
            descent from B to O.
        


    

    
        Proposition xxvi. Theorem xxi.


            
                
                    Funependulous bodies, that are resisted in the ratio of the
                    velocity, have their oscillations in a cycloid isochronal.
                
            


        

        
            For if two bodies, equally distant from their centres of suspension,
            describe, in oscillating, unequal arcs, and the velocities in the
            correspondent parts of the arcs be to each other as the whole arcs;
            the resistances, proportional to the velocities, will be also to each
            other as the same arcs. Therefore if these resistances be subducted
            from or added to the motive forces arising from gravity which are as
            the same arcs, the differences or sums will be to each other in the
            same ratio of the arcs; and since the increments and decrements of the
            velocities are as these differences or sums, the velocities will be
            always as the whole arcs; therefore if the velocities are in any one
            case as the whole arcs, they will remain always in the same ratio.
            But at the beginning of the motion, when the bodies begin to descend
            and describe those arcs, the forces, which at that time are
            proportional to the arcs, will generate velocities proportional to the
            arcs. Therefore the velocities will be always as the whole arcs to be
            described, and therefore those arcs will be described in the same
            time.   Q.E.D.
        


    

    
        Proposition xxvii. Theorem xxii.


            
                
                    If funependulous bodies are resisted in the duplicate ratio of
                    their velocities, the differences between the times of the
                    oscillations in a resisting medium, and the times of the
                    oscillations in a non-resisting medium of the same, specific
                    gravity, will be proportional to the arcs described in oscillating nearly.
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            For let equal pendulums in a resisting medium describe the unequal
            arcs A, B; and the resistance of the body in the arc A will be to the
            resistance of the body in the correspondent part of the arc B in the
            duplicate ratio of the velocities, that is, as AA to BB nearly. If the
            resistance in the arc B were to the resistance in the arc A as AB to
            AA, the times in the arcs A and B would be equal (by the last Prop.)
            Therefore the resistance AA in the arc A, or AB in the arc B, causes
            the excess of the time in the arc A above the time in a non-resisting
            medium; and the resistance BB causes the excess of the time in the arc
            B above the time in a non-resisting medium. But those excesses are as
            the efficient forces AB and BB nearly, that is, as the arcs A and B.
              Q.E.D.
        


        
            Cor. 1. Hence from the times of the
            oscillations in unequal arcs in a resisting medium, may be known the
            times of the oscillations in a non-resisting medium of the same
            specific gravity. For the difference of the times will be to the
            excess of the time in the lesser arc above the time in a non-resisting
            medium as the difference of the arcs to the lesser arc.
        


        
            Cor. 2. The shorter oscillations are more
            isochronal, and very short ones are performed nearly in the same times
            as in a non-resisting medium. But the times of those which are
            performed in greater arcs are a little greater, because the resistance
            in the descent of the body, by which the time is prolonged, is
            greater, in proportion to the length described in the descent than the
            resistance in the subsequent ascent, by which the time is contracted.
            But the time of the oscillations, both short and long, seems to be
            prolonged in some measure by the motion of the medium. For retarded
            bodies are resisted somewhat less in proportion to the velocity, and
            accelerated bodies somewhat more than those that proceed uniformly
            forwards; because the medium, by the motion
            it has received from the bodies, going forwards the same way with
            them, is more agitated in the former case, and less in the latter; and
            so conspires more or less with the bodies moved. Therefore it resists
            the pendulums in their descent more, and in their ascent less, than in
            proportion to the velocity; and these two causes concurring prolong
            the time.
        


    

    
        Proposition xxviii. Theorem xxiii.


            
                
                    If a funependulous body, oscillating in a cycloid, be resisted
                    in the ratio of the moments of the time, its resistance will be to
                    the force of gravity as the excess of the arc described in the
                    whole descent above the arc described in the subsequent ascent to
                    twice the length of the pendulum.
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            Let BC represent the arc described in the descent, Ca the
            arc described in the ascent, and Aa the difference of the
            arcs: and things remaining as they were constructed and demonstrated
            in Prop. XXV, the force with which the oscillating body is urged in
            any place D will be to the force of resistance as the arc CD to the
            arc CO, which is half of that difference Aa. Therefore the
            force with which the oscillating body is urged at the beginning or the
            highest point of the cycloid, that is, the force of gravity, will be
            to the resistance as the arc of the cycloid, between that highest
            point and lowest point C, is to the arc CO; that is (doubling those
            arcs), as the whole cycloidal arc, or twice the length of the
            pendulum, to the arc Aa.   Q.E.D.
        


    

    
        Proposition xxix. Problem vi.


            
                
                    Supposing that a body oscillating in a cycloid is resisted in a
                    duplicate ratio of the velocity: to find the resistance in each place.
                
            


        

        
            Let Ba be an arc described in one entire oscillation, C the lowest point
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            of the cycloid, and CZ half the whole cycloidal arc, equal to the length of the pendulum;
            and let it be required to find the resistance of the body in any
            place D. Cut the indefinite right line OQ in the points O, S, P, Q, so
            that (erecting the perpendiculars OK, ST, PI, QE, and with the centre
            O, and the aysmptotes OK, OQ, describing the hyperbola TIGE cutting
            the perpendiculars ST, PI, QE in T, I, and E, and through the point I
            drawing KF, parallel to the asymptote OQ, meeting the asymptote OK in
            K, and the perpendiculars ST and QE in L and F) the hyperbolic area
            PIEQ may be to the hyperbolic area PITS as the arc BC, described in
            the descent of the body, to the arc Ca described in the
            ascent; and that the area IEF may be to the area ILT as OQ to OS. Then
            with the perpendicular MN cut off the hyperbolic area PINM, and let
            that area be to the hyperbolic area PIEQ as the arc CZ to the arc BC
            described in the descent. And if the perpendicular RG cut off the
            hyperbolic area PIGR, which shall be to the area PIEQ as any arc CD to
            the arc BC described in the whole descent, the resistance in any place
            D will be to the force of gravity as the area 
            OR

            OQ IEF − IGH to the area PINM.
        


        
            For since the forces arising from gravity with which the body is
            urged in the places Z, B, D, a, are as the arcs CZ, CB, CD,
            Ca and those arcs are as the areas PINM, PIEQ, PIGR, PITS;
            let those areas be the exponents both of the arcs and of the forces
            respectively. Let Dd be a very small space described by the
            body in its descent: and let it be expressed by the very small area RGgr
            comprehended between the parallels RG, rg; and produce rg
            to h, so that GHhg and RGgr may be the
            contemporaneous decrements of the areas IGH, PIGR. And the increment
            GHhg − Rr

            OQ IEF, or Rr x HG − 
            Rr

            OQ IEF, of the area 
            OR

            OQ IEF − IGH will be to the decrement
            RGgr, or Rr x RG, of the area PIGR, as HG − 
            IEF

            OQ to RG; and therefore as OR x HG −
            OR

            OQ IEF to OR x GR or OP x PI, that is
            (because of the equal quantities OR x HG, OR x HR − OR x GR, ORHK −
            OPIK, PIHR and PIGR + IGH), as PIGR + IGH − 
            OR

            OQ IEF to OPIK. Therefore if the area
            OR

            OQ IEF − IGH be called Y, and RGgr
            the decrement of the area PIGR be given, the increment of the area Y
            will be as PIGR − Y.
        


        
            Then if V represent the force arising from the gravity, proportional
            to the arc CD to be described, by which the body is acted upon in D,
            and R be put for the resistance, V − R will be the whole force with
            which the body is urged in D. Therefore the increment of the velocity
            is as V − R and the particle of time in which it is generated
            conjunctly. But the velocity itself is as the contemporaneous
            increment of the space described directly and
            the same particle of time inversely. Therefore, since the resistance
            is, by the supposition, as the square of the velocity, the increment
            of the resistance will (by Lem. II) be as the velocity and the
            increment of the velocity conjunctly, that is, as the moment of the
            space and V − R conjunctly; and, therefore, if the moment of the space
            be given, as V − R; that is, if for the force V we put its exponent
            PIGR, and the resistance R be expressed by any other area Z, as PIGR −
            Z.
        


        
            Therefore the area PIGR uniformly decreasing by the subduction of
            given moments, the area Y increases in proportion of PIGR − Y, and the
            area Z in proportion of PIGR − Z. And therefore if the areas Y and Z
            begin together, and at the beginning are equal, these, by the addition
            of equal moments, will continue to be equal and in like manner
            decreasing by equal moments, will vanish together. And, vice
            versa, if they together begin and vanish, they will have equal
            moments and be always equal; and that, because if the resistance Z be
            augmented, the velocity together with the arc Ca, described
            in the ascent of the body, will be diminished; and the point in which
            all the motion together with the resistance ceases coming nearer to
            the point C, the resistance vanishes sooner than the area Y. And the
            contrary will happen when the resistance is diminished.
        


        
            Now the area Z begins and ends where the resistance is nothing, that
            is, at the beginning of the motion where the arc CD is equal to the arc CB,
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            and the right line RG falls upon the right line QE;
            and at the end of the motion where the arc CD is
            equal to the arc Ca, and RG falls upon the right line ST. And
            the area Y or OR

            OQ IEF − IGH begins and ends also where
            the resistance is nothing, and therefore where 
            OR

            OQ IEF and IGH are equal; that is (by
            the construction), where the right line RG falls successively upon the
            right lines QE and ST. Therefore those areas begin and vanish
            together, and are therefore always equal. Therefore the area 
            OR

            OQ IEF − IGH is equal to the area Z, by
            which the resistance is expressed, and therefore is to the area PINM,
            by which the gravity is expressed, as the resistance to the gravity.
              Q.E.D.
        


        
            Cor. 1. Therefore the
            resistance in the lowest place C is to the force of gravity as the
            area OP

            OQ IEF to the area PINM.
        


        
            Cor. 2. But it becomes greatest where the
            area PIHR is to the area IEF as OR to OQ. For in that case its moment
            (that is, PIGR − Y) becomes nothing.
        


        
            Cor. 3. Hence also may be known the velocity
            in each place, as being in the subduplicate ratio of the resistance,
            and at the beginning of the motion equal to the velocity of the body
            oscillating in the same cycloid without any resistance.
        


        
            However, by reason of the difficulty of the calculation by which the
            resistance and the velocity are found by this Proposition, we have
            thought fit to subjoin the Proposition following.
        


    

    
        Proposition xxx. Theorem xxiv.


            
                 If a right line aB be equal to the arc of a cycloid
                which an oscillating body describes, and at each of its points
                D the perpendiculars DK be erected, which shall be to
                the length of the pendulum as the resistance of the body in the
                corresponding points of the arc to the force of gravity; I say,
                that the difference between the arc described in the whole descent
                and the arc described in the whole subsequent ascent drawn into
                half the sum of the same arcs will be equal to the area BKa which
                all those perpendiculars take up.
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            Let the arc of the cycloid, described in one entire oscillation, be
            expressed by the right line aB, equal to it, and the arc
            which would have been described in vacuo by the length AB.
            Bisect AB in C, and the point C will represent B the lowest point of
            the cycloid, and CD will be as the force arising from gravity, with
            which the body in D is urged in the direction of the tangent of the
            cycloid, and will have the same ratio to the length of the pendulum as
            the force in D has to the force of gravity. Let that force, therefore,
            be expressed by that length CD, and the force of gravity by the length
            of the pendulum; and if in DE you take DK in the same ratio to the
            length of the pendulum as the resistance has to the gravity, DK will
            be the exponent of the resistance. From the centre C with the interval
            CA or CB describe a semi-circle BEeA. Let the body describe,
            in the least time, the space Dd; and, erecting the
            perpendiculars DE, de, meeting the circumference in E and e,
            they will be as the velocities which the body descending in vacuo
            from the point B would acquire in the places D and d. This
            appears by Prop LII, Book I. Let therefore,
            these velocities be expressed by those perpendiculars DE, de;
            and let DF be the velocity which it acquires in D by falling from B in
            the resisting medium. And if from the centre C with the interval CF we
            describe the circle FfM meeting the right lines de
            and AB in f and M, then M will be the place to which it
            would thenceforward, without farther resistance, ascend, and df
            the velocity it would acquire in d. Whence, also, if Fg
            represent the moment of the velocity which the body D, in describing
            the least space Dd, loses by the resistance of the medium;
            and CN be taken equal to Cg; then will N be the place to
            which the body, if it met no farther resistance, would thenceforward
            ascend, and MN will be the decrement of the ascent arising from the
            loss of that velocity. Draw Fm perpendicular to df,
            and the decrement Fg of the velocity DF generated by the
            resistance DK will be to the increment fm of the same
            velocity, generated by the force CD, as the generating force DK to the
            generating force CD. But because of the similar triangles Fmf,
            Fhg, FDC, fm is to Fm or Dd as CD
            to DF; and, ex aequo, Fg to Dd as DK to
            DF. Also Fh is to Fg as DF to CF; and, ex aequo
            perturbatè, Fh or MN to Dd as DK to CF or CM;
            and therefore the sum of all the MN x CM will be equal to the sum of
            all the Dd x DK. At the moveable point M suppose always a
            rectangular ordinate erected equal to the indeterminate CM, which by a
            continual motion is drawn into the whole length Aa; and the
            trapezium described by that motion, or its equal, the rectangle Aa
            x ½aB, will be equal to the sum of all the MN x CM, and
            therefore to the sum of all the Dd x DK, that is, to the area
            BKVTa.   Q.E.D.
        


        
            Cor. Hence from the law of resistance, and
            the difference Aa of the arcs Ca, CB, may be
            collected the proportion of the resistance to the gravity nearly.
        


        
            For if the resistance DK be uniform, the figure BKTa will be
            a rectangle under Ba and DK; and thence the rectangle under
            ½Ba and Aa will be equal to the rectangle under Ba
            and DK, and DK will be equal to ½Aa. Wherefore since DK is
            the exponent of the resistance, and the length of the pendulum the
            exponent of the gravity, the resistance will be to the gravity as ½Aa
            to the length of the pendulum; altogether as in Prop. XXVIII is
            demonstrated.
        


        
            If the resistance be as the velocity, the figure BKTa will
            be nearly an ellipsis. For if a body, in a non-resisting medium, by
            one entire oscillation, should describe the length BA, the velocity in
            any place D would be as the ordinate DE of the circle described on the
            diameter AB. Therefore since Ba in the resisting medium, and
            BA in the non-resisting one, are described nearly in the same times;
            and therefore the velocities in each of the points of Ba are
            to the velocities in the correspondent points of the length BA nearly
            as Ba is to BA, the velocity in the point D in the resisting
            medium will be as the ordinate of the circle
            or ellipsis described upon the diameter Ba; and therefore the
            figure BKVTa will be nearly an ellipsis. Since the resistance
            is supposed proportional to the velocity, let OV be the exponent of
            the resistance in the middle point O; and an ellipsis BRVSa
            described with the centre O, and the semi-axes OB, OV, will be nearly
            equal to the figure BKVTa, and to its equal the rectangle Aa
            x BO. Therefore Aa x BO is to OV x BO as the area of this
            ellipsis to OV x BO; that is, Aa is to OV as the area of the
            semi-circle to the square of the radius, or as 11 to 7 nearly; and,
            therefore, 7

            11 Aa is to the length of
            the pendulum as the resistance of the oscillating body in O to its
            gravity.
        


        
            Now if the resistance DK be in the duplicate ratio of the velocity,
            the figure BKVTa will be almost a parabola having V for its
            vertex and OV for its axis, and therefore will be nearly equal to the
            rectangle under Ba and OV. Therefore the rectangle under ½Ba
            and Aa is equal to the rectangle ⅔Ba x OV, and
            therefore OV is equal to ¾Aa; and therefore the resistance in
            O made to the oscillating body is to its gravity as ¾Aa to the length
            of the pendulum.
        


        
            And I take these conclusions to be accurate enough for practical
            uses. For since an ellipsis or parabola BRVSa falls in with
            the figure BKVTa in the middle point V, that figure, if
            greater towards the part BRV or VSa than the other, is less
            towards the contrary part, and is therefore nearly equal to it.
        


    

    
        Proposition xxxi. Theorem xxv.


            
                
                    If the resistance made to an oscillating body in each of the
                    proportional parts of the arcs described be augmented or
                    diminished in a given ratio, the difference between the arc
                    described in the descent and the arc described in the subsequent
                    ascent will be augmented or diminished in the same ratio.
                
            


        

        [image: Mathematical Principles of Natural Philosophy figure: 310-2]

        
            For that difference arises from the retardation of the pendulum by
            the resistance of the medium, and therefore is as the whole
            retardation and the retarding resistance proportional thereto. In the
            foregoing Proposition the rectangle under the right line ½aB
            and the difference Aa of the arcs CB, Ca, was equal
            to the area BKTa. And that area, if the length aB
            remains, is augmented or diminished in the ratio of the ordinates DK;
            that is, in the ratio of the resistance and is therefore as the length
            aB and the resistance conjunctly. And therefore the rectangle
            under Aa and ½aB is as aB and the
            resistance conjunctly, and therefore Aa is as the resistance.
              Q.E.D.
        


        
            Cor. 1. Hence if the
            resistance be as the velocity, the difference of the arcs in the same
            medium will be as the whole arc described: and the contrary.
        


        
            Cor. 2. If the resistance be in the duplicate
            ratio of the velocity, that difference will be in the duplicate ratio
            of the whole arc: and the contrary.
        


        
            Cor. 3. And universally, if the resistance be
            in the triplicate or any other ratio of the velocity, the difference
            will be in the same ratio of the whole arc: and the contrary.
        


        
            Cor. 4. If the resistance be partly in the
            simple ratio of the velocity, and partly in the duplicate ratio of the
            same, the difference will be partly in the ratio of the whole arc, and
            partly in the duplicate ratio of it: and the contrary. So that the law
            and ratio of the resistance will be the same for the velocity as the
            law and ratio of that difference for the length of the arc.
        


        
            Cor. 5. And therefore if a pendulum describe
            successively unequal arcs, and we can find the ratio of the increment
            or decrement of this difference for the length of the arc described,
            there will be had also the ratio of the increment or decrement of the
            resistance for a greater or less velocity.
        


    

    
        General Scholium.



        
            From these propositions we may find the resistance of mediums by
            pendulums oscillating therein. I found the resistance of the air by
            the following experiments. I suspended a wooden globe or ball weighing
            57 7

            22 ounces troy, its diameter 6
            7/8 London
            inches, by a fine thread on a firm hook, so that the distance between
            the hook and the centre of oscillation of the globe was 10½ feet. I
            marked on the thread a point 10 feet and 1 inch distant from the
            centre of suspension; and even with that point I placed a ruler
            divided into inches, by the help whereof I observed the lengths of the
            arcs described by the pendulum. Then I numbered the oscillations in
            which the globe would lose 1

            8 part of its motion. If the pendulum
            was drawn aside from the perpendicular to the distance of 2 inches,
            and thence let go, so that in its whole descent it described an arc of
            2 inches, and in the first whole oscillation, compounded of the
            descent and subsequent ascent, an arc of almost 4 inches, the same in
            164 oscillations lost 1

            8 part of its motion, so as in its
            last ascent to describe an arc of 1¾ inches. If in the first descent
            it described an arc of 4 inches, it lost 1

            8 part of its motion in 121
            oscillations, so as in its last ascent to describe an arc of 3½
            inches. If in the first descent it described an arc of 8, 16, 32, or
            64 inches, it lost 1

            8 part of its motion in 69, 35½, 18½,
            9⅔ oscillations, respectively. Therefore the difference between the
            arcs described in the first descent and the last ascent was in the
            1st, 2d, 3d, 4th, 5th, 6th cases, ¼, ½, 1, 2, 4, 8 inches
            respectively. Divide those differences by the number of oscillations
            in each case, and in one mean oscillation, wherein an arc of 3¾, 7½,
            15, 30, 60, 120 inches was described, the
            difference of the arcs described in the descent and subsequent ascent
            will be 1

            656, 1

            242, 1

            69, 4

            71, 8

            37, 24

            29 parts of an inch, respectively.
            But these differences in the greater oscillations are in the duplicate
            ratio of the arcs described nearly, but in lesser oscillations
            something greater than in that ratio; and therefore (by Cor. 2, Prop.
            XXXI of this Book) the resistance of the globe, when it moves very
            swift, is in the duplicate ratio of the velocity, nearly; and when it
            moves slowly, somewhat greater than in that ratio.
        


        
            Now let V represent the greatest velocity in any oscillation, and let
            A, B, and C be given quantities, and let us suppose the difference of
            the arcs to be AV + BV
            3

            2 + CV² . Since the
            greatest velocities are in the cycloid as ½ the arcs described in
            oscillating, and in the circle as ½ the chords of those arcs; and
            therefore in equal arcs are greater in the cycloid than in the circle
            in the ratio of ½ the arcs to their chords; but the times in the
            circle are greater than in the cycloid, in a reciprocal ratio of the
            velocity; it is plain that the differences of the arcs (which are as
            the resistance and the square of the time conjunctly) are nearly the
            same in both curves: for in the cycloid those differences must be on
            the one hand augmented, with the resistance, in about the duplicate
            ratio of the arc to the chord, because of the velocity augmented in
            the simple ratio of the same; and on the other hand diminished, with
            the square of the time, in the same duplicate ratio. Therefore to
            reduce these observations to the cycloid, we must take the same
            differences of the arcs as were observed in the circle, and suppose
            the greatest velocities analogous to the half, or the whole arcs, that
            is, to the numbers ½, 1, 2, 4, 8, 16. Therefore in the 2d, 4th, and
            6th cases, put 1, 4, and 16 for V; and the difference of the arcs in
            the 2d case will become ½

            121 = A + B + C; in the 4th case
            2

            35½ = 4A + 8B + 16C; in the 6th
            8

            92/3 = 16A +
            64B + 256C. These equations reduced give A = 0,0000916, B = 0,0010847,
            and C = 0,0029558. Therefore the difference of the arcs is as 0,0000916V
            + 0,0010847V3

            2 + 0,0029558V²: and
            therefore since (by Cor. Prop. XXX, applied to this case) the
            resistance of the globe in the middle of the arc described in
            oscillating, where the velocity is V, is to its weight as 7/11AV
            + 7/10BV3/2
            + ¾CV² to the length of the pendulum, if for A, B, and C you
            put the numbers found, the resistance of the globe will be to its
            weight as 0,0000583V + 0,0007593V
            3

            2 + 0,0022169V² to
            the length of the pendulum between the centre of suspension and the
            ruler, that is, to 121 inches. Therefore since V in the second case
            represents 1, in the 4th case 4, and in the 6th case 16, the
            resistance will be to the weight of the globe, in the 2d case, as
            0,0030345 to 121; in the 4th, as 0,041748 to 121; in the 6th, as
            0,61705 to 121.
        


        
            The arc, which the point marked in the thread
            described in the 6th case, was of 120 − 
            8

            92/3 ,
            or 1195/29 inches. And therefore since the
            radius was 121 inches, and the length of the pendulum between the
            point of suspension and the centre of the globe was 126 inches, the
            arc which the centre of the globe described was 1243/31
            inches. Because the greatest velocity of the oscillating body, by
            reason of the resistance of the air, does not fall on the lowest point
            of the arc described, but near the middle place of the whole arc, this
            velocity will be nearly the same as if the globe in its whole descent
            in a non-resisting medium should describe 623/62
            inches, the half of that arc, and that in a cycloid, to which we have
            above reduced the motion of the pendulum; and therefore that velocity
            will be equal to that which the globe would acquire by falling
            perpendicularly from a height equal to the versed sine of that arc.
            But that versed sine in the cycloid is to that arc 623/62
            as the same arc to twice the length of the pendulum 252, and therefore
            equal to 15,278 inches. Therefore the velocity of the pendulum is the
            same which a body would acquire by falling, and in its fall describing
            a space of 15,278 inches. Therefore with such a velocity the globe
            meets with a resistance which is to its weight as 0,61705 to 121, or
            (if we take that part only of the resistance which is in the duplicate
            ratio of the velocity) as 0,56752 to 121.
        


        
            I found, by an hydrostatical experiment, that the weight of this
            wooden globe was to the weight of a globe of water of the same
            magnitude as 55 to 97: and therefore since 121 is to 213,4 in the same
            ratio, the resistance made to this globe of water, moving forwards
            with the above-mentioned velocity, will be to its weight as 0,56752 to
            213,4, that is, as 1 to 3761/50. Whence since
            the weight of a globe of water, in the time in which the globe with a
            velocity uniformly continued describes a length of 30,556 inches, will
            generate all that velocity in the falling globe, it is manifest that
            the force of resistance uniformly continued in the same time will take
            away a velocity, which will be less than the other in the ratio of 1
            to 3761/50, that is, the 
            1

            3761/50 part of
            the whole velocity. And therefore in the time that the globe, with the
            same velocity uniformly continued, would describe the length of its
            semi-diameter, or 37/16 inches, it would lose
            the 1/3342 part of its motion.
        


        
            I also counted the oscillations in which the pendulum lost ¼ part of
            its motion. In the following table the upper numbers denote the length
            of the arc described in the first descent, expressed in inches and
            parts of an inch; the middle numbers denote the length of the arc
            described in the last ascent; and in the lowest place are the numbers
            of the oscillations. I give an account of this experiment, as being
            more accurate than that in which only 1/8
            part of the motion was lost. I leave the calculation to such as are
            disposed to make it.
        


        
            
                
                    		First descent 
                    		2
                    		4
                    		8
                    		16
                    		32
                    		64
                


                
                    		Last ascent 
                    		1½
                    		3
                    		6
                    		12
                    		24
                    		48
                


                
                    		Numb. of oscill. 
                    		374
                    		272
                    		162½
                    		83⅓
                    		41⅔
                    		22⅔
                


            
        


        
            I afterward suspended a leaden globe of 2 inches in diameter,
            weighing 26¼ ounces troy by the same thread, so that between the
            centre of the globe and the point of suspension there was an interval
            of 10½ feet, and I counted the oscillations in which a given part of
            the motion was lost. The first of the following tables exhibits the
            number of oscillations in which 1/8 part of the
            whole motion was lost; the second the number of oscillations in which
            there was lost part of the same.
        


        
            
                
                    		First descent 
                    		1
                    		2
                    		4
                    		8
                    		16
                    		32
                    		64
                


                
                    		Last ascent 
                    		7/8
                    		7/4
                    		3½
                    		7
                    		14
                    		28
                    		56
                


                
                    		Numb, of oscill. 
                    		226
                    		228
                    		193
                    		140
                    		90½
                    		53
                    		30
                


                
                    		First descent 
                    		1
                    		2
                    		4
                    		8
                    		16
                    		32
                    		64
                


                
                    		Last ascent 
                    		¾
                    		1½
                    		3
                    		6
                    		12
                    		24
                    		48
                


                
                    		Numb. of oscill. 
                    		510
                    		518
                    		420
                    		318
                    		204
                    		121
                    		70
                


            
        


        
            Selecting in the first table the 3d, 5th, and 7th observations, and
            expressing the greatest velocities in these observations particularly
            by the numbers 1, 4, 16 respectively, and generally by the quantity V
            as above, there will come out in the 3d observation 
            1/2

            193 = A + B + C, in the 5th
            observation 2

            901/2 = 4A +
            8B + 16C, in the 7th observation 
            8

            30 = 16A + 64B + 256C. These
            equations reduced give A = 0,001414, B = 0,000297, C = 0,000879. And
            thence the resistance of the globe moving with the velocity V will be
            to its weight 26¼ ounces in the same ratio as 0,0009V
            + 0,000208V3/2 + 0,000659V²
            to 121 inches, the length of the pendulum. And if we regard that part
            only of the resistance which is in the duplicate ratio of the
            velocity, it will be to the weight of the globe as 0,000659V² to 121
            inches. But this part of the resistance in the first experiment was to
            the weight of the wooden globe of 577/22 ounces
            as 0,002217V² to 121; and thence the resistance of the wooden globe is
            to the resistance of the leaden one (their velocities being equal) as
            577/22 into 0,002217 to 26¼ into 0,000659, that
            is, as 7⅓ to 1. The diameters of the two globes were 67/8
            and 2 inches, and the squares of these are to each other as 47¼ and 4,
            or 1113/16 and 1, nearly. Therefore the
            resistances of these equally swift globes were in less than a
            duplicate ratio of the diameters. But we have not yet considered the
            resistance of the thread, which was certainly very considerable, and
            ought to be subducted from the resistance of the pendulums here found.
            I could not determine this accurately, but I found it 
            greater than a third part of the whole resistance of the lesser pendulum; and
            thence I gathered that the resistances of the globes, when the
            resistance of the thread is subducted, are nearly in the duplicate
            ratio of their diameters.
            For the ratio of 7⅓ − ⅓ to 1 − ⅓,
            or 10½ to 1 is not very different from the duplicate ratio of the diameters
            1113/16 to 1.
        


        
            Since the resistance of the thread is of less moment in greater
            globes, I tried the experiment also with a globe whose diameter was
            18¾ inches. The length of the pendulum between the point of suspension
            and the centre of oscillation was 122½ inches, and between the point
            of suspension and the knot in the thread 109½ inches. The arc
            described by the knot at the first descent of the pendulum was 32
            inches. The arc described by the same knot in the last ascent after
            five oscillations was 28 inches. The sum of the arcs, or the whole arc
            described in one mean oscillation, was 60 inches. The difference of
            the arcs 4 inches. The 1/10 part of this, or
            the difference between the descent and ascent in one mean oscillation,
            is 2/5 of an inch. Then as the radius 109½ to
            the radius 122½, so is the whole arc of 60 inches described by the
            knot in one mean oscillation to the whole arc of 671/8
            inches described by the centre of the globe in one mean oscillation;
            and so is the difference 3/5 to a new
            difference 0,4475. If the length of the arc described were to remain,
            and the length of the pendulum should be augmented in the ratio of 126
            to 122½, the time of the oscillation would be augmented, and the
            velocity of the pendulum would be diminished in the subduplicate of
            that ratio; so that the difference 0,4475 of the arcs described in the
            descent and subsequent ascent would remain. Then if the arc described
            be augmented in the ratio of 1243/31 to 671/8,
            that difference 0.4475 would be augmented in the duplicate of that
            ratio, and so would become 1,5295. These things would be so upon the
            supposition that the resistance of the pendulum were in the duplicate
            ratio of the velocity. Therefore if the pendulum describe the whole
            arc of 1243/31 inches, and its length between
            the point of suspension and the centre of oscillation be 126 inches,
            the difference of the arcs described in the descent and subsequent
            ascent would be 1,5295 inches. And this difference multiplied into the
            weight of the pendulous globe, which was 208 ounces, produces 318,136.
            Again; in the pendulum above-mentioned, made of a wooden globe, when
            its centre of oscillation, being 126 inches from the point of
            suspension, described the whole arc of 1243/31
            inches, the difference of the arcs described in the descent and ascent
            was 126/121 into 8

            92/3. This
            multiplied into the weight of the globe, which was 577/22
            ounces, produces 49,396. But I multiply these differences into the
            weights of the globes, in order to find their resistances. For the
            differences arise from the resistances, and are as the resistances
            directly and the weights inversely. Therefore the resistances are as
            the numbers 318,136 and 49,396. But that part of the resistance
            of the lesser globe, which is in the duplicate
            ratio of the velocity, was to the whole resistance as 0,56752 tor
            0,61675, that is, as 45,453 to 49,396; whereas that part of the
            resistance of the greater globe is almost equal to its whole
            resistance; and so those parts are nearly as 318,136 and 45,453, that
            is, as 7 and 1. But the diameters of the globes are 18¾ and 67/8;
            and their squares 3519/16 and 4717/64
            are as 7,438 and 1, that is, as the resistances of the globes 7 and 1,
            nearly. The difference of these ratios is scarce greater than may
            arise from the resistance of the thread. Therefore those parts of the
            resistances which are, when the globes are equal, as the squares of
            the velocities, are also, when the velocities are equal, as the
            squares of the diameters of the globes.
        


        
            But the greatest of the globes I used in these experiments was not
            perfectly spherical, and therefore in this calculation I have, for
            brevity's sake, neglected some little niceties; being not very
            solicitous for an accurate calculus in an experiment that was not very
            accurate. So that I could wish that these experiments were tried again
            with other globes, of a larger size, more in number, and more
            accurately formed; since the demonstration of a vacuum depends
            thereon. If the globes be taken in a geometrical proportion, as
            suppose whose diameters are 4, 8, 16, 32 inches; one may collect from
            the progression observed in the experiments what would happen if the
            globes were still larger.
        


        
            In order to compare the resistances of different fluids with each
            other, I made the following trials. I procured a wooden vessel 4 feet
            long, 1 foot broad, and 1 foot high. This vessel, being uncovered, I
            filled with spring water, and, having immersed pendulums therein, I
            made them oscillate in the water. And I found that a leaden globe
            weighing 1661/6 ounces, and in diameter 35/8
            inches, moved therein as it is set down in the following table; the
            length of the pendulum from the point of suspension to a certain point
            marked in the thread being 126 inches, and to the centre of
            oscillation 1343/8 inches.
        


        
            
                
                    		
                         The arc described in

                        the first descent, by

                        a point marked in

                        the thread was

                        inches. 
                    
                    		
                        ⎫

                        ⎪

                        ⎪

                        ⎬

                        ⎪

                        ⎪

                        ⎭
                    
                    		64
                    		.
                    		32
                    		.
                    		16
                    		.
                    		8
                    		.
                    		4
                    		.
                    		2
                    		.
                    		1
                    		.
                    		½
                    		.
                    		¼
                


                
                    		
                        
                            The arc described in

                            the last ascent was

                            inches.
                        
                    
                    		
                        ⎫

                        ⎪

                        ⎬

                        ⎪

                        ⎭
                    
                    		48
                    		.
                    		24
                    		.
                    		12
                    		.
                    		6
                    		.
                    		3
                    		.
                    		1½
                    		.
                    		¾
                    		.
                    		3/8
                    		.
                    		3/16
                


                
                    		
                        
                            The difference of the

                            arcs, proportional

                            to the motion lost,

                            was inches.
                        
                    
                    		
                        ⎫

                        ⎪

                        ⎬

                        ⎪

                        ⎭
                    
                    		16
                    		.
                    		8
                    		.
                    		4
                    		.
                    		2
                    		.
                    		1
                    		.
                    		½
                    		.
                    		¼
                    		.
                    		1/8
                    		.
                    		1/16
                


                
                    		
                        
                            The number of the

                            oscillations in water.
                        
                    
                    		
                        ⎫

                        ⎬

                        ⎭
                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		29/60
                    		.
                    		11/5
                    		.
                    		3
                    		.
                    		7
                    		.
                    		11¼
                    		.
                    		12⅔
                    		.
                    		13⅓
                


                
                    		
                        
                            The number of the

                            oscillations in air.
                        
                    
                    		
                        ⎫

                        ⎬

                        ⎭
                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		 

                    
                    		85½
                    		.
                    		287
                    		.
                    		535
                


            
        


        
            In the experiments of the 4th column there
            were equal motions lost in 535 oscillations made in the air, and 11/5
            in water. The oscillations in the air were indeed a little swifter
            than those in the water. But if the oscillations in the water were
            accelerated in such a ratio that the motions of the pendulums might be
            equally swift in both mediums, there would be still the same number 11/5
            of oscillations in the water, and by these the same quantity of motion
            would be lost as before; because the resistance it increased, and the
            square of the time diminished in the same duplicate ratio. The
            pendulums, therefore, being of equal velocities, there were equal
            motions lost in 535 oscillations in the air, and 11/5
            in the water; and therefore the resistance of the pendulum in the
            water is to its resistance in the air as 535 to 11/5.
            This is the proportion of the whole resistances in the case of the 4th column.
        


        
            Now let AV + CV² represent the difference of the arcs described in
            the descent and subsequent ascent by the globe moving in air with the
            greatest velocity V; and since the greatest velocity is in the case of
            the 4th column to the greatest velocity in the case of the 1st column
            as 1 to 8; and that difference of the arcs in the case of the 4th
            column to the difference in the case of the 1st column as 2/535
            to 16/85½, or as 85½ to 4280; put in these
            cases 1 and 8 for the velocities, and 85½ and 4280 for the differences
            of the arcs, and A + C will be = 85½, and 8A + 64C
            = 4280 or A + 8C = 535; and then
            by reducing these equations, there will come out 7C = 449½ and
            C = 643/14 and A
            = 212/7; and therefore the resistance,
            which is as 7/11AV + 3/4CV²,
            will become as 136/11V + 489/56V².
            Therefore in the case of the 4th column, where the velocity was 1, the
            whole resistance is to its part proportional to the square of the
            velocity as 136/11 + 489/56.
            or 6112/17 to
            489/56; and therefore the
            resistance of the pendulum in water is to that part of the resistance
            in air, which is proportional to the square of the velocity, and which
            in swift motions is the only part that deserves consideration, as
            6112/17 to 489/56
            and 535 to 11/5 conjunctly, that is, as 571 to
            1. If the whole thread of the pendulum oscillating in the water had
            been immersed, its resistance would have been still greater; so that
            the resistance of the pendulum oscillating in the water, that is, that
            part which is proportional to the square of the velocity, and which
            only needs to be considered in swift bodies, is to the resistance of
            the same whole pendulum, oscillating in air with the same velocity, as
            about 850 to 1, that is as, the density of water to the density of air, nearly.
        


        
            In this calculation we ought also to have taken in that part of the
            resistance of the pendulum in the water which was as the square of the
            velocity; but I found (which will perhaps seem strange) that the
            resistance in the water was augmented in more than a duplicate ratio
            of the velocity. In searching after the cause, I thought upon this,
            that the vessel was too narrow for the
            magnitude of the pendulous globe, and by its narrowness obstructed the
            motion of the water as it yielded to the oscillating globe. For when I
            immersed a pendulous globe, whose diameter was one inch only, the
            resistance was augmented nearly in a duplicate ratio of the velocity,
            I tried this by making a pendulum of two globes, of which the lesser
            and lower oscillated in the water, and the greater and higher was
            fastened to the thread just above the water, and, by oscillating in
            the air, assisted the motion of the pendulum, and continued it longer.
            The experiments made by this contrivance proved according to the
            following table.
        


        
            
                
                    		Arc descr. in first descent 
                    		16
                    		.
                    		8
                    		.
                    		4
                    		.
                    		2
                    		.
                    		1
                    		.
                    		½
                    		.
                    		¼
                


                
                    		Arc descr. in last ascent 
                    		12
                    		.
                    		6
                    		.
                    		3
                    		.
                    		1½
                    		.
                    		¾
                    		.
                    		3/8
                    		.
                    		3/16
                


                
                    		Diff. of arcs, proport. to
motion lost
                    
                    		4
                    		.
                    		2
                    		.
                    		1
                    		.
                    		½
                    		.
                    		¼
                    		.
                    		1/8
                    		.
                    		1/16
                


                
                    		Number of oscillations 
                    		33/8
                    		.
                    		6½
                    		.
                    		121/12
                    		.
                    		211/5
                    		.
                    		34
                    		.
                    		53
                    		.
                    		621/5
                


            
        


        
            In comparing the resistances of the mediums with each other, I also
            caused iron pendulums to oscillate in quicksilver. The length of the
            iron wire was about 3 feet, and the diameter of the pendulous globe
            about ⅓ of an inch. To the wire, just above the quicksilver, there was
            fixed another leaden globe of a bigness sufficient to continue the
            motion of the pendulum for some time. Then a vessel, that would hold
            about 3 pounds of quicksilver, was filled by turns with quicksilver
            and common water, that, by making the pendulum oscillate successively
            in these two different fluids, I might find the proportion of their
            resistances; and the resistance of the quicksilver proved to be to the
            resistance of water as about 13 or 14 to 1; that is, as the density of
            quicksilver to the density of water. When I made use of a pendulous
            globe something bigger, as of one whose diameter was about ½ or ⅔ of
            an inch, the resistance of the quicksilver proved to be to the
            resistance of the water as about 12 or 10 to 1. But the former
            experiment is more to be relied on, because in the latter the vessel
            was too narrow in proportion to the magnitude of the immersed globe;
            for the vessel ought to have been enlarged together with the globe. I
            intended to have repeated these experiments with larger vessels, and
            in melted metals, and other liquors both cold and hot; but I had not
            leisure to try all: and besides, from what is already described, it
            appears sufficiently that the resistance of bodies moving swiftly is
            nearly proportional to the densities of the fluids in which they move.
            I do not say accurately; for more tenacious fluids, of equal density,
            will undoubtedly resist more than those that are more liquid; as cold
            oil more than warm, warm oil more than rain water, and water more than
            spirit of wine. But in liquors, which are sensibly fluid enough, as in
            air, in salt and fresh water, in spirit of wine, of turpentine, and
            salts, in oil cleared of its faeces by distillation and warmed, in oil
            of vitriol, and in mercury, and melted metals, and any other such
            like, that are fluid enough to retail for some time the motion
            impressed upon them by the agitation of the
            vessel, and which being poured out are easily resolved into drops, I
            doubt not but the rule already laid down may be accurate enough,
            especially if the experiments be made with larger pendulous bodies and
            more swiftly moved.
        


        
            Lastly, since it is the opinion of some that there is a certain
            aethereal medium extremely rare and subtile, which freely pervades the
            pores of all bodies; and from such a medium, so pervading the pores of
            bodies, some resistance must needs arise; in order to try whether the
            resistance, which we experience in bodies in motion, be made upon
            their outward superficies only, or whether their internal parts meet
            with any considerable resistance upon their superficies, I thought of
            the following experiment. I suspended a round deal box by a thread 11
            feet long, on a steel hook, by means of a ring of the same metal, so
            as to make a pendulum of the aforesaid length. The hook had a sharp
            hollow edge on its upper part, so that the upper arc of the ring
            pressing on the edge might move the more freely; and the thread was
            fastened to the lower arc of the ring. The pendulum being thus
            prepared, I drew it aside from the perpendicular to the distance of
            about 6 feet, and that in a plane perpendicular to the edge of the
            hook, lest the ring, while the pendulum oscillated, should slide to
            and fro on the edge of the hook: for the point of suspension, in which
            the ring touches the hook, ought to remain immovable. I therefore
            accurately noted the place to which the pendulum was brought, and
            letting it go, I marked three other places, to which it returned at
            the end of the 1st, 2d, and 3d oscillation. This I often repeated,
            that I might find those places as accurately as possible. Then I
            filled the box with lead and other heavy metals that were near at
            hand. But, first, I weighed the box when empty, and that part of the
            thread that went round it, and half the remaining part, extended
            between the hook and the suspended box; for the thread so extended
            always acts upon the pendulum, when drawn aside from the
            perpendicular, with half its weight. To this weight I added the weight
            of the air contained in the box. And this whole weight was about
            1

            78 of the weight of the box when filled
            with the metals. Then because the box when full of the metals, by
            extending the thread with its weight, increased the length of the
            pendulum, I shortened the thread so as to make the length of the
            pendulum, when oscillating, the same as before. Then drawing aside the
            pendulum to the place first marked, and letting it go, I reckoned
            about 77 oscillations before the box returned to the second mark, and
            as many afterwards before it came to the third mark, and as many after
            that before it came to the fourth mark. From whence I conclude that
            the whole resistance of the box, when full, had not a greater
            proportion to the resistance of the box, when empty, than 78 to 77.
            For if their resistances were equal, the box, when full, by reason of
            its vis insita, which was 78 times greater than the vis
            insita of the same when empty, ought to have continued its
            oscillating motion so much the longer, and
            therefore to have returned to those marks at the end of 78
            oscillations. But it returned to them at the end of 77 oscillations.
        


        
            Let, therefore, A represent the resistance of the box upon its
            external superficies, and B the resistance of the empty box on its
            internal superficies; and if the resistances to the internal parts of
            bodies equally swift be as the matter, or the number of particles that
            are resisted, then 78B will be the resistance made to the internal
            parts of the box, when full; and therefore the whole resistance A + B
            of the empty box will be to the whole resistance A + 78B of the full
            box as 77 to 78, and, by division, A + B to 77B as 77 to 1; and thence
            A + B to B as 77 x 77 to 1, and, by division again, A to B as 5928 to
            1. Therefore the resistance of the empty box in its internal parts
            will be above 5000 times less than the resistance on its external
            superficies. This reasoning depends upon the supposition that the
            greater resistance of the full box arises not from any other latent
            cause, but only from the action of some subtile fluid upon the
            included metal.
        


        
            This experiment is related by memory, the paper being lost in which I
            had described it; so that I have been obliged to omit some fractional
            parts, which are slipt out of my memory; and I have no leisure to try
            it again. The first time I made it, the hook being weak, the full box
            was retarded sooner. The cause I found to be, that the hook was not
            strong enough to bear the weight of the box; so that, as it oscillated
            to and fro, the hook was bent sometimes this and sometimes that way. I
            therefore procured a hook of sufficient strength, so that the point of
            suspension might remain unmoved, and then all things happened as is
            above described.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Chapter 1




    
        
        Definitions.


    

    
        Definition i.


            
                
                    The quantity of matter is the measure of the same, arising
                    from its density and bulk conjunctly.
                
            


        

        
            THUS air of a double density, in a double space, is quadruple in
            quantity ; in a triple space, sextuple in quantity. The same thing
            is to be understood of snow, and fine dust or powders, that are
            condensed by compression or liquefaction and of all bodies that are
            by any causes whatever differently condensed. I have no regard in
            this place to a medium, if any such there is, that freely pervades
            the interstices between the parts of bodies. It is this quantity
            that I mean hereafter everywhere under the name of body or mass. And
            the same is known by the weight of each body ; for it is
            proportional to the weight, as I have found by experiments on
            pendulums, very accurately made, which shall be shewn hereafter.
        


    

    
        Definition ii.


            
                
                The quantity of motion is the measure of the same, arising
                from the velocity and quantity of matter conjunctly.
                
            


        

        
            The motion of the whole is the sum of the motions of all the parts;
            and therefore in a body double in quantity, with equal velocity,
            the motion is double ; with twice the velocity, it is quadruple,
        


    

    
        Definition iii.


            
                The vis insita, or innate force of matter,
                is a power of resisting, by which every body, as much as in it
                lies, endeavours to persevere in its present stale, whether it be
                of rest, or of moving uniformly forward in a right line.
            


        

        
            This force is ever proportional to the body whose force it is ; and
            differs nothing from the inactivity of the mass, but in our manner
            of conceiving  it. A body, from the
            inactivity of matter, is not without difficulty put out of its state
            of rest or motion. Upon which account, this vis insita,
            may, by a most significant name, be called vis inertia, or
            force of inactivity. But a body exerts this force only, when another
            force, impressed upon it, endeavours to change its condition ; and
            the exercise of this force may be considered both as resistance and
            impulse ; it is resistance, in so far as the body, for maintaining
            its present state, withstands the force impressed; it is impulse, in
            so far as the body, by not easily giving way to the impressed force
            of another, endeavours to change the state of that other. Resistance
            is usually ascribed to bodies at rest, and impulse to those in
            motion; but motion and rest, as commonly conceived, are only
            relatively distinguished ; nor are those bodies always truly at
            rest, which commonly are taken to be so.
        


    

    
        Definition iv.


            
                
                    An impressed force is an action exerted upon a body, in order
                    to change its state, either of rest, or of moving uniformly
                    forward in a right line.
                
            


        


        
            This force consists in the action only; and remains no longer in
            the body, when the action is over. For a body maintains every new
            state it acquires, by its vis inertiae only. Impressed
            forces are of different origins as from percussion, from pressure,
            from centripetal force.
        


    

    
        Definition v.


            
                
                    A centripetal force is that by which bodies are drawn or
                    impelled, or any way tend, towards a point as to a centre.
                
            


        


        
            Of this sort is gravity, by which bodies tend to the centre of the
            earth magnetism, by which iron tends to the loadstone ; and that
            force, what ever it is, by which the planets are perpetually drawn
            aside from the rectilinear motions, which otherwise they would
            pursue, and made to revolve in curvilinear orbits. A stone, whirled
            about in a sling, endeavours to recede from the hand that turns it ;
            and by that endeavour, distends the sling, and that with so much the
            greater force, as it is revolved with the greater velocity, and as
            soon as ever it is let go, flies away. That force which opposes
            itself to this endeavour, and by which the sling perpetually draws
            back the stone towards the hand, and retains it in its orbit,
            because it is directed to the hand as the centre of the orbit, I
            call the centripetal force. And the same thing is to be understood
            of all bodies, revolved in any orbits. They all endeavour to recede
            from the centres of their orbits ; and wore it not for the
            opposition of a contrary force which restrains them to, and detains
            them in their orbits, which I therefore call centripetal, would fly
            off in right lines, with an uniform motion. A projectile, if it was
            not for the force of gravity, would not deviate towards the earth,
            but would  go off from it in a right line,
            and that with an uniform motion, if the resistance of the air was
            taken away. It is by its gravity that it is drawn aside perpetually
            from its rectilinear course, and made to deviate towards the earth,
            more or less, according to the force of its gravity, and the
            velocity of its motion. The less its gravity is, for the quantity of
            its matter, or the greater the velocity with which it is projected,
            the less will it deviate from a rectilinear course, and the farther
            it will go. If a leaden ball projected from the top of a mountain by
            the force of gunpowder with a given velocity, and in a direction
            parallel to the horizon, is carried in a curve line to the distance
            of two miles before it falls to the ground ; the same, if the
            resistance of the air were taken away, with a double or decuple
            velocity, would fly twice or ten times as far. And by increasing the
            velocity, we may at pleasure increase the distance to which it might
            be projected, and diminish the curvature of the line, which it might
            describe, till at last it should fall at the distance of 10, 30, or
            90 degrees, or even might go quite round the whole earth before it
            falls ; or lastly, so that it might never fall to the earth, but go
            forward into the celestial spaces, and proceed in its motion in
            infinitum. And after the same manner that a projectile, by the force
            of gravity, may be made to revolve in an orbit, and go round the
            whole earth, the moon also, either by the force of gravity, if it is
            endued with gravity, or by any other force, that impels it towards
            the earth, may be perpetually drawn aside towards the earth, out of
            the rectilinear way, which by its innate force it would pursue; and
            would be made to revolve in the orbit which it now describes ; nor
            could the moon with out some such force, be retained in its orbit.
            If this force was too small, it would not sufficiently turn the moon
            out of a rectilinear course : if it was too great, it would turn it
            too much, and draw down the moon from its orbit towards the earth.
            It is necessary, that the force be of a just quantity, and it
            belongs to the mathematicians to find the force, that may serve
            exactly to retain a body in a given orbit, with a given velocity ;
            and vice versa, to determine the curvilinear way, into which a body
            projected from a given place, with a given velocity, may be made to
            deviate from its natural rectilinear way, by means of a given force.
        



        
            The quantity of any centripetal force may be considered as of three
            kinds; absolute, accelerative, and motive.
        


    

    
        Definition vi.


            
                
                    The absolute quantity of a centripetal force is the measure
                    of the same proportional to the efficacy of the cause that
                    propagates it from the centre, through the spaces round about.
                
            


        

        
            Thus the magnetic force is greater in one load-stone and less in
            another according to their sizes and strength of intensity.
        


         


    

    
        Definition vii.


            
                
                    The accelerative quantity of a centripetal force is the
                    measure, of the same, proportional to the velocity which it
                    generates in a given time.
                
            


        

        
            Thus the force of the same load-stone is greater at a less
            distance, and less at a greater : also the force of gravity is
            greater in valleys, less on tops of exceeding high mountains ; and
            yet less (as shall hereafter be shown), at greater distances from
            the body of the earth ; but at equal distances, it is the same
            everywhere ; because (taking away, or allowing for, the resistance
            of the air), it equally accelerates all falling bodies, whether
            heavy or light, great or small.
        


    

    
        Definition viii.


            
                
                    The motive quantity of a centripetal force, is the measure of
                    the same proportional to the motion which it generates in a
                    given time.
                
            


        

        
            Thus the weight is greater in a greater body, less in a less body ;
            and in the same body, it is greater near to the earth, and less at
            remoter distances. This sort of quantity is the centripetency, or
            propension of the whole body towards the centre, or, as I may say,
            its weight ; and it is always known by the quantity of an equal and
            contrary force just sufficient to hinder the descent of the body.
        



        
            These quantities of forces, we may, for brevity's sake, call by the
            names of motive, accelerative, and absolute forces ; and, for
            distinction's sake, con sider them, with respect to the bodies that
            tend to the centre ; to the places of those bodies ; and to the
            centre of force towards which they tend ; that is to say, I refer
            the motive force to the body as an endeavour and propensity of the
            whole towards a centre, arising from the propensities of the several
            parts taken together ; the accelerative force to the place of the
            body, as a certain power or energy diffused from the centre to all
            places around to move the bodies that are in them : and the absolute
            force to the centre, as endued with some cause, without which those
            motive forces would not be propagated through the spaces round about
            ; whether that cause be some central body (such as is the
            load-stone, in the centre of the magnetic force, or the earth in the
            centre of the gravitating force), or anything else that does not yet
            appear. For I here design only to give a mathematical notion of
            those forces, without considering their physical causes and seats.
        



        
            Wherefore the accelerative force will stand in the same relation to
            the motive, as celerity does to motion. For the quantity of motion
            arises from the celerity drawn into the quantity of matter : and the
            motive force arises from the accelerative force drawn into the same
            quantity of matter. For the sum of the actions of the accelerative
            force, upon the several ; articles of the body, is the motive force
            of the whole. Hence it is, that near the 
            surface of the earth, where the accelerative gravity, or force
            productive of gravity, in all bodies is the same, the motive gravity
            or the weight is as the body : but if we should ascend to higher
            regions, where the accelerative gravity is less, the weight would be
            equally diminished, and would always be as the product of the body,
            by the accelerative gravity. So in those regions, where the
            accelerative gravity is diminished into one half, the weight of a
            body two or three times less, will be four or six times less.
        



        
            I likewise call attractions and impulses, in the same sense,
            accelerative, and motive ; and use the words attraction, impulse or
            propensity of any sort towards a centre, promiscuously, and
            indifferently, one for another ; considering those forces not
            physically, but mathematically : wherefore, the reader is not to
            imagine, that by those words, I anywhere take upon me to define the
            kind, or the manner of any action, the causes or the physical reason
            thereof, or that I attribute forces, in a true and physical sense,
            to certain centres (which are only mathematical points) ; when at
            any time I happen to speak of centres as attracting, or as endued
            with attractive powers.
        


    

    
        Scholium.


        

        
            Hitherto I have laid down the definitions of such words as are less
            known, and explained the sense in which I would have them to be
            under stood in the following discourse. I do not define time, space,
            place and motion, as being well known to all. Only I must observe,
            that the vulgar conceive those quantities under no other notions but
            from the relation they bear to sensible objects. And thence arise
            certain prejudices, for the removing of which, it will be convenient
            to distinguish them into absolute and relative, true and apparent,
            mathematical and common.
        



        
            I. Absolute, true, and mathematical time, of itself, and from its
            own nature flows equably without regard to anything external, and by
            another name is called duration : relative, apparent, and common
            time, is some sensible and external (whether accurate or unequable)
            measure of duration by the means of motion, which is commonly used
            instead of true time ; such as an hour, a day, a month, a year.
        



        
            II. Absolute space, in its own nature, without regard to anything
            external, remains always similar and immovable. Relative space is
            some movable dimension or measure of the absolute spaces ; which our
            senses determine by its position to bodies ; and which is vulgarly
            taken for immovable space ; such is the dimension of a
            subterraneous, an aereal, or celestial space, determined by its
            position in respect of the earth. Absolute and relative space, are
            the same in figure and magnitude ; but they do not remain always
            numerically the same. For if the earth, for instance, moves, a space
            of our air, which relatively and in respect of the earth remains
            always the same, will at one time be one part of the absolute space
            into which  the air passes ; at another time
            it will be another part of the same, and so, absolutely understood,
            it will be perpetually mutable.
        



        
            III. Place is a part of space which a body takes up, and is
            according to the space, either absolute or relative. I say, a part
            of space ; not the situation, nor the external surface of the body.
            For the places of equal solids are always equal ; but their
            superfices, by reason of their dissimilar figures, are often
            unequal. Positions properly have no quantity, nor are they so much
            the places themselves, as the properties of places. The motion of
            the whole is the same thing with the sum of the motions of the parts
            ; that is, the translation of the whole, out of its place, is the
            same thing with the sum of the translations of the parts out of
            their places ; and therefore the place of the whole is the same
            thing with the sum of the places of the parts, and for that reason,
            it is internal, and in the whole body.
        



        
            IV. Absolute motion is the translation of a body from one absolute
            place into another ; and relative motion, the translation from one
            relative place into another. Thus in a ship under sail, the relative
            place of a body is that part of the ship which the body possesses ;
            or that part of its cavity which the body fills, and which therefore
            moves together with the ship : and relative rest is the continuance
            of the body in the same part of the ship, or of its cavity. But
            real, absolute rest, is the continuance of the body in the same part
            of that immovable space, in which the ship itself, its cavity, and
            all that it contains, is moved. Wherefore, if the earth is really at
            rest, the body, which relatively rests in the ship, will really and
            absolutely move with the same velocity which the ship has on the
            earth. But if the earth also moves, the true and absolute motion of
            the body will arise, partly from the true motion of the earth, in
            immovable space ; partly from the relative motion of the ship on the
            earth ; and if the body moves also relatively in the ship ; its true
            motion will arise, partly from the true motion of the earth, in
            immovable space, and partly from the relative motions as well of the
            ship on the earth, as of the body in the ship ; and from these
            relative motions will arise the relative motion of the body on the
            earth. As if that part of the earth, where the ship is, was truly
            moved toward the east, with a velocity of 10010 parts; while the
            ship itself, with a fresh gale, and full sails, is carried towards
            the west, with a velocity expressed by 10 of those parts ; but a
            sailor walks in the ship towards the east, with 1 part of the said
            velocity ; then the sailor will be moved truly in immovable space
            towards the east, with a velocity of 10001 parts, and relatively on
            the earth towards the west, with a velocity of 9 of those parts.
        



        
            Absolute time, in astronomy, is distinguished from relative, by the
            equation or correction of the vulgar time. For the natural days are
            truly unequal, though they are commonly considered as equal, and
            used for a measure of time ; astronomers correct this inequality for
            their more accurate deducing of the celestial motions. It may be,
            that there is no such thing as an equable motion, whereby time may H
            accurately measured. All  motions may be
            accelerated and retarded; but the true, or equable, progress of
            absolute time is liable to no change. The duration or perseverance
            of the existence of things remains the same, whether the motions are
            swift or slow, or none at all : and therefore it ought to be
            distinguished from what are only sensible measures thereof ; and out
            of which we collect it, by means of the astronomical equation. The
            necessity of which equation, for deter mining the times of a
            phaenomenon, is evinced as well from the experiments of the pendulum
            clock, as by eclipses of the satellites of Jupiter.
        



        
            As the order of the parts of time is immutable, so also is the
            order of the parts of space. Suppose those parts to be moved out of
            their places, and they will be moved (if the expression may be
            allowed) out of themselves. For times and spaces are, as it were,
            the places as well of themselves as of all other things. All things
            are placed in time as to order of succession ; and in space as to
            order of situation. It is from their essence or nature that they are
            places ; and that the primary places of things should be moveable,
            is absurd. These are therefore the absolute places ; and
            translations out of those places, are the only absolute motions.
        



        
            But because the parts of space cannot be seen, or distinguished
            from one another by our senses, therefore in their stead we use
            sensible measures of them. For from the positions and distances of
            things from any body considered as immovable, we define all places ;
            and then with respect to such places, we estimate all motions,
            considering bodies as transferred from some of those places into
            others. And so, instead of absolute places and motions, we use
            relative ones; and that without any inconvenience in common affairs
            ; but in philosophical disquisitions, we ought to abstract from our
            senses, and consider things themselves, distinct from what are only
            sensible measures of them. For it may be that there is no body
            really at rest, to which the places and motions of others may be
            referred.
        



        
            But we may distinguish rest and motion, absolute and relative, one
            from the other by their properties, causes and effects. It is a
            property of rest, that bodies really at rest do rest in respect to
            one another. And therefore as it is possible, that in the remote
            regions of the fixed stars, or perhaps far beyond them, there may be
            some body absolutely at rest ; but impossible to know, from the
            position of bodies to one another in our regions whether any of
            these do keep the same position to that remote body; it follows that
            absolute rest cannot be determined from the position of bodies in
            our regions.
        



        
            It is a property of motion, that the parts, which retain given
            positions to their wholes, do partake of the motions of those
            wholes. For all the parts of revolving bodies endeavour to recede
            from the axis of motion ; and the impetus of bodies moving forward,
            arises from the joint impetus of all the parts. Therefore, if
            surrounding bodies are moved, those that are relatively at rest
            within them, will partake of their motion. Upon which account, the
            true and absolute motion of a body cannot be 
            determined by the translation of it from those which only seem to
            rest ; for the external bodies ought not only to appear at rest, but
            to be really at rest. For otherwise, all included bodies, beside
            their translation from near the surrounding ones, partake likewise
            of their true motions ; and though that translation were not made
            they would not be really at rest, but only seem to be so. For the
            surrounding bodies stand in the like relation to the surrounded as
            the exterior part of a whole does to the interior, or as the shell
            does to the kernel ; but, if the shell moves, the kernel will also
            move, as being part of the whole, without any removal from near the
            shell.
        



        
            A property, near akin to the preceding, is this, that if a place is
            moved, whatever is placed therein moves along with it ; and
            therefore a body, which is moved from a place in motion, partakes
            also of the motion of its place. Upon which account, all motions,
            from places in motion, are no other than parts of entire and
            absolute motions ; and every entire motion is composed of the motion
            of the body out of its first place, and the motion of this place out
            of its place ; and so on, until we come to some immovable place, as
            in the before-mentioned example of the sailor. Where fore, entire
            and absolute motions can be no otherwise determined than by
            immovable places : and for that reason I did before refer those
            absolute motions to immovable places, but relative ones to movable
            places. Now no other places are immovable but those that, from
            infinity to infinity, do all retain the same given position one to
            another ; and upon this account must ever remain unmoved ; and do
            thereby constitute immovable space.
        



        
            The causes by which true and relative motions are distinguished,
            one from the other, are the forces impressed upon bodies to generate
            motion. True motion is neither generated nor altered, but by some
            force impressed upon the body moved : but relative motion may be
            generated or altered without any force impressed upon the body. For
            it is sufficient only to impress some force on other bodies with
            which the former is compared, that by their giving way, that
            relation may be changed, in which the relative rest or motion of
            this other body did consist. Again, true motion suffers always some
            change from any force impressed upon the moving body ; but relative
            motion docs not necessarily undergo any change by such forces. For
            if the same forces are likewise impressed on those other bodies,
            with which the comparison is made, that the relative position may be
            pre served, then that condition will be preserved in which the
            relative motion consists. And therefore any relative motion may be
            changed when the true motion remains unaltered, and the relative may
            be preserved when the true suffers some change. Upon which accounts;
            true motion does by no means consist in such relations.
        



        
            The effects which distinguish absolute from relative motion arc,
            the forces of receding from the axis of circular motion. For there
            are no such forces in a circular motion purely relative, but in a
            true and absolute circular motion., they are greater or less,
            according t the quantity of the  motion. If
            a vessel, hung: by a long cord, is so often turned about that the
            cord is strongly twisted, then filled with water, and held at rest
            together with the water ; after, by the sudden action of another
            force, it is whirled about the contrary way, and while the cord is
            untwisting itself, the vessel continues for some time in this motion
            ; the surface of the water will at first be plain, as before the
            vessel began to move : but the vessel; by gradually communicating
            its motion to the water, will make it begin sensibly to revolve, and
            recede by little and little from the middle, and ascend to the sides
            of the vessel, forming itself into a concave figure (as I have
            experienced), and the swifter the motion becomes, the higher will
            the water rise, till at last, performing its revolutions in the same
            times with the vessel, it becomes relatively at rest in it. This
            ascent of the water shows its endeavour to recede from the axis of
            its motion ; and the true and absolute circular motion of the water,
            which is here directly contrary to the relative, discovers itself,
            and may be measured by this endeavour. At first, when the relative
            motion of the water in the vessel was greatest, it produced no
            endeavour to recede from the axis ; the water showed no tendency to
            the circumference, nor any ascent towards the sides of the vessel,
            but remained of a plain surface, and therefore its true circular
            motion had not yet begun. But afterwards, when the relative motion
            of the water had decreased, the ascent thereof towards the sides of
            the vessel proved its endeavour to recede from the axis ; and this
            endeavour showed the real circular motion of the water perpetually
            increasing, till it had acquired its greatest quantity, when the
            water rested relatively in the vessel. And therefore this endeavour
            does not depend upon any translation of the water in respect of the
            ambient bodies, nor can true circular motion be defined by such
            translation. There is only one real circular motion of any one
            revolving body, corresponding to only one power of endeavouring to
            recede from its axis of motion, as its proper and adequate effect ;
            but relative motions, in one and the same body, are innumerable,
            according to the various relations it bears to external bodies, and
            like other relations, are altogether destitute of any real effect,
            any otherwise than they may perhaps partake of that one only true
            motion. And therefore in their system who suppose that our heavens,
            revolving below the sphere of the fixed stars, carry the planets
            along with them ; the several parts of those heavens, and the
            planets, which are indeed relatively at rest in their heavens, do
            yet really move. For they change their position one to another
            (which never happens to bodies truly at rest), and being carried
            together with their heavens, partake of their motions, and as parts
            of revolving wholes, endeavour to recede from the axis of their
            motions.
        



        
            Wherefore relative quantities are not the quantities themselves,
            whose names they bear, but those sensible measures of them (either
            accurate or inaccurate), which are commonly used instead of the
            measured quantities themselves. And if the meaning of words is to he
            determined by their  use, then by the names
            time, space, place and motion, their measures are properly to be
            understood ; and the expression will be unusual, and purely
            mathematical, if the measured quantities themselves are meant. Upon
            which account, they do strain the sacred writings, who there
            interpret those words for the measured quantities. Nor do those less
            defile the purity of mathematical and philosophical truths, who
            confound real quantities themselves with their relations and vulgar
            measures.
        



        
            It is indeed a matter of great difficulty to discover, and
            effectually to distinguish, the true motions of particular bodies
            from the apparent ; be cause the parts of that immovable space, in
            which those motions are performed, do by no means come under the
            observation of our senses. Yet the thing is not altogether desperate
            : for we have some arguments to guide us, partly from the apparent
            motions, which are the differences of the true motions ; partly from
            the forces, which are the causes and effects of the true motions.
            For instance, if two globes, kept at a given distance one from the
            other by means of a cord that connects them, were revolved about
            their common centre of gravity, we might, from the tension of the
            cord, discover the endeavour of the globes to recede from the axis
            of their motion, and from thence we might compute the quantity of
            their circular motions. And then if any equal forces should be
            impressed at once on the alternate faces of the globes to augment or
            diminish their circular motions, from the increase or decrease of
            the tension of the cord, we might infer the increment or decrement
            of their motions : and thence would be found on what faces those
            forces ought to be impressed, that the motions of the globes might
            be most augmented ; that is, we might discover their hinder-most
            faces, or those which, in the circular motion, do follow. But the
            faces which follow being known, and consequently the opposite ones
            that precede, we should likewise know the determination of their
            motions. And thus we might find both the quantity and the
            determination of this circular motion, even in an immense vacuum,
            where there was nothing external or sensible with which the globes
            could be compared. But now, if in that space some remote bodies were
            placed that kept always a given position one to another, as the
            fixed stars do in our regions, we could not indeed determine from
            the relative translation of the globes among those bodies, whether
            the motion did belong to the globes or to the bodies. But if we
            observed the cord, and found that its tension was that very tension
            which the motions of the globes required, we might conclude the
            motion to be in the globes, and the bodies to be at rest ; and then,
            lastly, from the translation of the globes among the bodies, we
            should find the determination of their motions. But how we are to
            collect the true motions from their causes, effects, and apparent
            differences ; and, vice versa, how from the motions, either true or
            apparent, we may come to the knowledge of their causes and effects,
            shall be explained more at large in the following tract. For to this
            end it was that I composed it.
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Book 2.1




    
        
        Section I.


        Of the motion of bodies that are resisted in the ratio of the velocity.


    

    
        Proposition i. Theorem I.


            
                
                    If a body is resisted in the ratio of its velocity, the motion
                    lost by resistance is as the space gone over in its motion.
                
            


        

        
            For since the motion lost in each equal particle of time is as the
            velocity, that is, as the particle of space gone over, then, by
            composition, the motion lost in the whole time will be as the whole
            space gone over.   Q.E.D.
        


        
            Cor. Therefore if the body, destitute of all
            gravity, move by its innate force only in free spaces, and there be
            given both its whole motion at the beginning, and also the motion
            remaining after some part of the way is gone over, there will be given
            also the whole space which the body can describe in an infinite time.
            For that space will be to the space now described as the whole motion
            at the beginning is to the part lost of that motion.
        


    

    
        Lemma I.

Quantities proportional to their differences are continually proportional.



        
            Let A be to A − B as B to B − C and C to C − D, &c., and, by
            conversion, A will be to B as B to C and C to D, &c.
              Q.E.D.
        


    

    
        Proposition ii. Theorem ii.


            
                
                    If a body is resisted in the ratio of its velocity, and moves,
                    by its vis insita only, through a similar medium, and
                    the times be taken equal, the velocities in the beginning of each
                    of the times are in a geometrical progression, and the spaces
                    described in each of the times are as the velocities.
                
            


        

        
            Case 1. Let the time be divided into equal
            particles; and if at the very beginning of each particle we suppose
            the resistance to act with one single impulse which is as the
            velocity, the decrement of the velocity in each of the
            particles of time will be as the same velocity. Therefore the
            velocities are proportional to their differences, and therefore (by
            Lem. 1, Book II) continually proportional. Therefore if out of an
            equal number of particles there be compounded any equal portions of
            time, the velocities at the beginning of those times will be as terms
            in a continued progression, which are taken by intervals, omitting
            every where an equal number of intermediate terms. But the ratios of
            these terms are compounded of the equal ratios of the intermediate
            terms equally repeated, and therefore are equal. Therefore the
            velocities, being proportional to those terms, are in geometrical
            progression. Let those equal particles of time be diminished, and
            their number increased in infinitum, so that the impulse of
            resistance may become continual; and the velocities at the beginnings
            of equal times, always continually proportional, will be also in this
            case continually proportional.   Q.E.D.
        


        
            Case 2. And, by division, the differences of
            the velocities, that is, the parts of the velocities lost in each of
            the times, are as the wholes; but the spaces described in each of the
            times are as the lost parts of the velocities (by Prop. 1, Book I),
            and therefore are also as the wholes.   Q.E.D.
        


        [image: Mathematical Principles of Natural Philosophy figure: 252]

        
            Corol. Hence if to the rectangular asymptotes
            AC, CH, the hyperbola BG is described, and AB, DG be drawn
            perpendicular to the asymptote AC, and both the velocity of the body,
            and the resistance of the medium, at the very beginning of the motion,
            be expressed by any given line AC, and, after some time is elapsed, by
            the indefinite line DC; the time may be expressed by the area ABGD,
            and the space described in that time by the line AD. For if that area,
            by the motion of the point D, be uniformly increased in the same
            manner as the time, the right line DC will decrease in a geometrical
            ratio in the same manner as the velocity; and the parts of the right
            line AC, described in equal times, will decrease in the same ratio.
        


    

    
        Proposition iii. Problem I.


            
                
                    To define the motion of a body which, in a similar medium,
                    ascends or descends in a right line, and is resisted in the ratio
                    of its velocity, and acted upon by an uniform force of gravity.
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            The body ascending, let the gravity be expounded by any given
            rectangle BACH; and the resistance of the medium, at the beginning of
            the ascent, by the rectangle BADE, taken on the contrary side of the
            right line AB. Through the point B, with the rectangular asymptotes
            AC, CH, describe an hyperbola, cutting the perpendiculars DE, de,
            in G, g; and the body ascending
            will in the time DGgd describe the space EGge; in
            the time DGBA, the space of the whole ascent EGB; in the time ABKI,
            the space of descent BFK; and in the time IKki the space of
            descent KFfk; and the velocities of the bodies (proportional
            to the resistance of the medium) in these periods of time will be
            ABED, ABed, O, ABFI, ABfi respectively; and the
            greatest velocity which the body can acquire by descending will be
            BACH.
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            For let the rectangle BACH be resolved into in numerable rectangles Ak,
            Kl, Lm, Mn, &c., which shall be as the
            increments of the velocities produced in so many equal times; then
            will O, Ak, Al, Am, An, &c.,
            be as the whole velocities; and therefore (by supposition) as the
            resistances of the medium in the beginning of each of the equal times.
            Make AC to AK, or ABHC to ABkK, as the force of gravity to
            the resistance in the beginning of the second time; then from the
            force of gravity subduct the resistances, and ABHC, KkHC, LlHC,
            MmHC, &c., will be as the absolute forces with which the
            body is acted upon in the beginning of each of the times, and
            therefore (by Law I) as the increments of the velocities, that is, as
            the rectangles Ak, Kl, Lm, Mn,
            &c., and therefore (by Lem. 1, Book II) in a geometrical
            progression. Therefore, if the right lines Kk, Ll, Mm,
            Nn, &c., are produced so as to meet the hyperbola in q,
            r, s, t, &c. the areas ABqK, KqrL, LrsM,
            MstN, &c., will be equal, and therefore analogous to the
            equal times and equal gravitating forces. But the area ABqK
            (by Corol. 3, Lem. VII and VIII, Book I) is to the area Bkq
            as Kq to ½kq, or AC to ½AK, that is, as the force of
            gravity to the resistance in the middle of the first time. And by the
            like reasoning, the areas qKLr, rLMs,
            sMNt, &c., are to the areas qklr, rlms,
            smnt, &c., as the gravitating forces to the resistances in
            the middle of the second, third, fourth time, and so on. Therefore
            since the equal areas BAKq, qKLr, rLMs,
            sMNt, &c., are analogous to the gravitating
            forces, the areas Bkq, qklr, rlms, smnt, &c.,
            will be analogous to the resistances in the middle of each of the
            times, that is (by supposition), to the velocities, and so to the
            spaces described. Take the sums of the analogous quantities, and the
            areas Bkq, Blr, Bms, But, &c.,
            will be analogous to the whole spaces described; and also the areas ABqK,
            ABrL, ABsM, ABtN, &c., to the times.
            Therefore the body, in descending, will in any time ABrL
            describe the space Blr, and in the time LrtN the
            space rlnt.   Q.E.D.   And the like
            demonstration holds in ascending motion.
        


        
            Corol. 1. Therefore the greatest velocity
            that the body can acquire by falling is to the velocity acquired in
            any given time as the given force of gravity which perpetually acts
            upon it to the resisting force which opposes it at the end of that
            time.
        


        
            Corol. 2. But the
            time being augmented in an arithmetical progression, the sum of that
            greatest velocity and the velocity in the ascent, and also their
            difference in the descent, decreases in a geometrical progression.
        


        
            Corol. 3. Also the differences of the spaces,
            which are described in equal differences of the times, decrease in the
            same geometrical progression.
        


        
            Corol. 4. The space described by the body is
            the difference of two spaces, whereof one is as the time taken from
            the beginning of the descent, and the other as the velocity; which
            [spaces] also at the beginning of the descent are equal among
            themselves.
        


    

    
        Proposition iv. Problem ii.


            
                
                    Supposing the force of gravity in any similar medium to be
                    uniform, and to tend perpendicularly to the plane of the horizon;
                    to define the motion of a projectile therein, which suffers
                    resistance proportional to its velocity.
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            Let the projectile go from any place D in the direction of any right
            line DP, and let its velocity at the beginning of the motion be
            expounded by the length DP. From the point P let fall the
            perpendicular PC on the horizontal line DC, and cut DC in A, so that
            DA may be to AC as the resistance of the medium arising from the
            motion upwards at the beginning to the force of gravity; or (which
            comes to the same) so that the rectangle under DA and DP may be to
            that under AC and CP as the whole resistance at the beginning of the
            motion to the force of gravity. With the asymptotes DC, CP describe
            any hyperbola GTBS cutting the perpendiculars DG, AB in G and B;
            complete the parallelogram DGKC, and let its side GK cut AB in Q. Take
            a line N in the same ratio to QB as DC is in to CP; and from any point
            R of the right line DC erect RT perpendicular to it, meeting the
            hyperbola in T, and the right lines EH, GK, DP in I, t, and
            V; in that perpendicular take Vr equal to 
            tGT

            N, or which is the same thing, take Rr
            equal to GTIE

            N; and the projectile in the time DRTG
            will arrive at the point r describing the curve line DraF,
            the locus of the point r; thence it will come to its
            greatest height a in the perpendicular AB; and afterwards ever
            approach to the asymptote PC. And its velocity in any point r
            will be as the tangent rL to the curve.   Q.E.I.
        


        
            For N is to QB as DC to CP or DR to RV, and therefore RV is equal to
            DR x QB

            N, and Rr (that is, RV − Vr,
            or DR x QB − tGT

            N ) is equal to 
            DR x AB − RDGT

            N. Now let the time be expounded by the
            area RDGT and (by Laws, Cor. 2), distinguish the motion of the body
            into two others, one of ascent, the other lateral. And since the
            resistance is as the motion, let that also be distinguished into two
            parts proportional and contrary to the parts of the motion: and
            therefore the length described by the lateral motion will be (by Prop.
            II, Book II) as the line DR, and the height (by Prop. III, Book II) as
            the area DR x AB − RDGT, that is, as the line Rr. But in the
            very beginning of the motion the area RDGT is equal to the rectangle
            DR x AQ, and therefore that line Rr (or 
            DR x AB − DR x AQ

            N ) will then be to DR as AB − AQ or QB
            to N, that is, as CP to DC; and therefore as the motion upwards to the
            motion lengthwise at the beginning. Since, therefore, Rr is
            always as the height, and DR always as the length, and Rr is
            to DR at the beginning as the height to the length, it follows, that Rr
            is always to DR as the height to the length; and therefore that the
            body will move in the line DraF, which is the locus of the
            point r.   Q.E.D.
        


        
            Cor. 1. Therefore Rr is equal to
            DR x AB

            N − RDGT

            N , and therefore if RT be
            produced to X so that RX may be equal to DR
            x AB

            N, that is, if the parallelogram ACPY
            be completed, and DY cutting CP in Z be drawn, and RT be produced till
            it meets DY in X; Xr will be equal to 
            RDGT

            N, and therefore proportional to the
            time.
        


        
            Cor. 2. Whence if innumerable lines CR, or,
            which is the same, innumerable lines ZX, be taken in a geometrical
            progression, there will be as many lines Xr in an
            arithmetical progression. And hence the curve DraF is easily
            delineated by the table of logarithms.
        


        
            Cor. 3. If a parabola be constructed to the
            vertex D, and the diameter DG produced downwards, and its latus rectum
            is to 2 DP as the whole resistance at the beginning of the notion to
            the gravitating force, the velocity with which the body ought to go
            from the place D, in the direction of the right line DP, so as in an
            uniform resisting medium to describe the curve DraF, will be
            the same as that with which it ought to go from the same place D in
            the direction of the same right line DP, so as to describe
            [image: Mathematical Principles of Natural Philosophy figure: 256]
            a parabola in a non-resisting medium. For the latus rectum of this
            parabola, at the very beginning of the motion, is
            DV2

            Vr; and Vr is 
            tGT

            N 
            DR x Tt

            2N. But a right line, which, if drawn,
            would touch the hyperbola GTS in G, is parallel to DK, and therefore Tt
            is CK x DR

            DC, and N is 
            QB x DC

            CP. And therefore Vr is equal
            to DR2 x CK x CP

            2DC2 x QB, that is, (because
            DR and DC, DV and DP are proportionals), to 
            DV2 x CK x CP

            2DP2 x QB; and the latus
            rectum DV2

            Vr comes out 
            2DP2 x QB

            CK x CP, that is (because QB and CK,
            DA, and AC are proportional), 
            2DP2 x DA

            AC x CP, and therefore ist to 2DP as DP
            x DA to CP x AC; that is, as the resistance to the gravity.
              Q.E.D.
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            Cor. 4. Hence if a body be projected from any
            place D with a given velocity, in the direction of a right line DP
            given by position, and the resistance of the medium, at the beginning
            of the motion, be given, the curve DraF, which that body will
            describe, may be found. For the velocity being given, the latus rectum
            of the parabola is given, as is well known. And taking 2DP to that
            latus rectum, as the force of gravity to the resisting force, DP is
            also given. Then cutting DC in A, so that CP x AC may be to DP x DA in
            the same ratio of the gravity to the resistance, the point A will be
            given. And hence the curve DraF is also given.
        


        
            Cor. 5. And, on the contrary, if the curve DraF
            be given, there will be given both the velocity of the body and the
            resistance of the medium in each of the places r. For the
            ratio of CP x AC to DP x DA being given, there is given both the
            resistance of the medium at the beginning of the motion, and the latus
            rectum of the parabola; and thence the velocity at the beginning of
            the motion is given also. Then from the length of the tangent L
            there is given both the velocity proportional to it, and the
            resistance proportional to the velocity in any place r.
        


        
            Cor. 6. But since the length 2DP is to the
            latus rectum of the parabola as the gravity to the resistance in D;
            and, from the velocity augmented, the resistance is augmented in the
            same ratio, but the latus rectum of the parabola is augmented in the
            duplicate of that ratio, it is plain that the length 2DP is augmented
            in that simple ratio only; and is therefore always proportional to the
            velocity; nor will it be augmented or diminished by the change of the
            angle CDP, unless the velocity be also changed.
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            Cor. 7. Hence appears the method of
            determining the curve DraF nearly from the phenomena, and
            thence collecting the resistance and velocity with which the body is
            projected. Let two similar and equal bodies be projected with the same
            velocity, from the place D, in different angles CDP, CDp; and
            let the places F, f, where they fall upon the horizontal
            plane DC, be known. Then taking any length for DP or Dp
            suppose the resistance in D to be to the gravity in any ratio
            whatsoever, and let that ratio be expounded by any length SM. Then, by
            computation, from that assumed length DP, find the lengths DP, Df;
            and from the ratio Ff

            DF, found by calculation, subduct the
            same ratio as found by experiment; and let the difference be expounded
            by the perpendicular MN. Repeat the same a second and a third time, by
            assuming always a new ratio SM of the resistance to the gravity, and
            collecting a new difference MN. Draw the affirmative differences on
            one side of the right line SM, and the negative on the other side; and
            through the points N, N, N, draw a regular curve NNN. cutting the
            right line SMMM in X, and SX will be the true ratio of the resistance
            to the gravity, which was to be found. From this ratio the length DF
            is to be collected by calculation; and a length, which is to the
            assumed length DP as the length DF known by experiment to the length
            DF just now found, will be the true length DP. This being known, you
            will have both the curve line DraF which the body describes,
            and also the velocity and resistance of the body in each place.
        


    

    
        Scholium.



        
            But, yet, that the resistance of bodies is in the ratio of the
            velocity, is more a mathematical hypothesis than a physical one. In
            mediums void of all tenacity, the resistances made to bodies are in
            the duplicate ratio of the velocities. For by the action of a swifter
            body, a greater motion in proportion to a
            greater velocity is communicated to the same quantity of the medium in
            a less time; and in an equal time, by reason of a greater quantity of
            the disturbed medium, a motion is communicated in the duplicate ratio
            greater; and the resistance (by Law II and III) is as the motion
            communicated. Let us, therefore, see what motions arise from this law
            of resistance.
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                        distinguished into geometrically rational and geometrically irrational,
                        157
                    
                


                
                    		
                        Cycloid,
                        or Epicycloid,
                        its rectification,
                        184
                    
                


                
                    		〃
                    		
                        its evoluta, 185
                    
                


                
                    		
                        Cylinder,
                        the attraction of a cylinder composed of attracting particles,
                        whose forces are reciprocally as the square of the distances,
                        239
                    
                


                
                    		
                        Descent of heavy bodies in vacuo, how much it is,
                        405
                    
                


                
                    		〃
                    		
                        and ascent of bodies in resisting mediums,
                        
                            252,
                            265,
                            281,
                            283,
                            345
                        
                    
                


                
                    		
                        Descent or
                        Ascent rectilinear,
                        the spaces described, the times of decryption,
                        and the velocities acquired in such ascent or descent, compared,
                        on the supposition of any kind of centripetal force,
                        160
                    
                


                
                    		
                        Earth,
                        its dimension by Norwood, by Picart, and by Cassini,
                        405
                    
                


                
                    		〃
                    		
                        its figure discovered, with the proportion of its diameters,
                        and the measure of the degrees upon the meridian,
                        405,
                        409
                    
                


                
                    		〃
                    		
                        the excess of its height at the equator above its height at the poles,
                        407,
                        412
                    
                


                
                    		〃
                    		
                        its greatest and least semi-diameter,
                        407
                    
                


                
                    		〃
                    		
                        its mean semi-diameter, 407
                    
                


                
                    		〃
                    		
                        the globe of the earth more dense than if it was entirely water,
                        400
                    
                


                
                    		〃
                    		
                        the nutation of its axis, 413
                    
                


                
                    		〃
                    		
                        the annual motion thereof in the orbis magnus demonstrated,
                        498
                    
                


                
                    		〃
                    		
                        the eccentricity thereof how much,
                        452
                    
                


                
                    		〃
                    		
                        the motion of its aphelion how much,
                        404
                    
                


                
                    		
                        Ellipses,
                        by what law of centripetal force tending to the centre of the figure it is described by a revolving body,
                        114
                    
                


                
                    		〃
                    		
                        by what law of centripetal force tending to the focus of the figure it is described by a revolving body,
                        116
                    
                


                
                    		
                        Fluid, the definition thereof,
                        108
                    
                


                
                    		
                        Fluids, the laws of their density and compression shewn,
                        293
                    
                


                
                    		〃
                    		
                        their motion in running out at a hole in a vessel determined,
                        331
                    
                


                
                    		
                        Forces, their composition and resolution,
                        84
                    
                


                
                    		〃
                    		
                        attractive forces of spherical bodies,
                        composed of particles attracting according to any law, determined,
                        218
                    
                


                
                    		〃
                    		
                        attractive forces of bodies not spherical, composed of particles attracting according to any law, determined,
                        233
                    
                


                
                    		〃
                    		
                        the invention of the centripetal forces,
                        when a body is revolved in a non-resisting space about an immoveable centre in any orbit,
                        103,
                        116
                    
                


                
                    		〃
                    		
                        the centripetal forces tending to any point by which any figure
                        may be described by a revolving body being given,
                        the centripetal forces tending to any other point by which the
                        same figure may be described in the same periodic time are also given,
                        113
                    
                


                
                    		〃
                    		
                        the centripetal forces by which any figure is described by a revolving body being given,
                        there are given the forces by which a new figure may be described,
                        if the ordinates are augmented or diminished in any given ratio,
                        or the angle of their inclination be any how changed,
                        the periodic time remaining the same,
                        116
                    
                


                
                    		〃
                    		
                        centripetal forces decreasing in the duplicate proportion of the distances,
                        what figures may be described by them,
                        120,
                        196
                    
                


                
                    		
                        Force, centripetal force defined,
                        74
                    
                


                
                    		〃
                    		
                        the absolute quantity of centripetal force defined,
                        75
                    
                


                
                    		〃
                    		
                        the accelerative quantity of the same defined,
                        76
                    
                


                
                    		〃
                    		
                        the motive quantity of the same defined,
                        76
                    
                


                
                    		〃
                    		
                        the proportion thereof to any known force how collected,
                        109
                    
                


                
                    		〃
                    		
                        a centripetal force that is reciprocally as the cube of the ordinate tending
                        to a vastly remote centre of force will cause a body to move in any given conic section,
                        114
                    
                


                
                    		〃
                    		
                        a centripetal force that is as the cube of the ordinate tending to a vastly
                        remote centre of force will cause a body to move in an hyperbola,
                        243
                    
                


                
                    		〃
                    		
                        centrifugal force of bodies on the earth's equator, how great,
                        405
                    
                


                
                    		
                        God, his nature,
                        506
                    
                


                
                    		
                        Gravity mutual between the earth and its parts,
                        94
                    
                


                
                    		〃
                    		
                        of a different nature from magnetical force,
                        397
                    
                


                
                    		〃
                    		
                        the cause of it not assigned, 507
                    
                


                
                    		〃
                    		
                        tends towards all the planets, 393
                    
                


                
                    		〃
                    		
                        from the surfaces of the planets upwards decreases in the duplicate
                        ratio of the distances from the centre,
                        400
                    
                


                
                    		〃
                    		
                        from the same downwards decreases nearly in the simple ratio of the same,
                        400
                    
                


                
                    		〃
                    		
                        tends towards all bodies, and is proportional to the quantity of matter in each,
                        397
                    
                


                
                    		〃
                    		
                        is the force by which the moon is retained in its orbit,
                        391
                    
                


                
                    		〃
                    		
                        the same proved by an accurate calculus,
                        453
                    
                


                
                    		〃
                    		
                        is the force by which the primary planets and
                        the satellites of Jupiter and Saturn are retained in their orbits,
                        393
                    
                


                
                    		
                        Heat, an iron rod increases in length by heat,
                        412
                    
                


                
                    		〃
                    		
                        of the sun, how great at different distances from the sun,
                        486
                    
                


                
                    		〃
                    		
                        how great in Mercury, 400
                    
                


                
                    		〃
                    		
                        how great in the comet of 1680, when in its perihelion,
                        486
                    
                


                
                    		
                        Heavens are void of any sensible resistance,
                        401, 445, 492; and, therefore, of almost any corporeal fluid whatever,
                        355,
                        356
                    
                


                
                    		〃
                    		
                        suffer light to pass through them without any refraction,
                        485
                    
                


                
                    		
                        Hydrostatics, the principles thereof delivered,
                        293
                    
                


                
                    		
                        Hyperbola,
                        by what law of centrifugal force tending from the centre of the figure it is described by a revolving body,
                        116
                    
                


                
                    		〃
                    		
                        by what law of centrifugal force tending from the focus of the figure it is described by a revolving body,
                        117
                    
                


                
                    		〃
                    		
                        by what law of centripetal force tending to the focus of the figure it is described by a revolving body,
                        118
                    
                


                
                    		
                        Hypotheses of what kind soever rejected from this philosophy,
                        508
                    
                


                
                    		
                        Jupiter, its periodic time,
                        388
                    
                


                
                    		〃
                    		
                        its distance from the sun, 388
                    
                


                
                    		〃
                    		
                        its apparent diameter, 386
                    
                


                
                    		〃
                    		
                        its true diameter, 399
                    
                


                
                    		〃
                    		
                        its attractive force, how great, 398
                    
                


                
                    		〃
                    		
                        the weights of bodies on its surface,
                        399
                    
                


                
                    		〃
                    		
                        its density, 399
                    
                


                
                    		〃
                    		
                        its quantity of matter, 399
                    
                


                
                    		〃
                    		
                        its perturbation by Saturn, how much,
                        403
                    
                


                
                    		〃
                    		
                        the proportion of its diameters exhibited by computation,
                        409
                    
                


                
                    		〃
                    		
                        and compared with observations, 409
                    
                


                
                    		〃
                    		
                        its rotation about its axis, in what time performed,
                        409
                    
                


                
                    		〃
                    		
                        the cause of its belts hinted at,
                        445
                    
                


                
                    		
                        Light, its propagation not instantaneous,
                        246
                    
                


                
                    		〃
                    		
                        its velocity different in different mediums,
                        245
                    
                


                
                    		〃
                    		
                        a certain reflection it sometimes suffers explained,
                        245
                    
                


                
                    		〃
                    		
                        its refraction explained, 243
                    
                


                
                    		〃
                    		
                        refraction is not made in the single point of incidence,
                        247
                    
                


                
                    		〃
                    		
                        an incurvation of light about the extremities of bodies observed by experiments,
                        246
                    
                


                
                    		〃
                    		
                        not caused by the agitation of any ethereal medium,
                        368
                    
                


                
                    		
                        Magnetic force,
                        94,
                        304,
                        397,
                        454
                    
                


                
                    		
                        Mars, its periodic time,
                        388
                    
                


                
                    		〃
                    		
                        its distance from the sun, 389
                    
                


                
                    		〃
                    		
                        the motion of its aphelion, 405
                    
                


                
                    		
                        Matter, its quantity of matter defined,
                        73
                    
                


                
                    		〃
                    		
                        its vis insita defined,
                        74
                    
                


                
                    		〃
                    		
                        its impressed force defined, 74
                    
                


                
                    		〃
                    		
                        its extension, hardness, impenetrability, mobility, vis inertiae, gravity, how discovered,
                        385
                    
                


                
                    		〃
                    		
                        subtle matter of Descartes inquired into,
                        320
                    
                


                
                    		
                        Mechanical Powers explained and demonstrated,
                        94
                    
                


                
                    		
                        Mercury, its periodic time,
                        388
                    
                


                
                    		〃
                    		
                        its distance from the sun, 389
                    
                


                
                    		〃
                    		
                        the motion of its aphelion, 405
                    
                


                
                    		
                        Method of first and last ratios,
                        95
                    
                


                
                    		〃
                    		
                        of transforming figures into others of the same analytical order,
                        141
                    
                


                
                    		〃
                    		of fluxions, 261
                


                
                    		〃
                    		differential, 447
                


                
                    		〃
                    		
                        of finding the quadratures of all curves very nearly true,
                        448
                    
                


                
                    		〃
                    		
                        of converging series applied to the solution of difficult problems,
                        271,
                        436
                    
                


                
                    		
                        Moon,
                        the inclination of its orbit to the ecliptic greatest in the syzygies of the node with the sun,
                        and least in the quadratures,
                        208
                    
                


                
                    		〃
                    		the figure of its body collected by calculation, 454
                


                
                    		〃
                    		its librations explained, 405
                


                
                    		〃
                    		its mean apparent diameter, 453
                


                
                    		〃
                    		its true diameter, 453
                


                
                    		〃
                    		weight of bodies on its surface, 453
                


                
                    		〃
                    		its density, 453
                


                
                    		〃
                    		its quantity of matter, 453
                


                
                    		〃
                    		
                        its mean distance from the earth,
                        how many greatest semi-diameters of the earth contained therein,
                        453
                    
                


                
                    		〃
                    		how many mean semi-diameters, 454
                


                
                    		〃
                    		its force to move the sea how great, 449
                


                
                    		〃
                    		
                        not perceptible in experiments of pendulums, or any statical or hydrostatical observations,
                        452
                    
                


                
                    		〃
                    		its periodic time, 454
                


                
                    		〃
                    		the time of its synodical revolution, 422
                


                
                    		〃
                    		
                        its motions, and the inequalities of the same derived from their causes,
                        
                            413,
                            144
                        
                    
                


                
                    		〃
                    		
                        revolves more slowly, in a dilated orbit,
                        when the earth is in its perihelion; and more swiftly in the aphelion the same,
                        its orbit being contracted,
                        413,
                        444,
                        445
                    
                


                
                    		〃
                    		
                        revolves more slowly, in a dilated orbit,
                        when the apogaeon is in the syzygies with the sun; and more swiftly,
                        in a contracted orbit, when the apogaeon is in the quadratures, 445
                    
                


                
                    		〃
                    		
                        revolves more slowly, in a dilated orbit,
                        when the node is in the syzygies with the sun;
                        and more swiftly, in a contracted orbit,
                        when the node is in the quadratures,
                        446
                    
                


                
                    		〃
                    		
                        moves slower in its quadratures with the sun, swifter in the syzygies;
                        and by a radius drawn to the earth describes an area,
                        in the first case less in proportion to the time, in the last case greater,
                        413
                    
                


                
                    		〃
                    		
                        the inequality of those areas computed,
                        420
                    
                


                
                    		〃
                    		
                        its orbit is more curve, and goes farther from the earth in the first case;
                        in the last case its orbit is less curve, and comes nearer to the earth,
                        415
                    
                


                
                    		〃
                    		
                        the figure of this orbit, and the proportion of its diameters collected by computation,
                        423
                    
                


                
                    		〃
                    		
                        a method of finding the moon's distance from the earth by its horary motion,
                        423
                    
                


                
                    		〃
                    		
                        its apogaeon moves more slowly when the earth is in its aphelion,
                        more swiftly in the perihelion,
                        414,
                        445
                    
                


                
                    		〃
                    		
                        its apogaeon goes forward most swiftly when in the syzygies with the sun;
                        and goes backward in the quadratures,
                        414,
                        446
                    
                


                
                    		〃
                    		
                        its eccentricity greatest when the apogaeon is in the syzygies with the sun;
                        least when the same is in the quadratures,
                        414,
                        446
                    
                


                
                    		〃
                    		
                        its nodes move more slowly when the earth is in its aphelion,
                        and more swiftly in the perihelion,
                        414,
                        445
                    
                


                
                    		〃
                    		
                        its nodes are at rest in their syzygies with the sun,
                        and go back most swiftly in the quadratures
                        414
                    
                


                
                    		
                        Moon the motions of the nodes and
                        the inequalities of its motions computed from the theory of gravity,
                        427,
                        430,
                        434,
                        436
                    
                


                
                    		〃
                    		
                        the same from a different principle,
                        437
                    
                


                
                    		〃
                    		
                        the variations of the inclination computed from the theory of gravity,
                        441,
                        443
                    
                


                
                    		〃
                    		
                        the equations of the moon's motions for astronomical uses,
                        445
                    
                


                
                    		〃
                    		the annual equation of the moon's mean motion,
                    445
                


                
                    		〃
                    		the first semi-annual equation of the same,
                    443
                


                
                    		〃
                    		the second semi-annual equation of the same,
                    447
                


                
                    		〃
                    		the first equation of the moon's centre,
                    447
                


                
                    		〃
                    		the second equation of the moon's centre,
                    448
                


                
                    		Moon's first variation,
                    425
                


                
                    		〃
                    		the annual equation of the mean motion of its apogee,
                    445
                


                
                    		〃
                    		the semi-annual equation of the same,
                    447
                


                
                    		〃
                    		the semi-annual equation of its eccentricity,
                    447
                


                
                    		〃
                    		the annual equation of the mean motion of its nodes,
                    445
                


                
                    		〃
                    		the semi-annual equation of the same,
                    437
                


                
                    		〃
                    		
                        the semi-annual equation of the inclination of the orbit to the ecliptic,
                        444
                    
                


                
                    		〃
                    		
                        the method of fixing the theory of the lunar motions from observations,
                        464
                    
                


                
                    		
                        Motion, its quantity defined,
                        73
                    
                


                
                    		〃
                    		absolute and relative, 78
                


                
                    		〃
                    		
                        absolute and relative, the separation of one from the other possible, demonstrated by an example
                        82
                    
                


                
                    		〃
                    		laws thereof, 83
                


                
                    		〃
                    		
                        of concurring bodies after their reflection, by what experiments collected,
                        91
                    
                


                
                    		〃
                    		of bodies in eccentric sections,
                    116
                


                
                    		〃
                    		in moveable orbits,
                    172
                


                
                    		〃
                    		
                        in given superficies, and of the reciprocal motion of pendulums,
                        183
                    
                


                
                    		〃
                    		of bodies tending to each other with centripetal forces,
                    194
                


                
                    		〃
                    		
                        of very small bodies agitated by centripetal forces tending to each part of some very great body,
                        233
                    
                


                
                    		〃
                    		of bodies resisted in the ratio of the velocities,
                    251
                


                
                    		〃
                    		in the duplicate ratio of the velocity,
                    258
                


                
                    		〃
                    		
                        partly in the simple and partly in the duplicate ratio of the same,
                        280
                    
                


                
                    		〃
                    		
                        of bodies proceeding by their vis insita alone in resisting mediums,
                        
                            251,
                            258,
                            259,
                            280,
                            281,
                            330
                        
                    
                


                
                    		〃
                    		
                        of bodies ascending or descending in right lines in resisting mediums,
                        and acted on by an uniform force of gravity,
                        
                            252,
                            265,
                            281,
                            283
                        
                    
                


                
                    		〃
                    		
                        of bodies projected in resisting mediums, and acted on by an uniform force of gravity,
                        
                            255,
                            268
                        
                    
                


                
                    		〃
                    		of bodies revolving in resisting mediums,
                    287
                


                
                    		〃
                    		of funependulous bodies in resisting mediums,
                    304
                


                
                    		〃
                    		and resistance of fluids,
                    323
                


                
                    		〃
                    		propagated through fluids,
                    356
                


                
                    		〃
                    		of fluids after the manner of a vortex, or circular,
                    370
                


                
                    		Motions,
                    composition and resolution of them,
                    84
                    
                


                
                    		
                        Ovals for optic uses,
                        the method of finding them which Cartesius concealed,
                        246
                    
                


                
                    		〃
                    		
                        a general solution of Cartesius's problem,
                        247,
                        248
                    
                


                
                    		
                        Orbits,
                        the invention of those which are described by bodies going off from a
                        given place with a given velocity according to a given right line,
                        when the centripetal force is reciprocally as the square of the distance,
                        and the absolute quantity of that force is known,
                        123
                    
                


                
                    		〃
                    		
                        of those which are described by bodies when the centripetal force is reciprocally as the cube of the distance,
                        114,
                        171,
                        176
                    
                


                
                    		〃
                    		
                        of those which are described by bodies agitated by any centripetal forces whatever,
                        168
                    
                


                
                    		
                        Parabola,
                        by what law of centripetal force tending to the focus of the figure the same may be described,
                        120
                    
                


                
                    		
                        Pendulums, their properties explained,
                        186,
                        190,
                        304
                    
                


                
                    		〃
                    		
                        the diverse lengths of isochronous pendulums in different latitudes compared among themselves,
                        both by observations and by the theory of gravity,
                        409 to
                        413
                    
                


                
                    		
                        Place defined,
                        and distinguished into absolute and relative,
                        78
                    
                


                
                    		
                        Places of bodies moving in conic sections found to any assigned time,
                        153
                    
                


                
                    		
                        Planets not carried about by corporeal vortices,
                        378
                    
                


                
                    		
                        Planets, their periodic times,
                        388
                    
                


                
                    		〃
                    		
                        their distances from the sun,
                        389
                    
                


                
                    		〃
                    		the aphelia and nodes of their orbits do almost rest,
                    405
                


                
                    		〃
                    		their orbits determined,
                    406
                


                
                    		〃
                    		
                        the way of finding their places in their orbits,
                        347 to
                        350
                    
                


                
                    		〃
                    		their density suited to the heat they receive from the sun,
                    400
                


                
                    		〃
                    		their diurnal revolutions equable.
                    406
                


                
                    		〃
                    		
                        their axes less than the diameters that stand upon them at right angles,
                        406
                    
                


                
                    		
                        Planets, Primary, surround the sun,
                        387
                    
                


                
                    		〃
                    		move in ellipses whose focus is in the sun's centre,
                    403
                


                
                    		〃
                    		
                        by radii drawn to the sun describe areas proportional to the times,
                        388,
                        403
                    
                


                
                    		〃
                    		
                        revolve in periodic times that are in the sesquiplicate proportion of the distances from the sun,
                        387
                    
                


                
                    		〃
                    		
                        are retained in their orbits by a force of gravity which respects the sun,
                        and is reciprocally as the square of the distance from the sun's centre,
                        389,
                        393
                    
                


                
                    		
                        Planets, Secondary,
                        move in ellipses having their focus in the centre of the primary,
                        413
                
                


                
                    		〃
                    		
                        by radii drawn to their primary describe areas proportional to the times,
                        386,
                        387,
                        390
                    
                


                
                    		〃
                    		
                        revolve in periodic times that are in the sesquiplicate proportion of their distances from the primary,
                        386,
                        387
                    
                


                
                    		
                        Problem Keplerian, solved by the trochoid and by approximations,
                        157 to
                        160
                    
                


                
                    		〃
                    		
                        of the ancients, of four lines, related by Pappus, and attempted by Cartesius,
                        by an algebraic calculus solved by a geometrical composition,
                        135
                    
                


                
                    		
                        Projectiles move in parabolas when the resistance of the medium is taken away,
                        91,
                        115,
                        243,
                        273
                    
                


                
                    		〃
                    		
                        their motions in resisting mediums,
                        
                            255,
                            268
                        
                    
                


                
                    		
                        Pulses of the air, by which sounds are propagated,
                        their intervals or breadths determined,
                        368,
                        370
                    
                


                
                    		〃
                    		
                        these intervals in sounds made by open pipes probably equal to twice the length of the pipes,
                        370
                    
                


                
                    		
                        Quadratures general of oval figures not to be obtained by finite terms,
                        153
                    
                


                
                    		
                        Qualities of bodies how discovered, and when to be supposed universal,
                        384
                    
                


                
                    		
                    Resistance, the quantity thereof in mediums not continued,
                        329
                    
                


                
                    		〃
                    		in continued mediums, 409
                


                
                    		〃
                    		in mediums of any kind whatever, 331
                


                
                    		〃
                    		
                        of mediums is as their density, caeteris paribus,
                        
                            320,
                            321,
                            324,
                            329,
                            344,
                            355
                        
                    
                


                
                    		〃
                    		
                        is in the duplicate proportion of the velocity of the bodies resisted,
                        caeteris paribus,
                        
                            258,
                            314,
                            374,
                            329,
                            344,
                            351
                        
                    
                


                
                    		〃
                    		
                        is in the duplicate proportion of the diameters of spherical bodies resisted,
                        caeteris paribus,
                        317,
                        318,
                        329,
                        344
                    
                


                
                    		〃
                    		
                        of fluids threefold, arises either from the inactivity of the fluid matter,
                        or the tenacity of its parts, or friction,
                        286
                    
                


                
                    		〃
                    		the resistance found in fluids, almost all of the first kind,
                    
                        321,
                        354
                    
                


                
                    		〃
                    		cannot be diminished by the subtilty of the parts of the fluid, if the density remain,
                    355
                


                
                    		〃
                    		
                        of a globe, what proportion it bears to that of a cylinder, in mediums not continued,
                        327
                    
                


                
                    		〃
                    		in compressed mediums, 343
                


                
                    		〃
                    		of a globe in mediums not continued, 329
                


                
                    		〃
                    		in compressed mediums, 344
                


                
                    		〃
                    		how found by experiments,
                    345 to
                    355
                


                
                    		〃
                    		to a frustum of a cone, how made the least possible,
                    328
                


                
                    		〃
                    		what kind of solid it is that meets with the least,
                    329
                


                
                    		
                        Resistances,
                        the theory thereof confirmed by experiments of pendulums,
                        
                            313 to
                            321
                        
                    
                


                
                    		〃
                    		by experiments of falling bodies,
                    345 to
                    356
                


                
                    		Rest, true and relative,
                    78
                


                
                    		Rules of philosophy,
                    384
                


                
                    		
                        Satellites,
                        the greatest heliocentric elongation of Jupiter's satellites,
                        387
                    
                


                
                    		〃
                    		the greatest heliocentric elongation of the Huygenian satellite from Saturn's centre,
                    398
                


                
                    		〃
                    		the periodic times of Jupiter's satellites, and their distances from his centre,
                    386,
                    387
                


                
                    		〃
                    		the periodic times of Saturn's satellites, and their distances from his centre,
                    387,
                    388
                


                
                    		〃
                    		the inequalities of the motions of the satellites of Jupiter and Saturn derived from the motions of the moon,
                    413
                
                


                
                    		Sesquiplicate proportion defined,
                    101
                


                
                    		Saturn, its periodic time,
                    388
                


                
                    		〃
                    		its distance from the sun,
                    388
                


                
                    		〃
                    		its apparent diameter, 388
                


                
                    		〃
                    		its true diameter, 399
                


                
                    		〃
                    		its attractive force, how great, 398
                


                
                    		〃
                    		the weight of bodies on its surface, 399
                


                
                    		〃
                    		its density, 399
                


                
                    		〃
                    		its quantity of matter, 399
                


                
                    		〃
                    		its perturbation by the approach of Jupiter how great,
                    403
                


                
                    		〃
                    		the apparent diameter of its ring, 
                    388
                


                
                    		
                        Shadow of the earth to be augmented in lunar eclipses,
                        because of the refraction of the atmosphere,
                        447
                    
                


                
                    		
                        Sounds, their nature explained,
                        
                            360,
                            363,
                            365,
                            366,
                            367,
                            368,
                            369
                        
                   
                


                
                    		〃
                    		not propagated in directum, 359
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    The Author's Preface




    
        
            SINCE the ancients (as we are told by Pappus),
            made great account of the science of mechanics in the investigation
            of natural things : and the moderns, laying aside substantial forms
            and occult qualities, have endeavoured to subject the phenomena of
            nature to the laws of mathematics, I have in this treatise
            cultivated mathematics so far as it regards philosophy. The ancients
            considered mechanics in a twofold respect ; as rational, which
            proceeds accurately by demonstration ; and practical. To practical
            mechanics all the manual arts belong, from which mechanics took its
            name. But as artificers do not work with perfect accuracy, it comes
            to pass that mechanics is so distinguished from geometry, that what
            is perfectly accurate is called geometrical , what is less so, is
            called mechanical. But the errors are not in the art, but in the
            artificers. He that works with less accuracy is an imperfect
            mechanic ; and if any could work with perfect accuracy, he would be
            the most perfect mechanic of all ; for the description if right
            lines and circles, upon which geometry is founded, belongs to
            mechanics. Geometry does not teach us to draw these lines, but
            requires them to be drawn ; for it requires that the learner should
            first be taught to describe these accurately, before he enters upon
            geometry ; then it shows how by these operations problems may be
            solved. To describe right lines and circles are problems, but not
            geometrical problems. The solution of these problems is required
            from mechanics ; and by geometry the use of them, when so solved, is
            shown ; and it is the glory of geometry that from those few
            principles, brought from without, it is able to produce so many
            things. Therefore geometry is founded in mechanical practice, and is
            nothing but that part of universal mechanics which accurately
            proposes and demonstrates the art of measuring. But since the manual
            arts are chiefly conversant in the moving of bodies, it comes to
            pass that geometry is commonly referred to their magnitudes, and
            mechanics to their motion. In this sense rational mechanics will be
            the science of motions resulting from any forces whatsoever, and of
            the forces required to produce any motions, accurately proposed and
            demonstrated. This part of mechanics was 
            cultivated by the ancients in the five powers which relate to manual
            arts, who considered gravity (it not being a manual power), ho
            Otherwise than as it moved weights by those powers. Our design not
            respecting arts, but philosophy, and our subject not manual but
            natural powers, we consider chiefly those things which relate to
            gravity, levity, elastic force, the resistance of fluids, and the
            like forces, whether attractive or impulsive ; and therefore we
            offer this work as the mathematical principles of philosophy ; for
            all the difficulty of philosophy seems to consist in this from the
            phenomena of motions to investigate the forces of nature, and then
            from these forces to demonstrate the other phenomena ; and to this
            end the general propositions in the first and second book are
            directed. In the third book we give an example of this in the
            explication of the System of the World : for by the propositions
            mathematically demonstrated in the former books, we in the third
            derive from the celestial phenomena the forces of gravity with which
            bodies tend to the sun and the several planets. Then from these
            forces, by other propositions which are also mathematical, we deduce
            the motions of the planets, the comets, the moon, and the sea. I
            wish we could derive the rest of the phenomena of nature by the same
            kind of reasoning from mechanical principles; for I am induced by
            many reasons to suspect that they may all depend upon certain forces
            by which the particles of bodies, by some causes hitherto unknown,
            are either mutually impelled towards each other, and cohere in
            regular figures, or are repelled and recede from each other; which
            forces being unknown, philosophers have hitherto at tempted the
            search of nature in vain ; but I hope the principles here laid down
            will afford some light either to this or some truer method of
            philosophy. In the publication of this work the most acute and
            universally learned Mr. Edmund Halley not only assisted me with his
            pains in correcting the press and taking care of the schemes, but it
            was to his solicitations that its becoming public is owing ; for
            when he had obtained of me my demonstrations of the figure of the
            celestial orbits, he continually pressed me to communicate the same
            to the Royal Society, who afterwards, by their kind encouragement
            and entreaties, engaged me to think of publishing them. But after I
            had begun to consider the inequalities of the lunar motions, and had
            entered upon some other things relating to the laws and measures of
            gravity, and other forces ; and the figures that would be described
            by bodies attracted according to given laws ; and the motion of
            several bodies moving among themselves; the motion of bodies in
            resisting mediums; the forces, densities, and motions, of mediums ;
            the orbits of the comets, and such like ; 
            deferred that publication till I had made a search into those
            matters, and could put forth the whole together. What relates to the
            lunar motions (being imperfect), I have put all together in the
            corollaries of Prop. 66, to avoid being obliged to propose and
            distinctly demonstrate the several things there contained in a
            method more prolix than the subject deserved, and interrupt the
            series of the several propositions. Some things, found out after the
            rest, I chose to insert in places less suitable, rather than change
            the number of the propositions and the citations. I heartily beg
            that what I have here done may be read with candour; and that the
            defects in a subject so difficult be not so much reprehended as
            kindly supplied, and investigated by new endeavours of my readers.
        


        Isaac Newton.


        Cambridge, Trinity College May 8, 1688.


    

    
        
            In the second edition the second section of the first book was
            enlarged. In the seventh section of the second book the theory of
            the resistances of fluids was more accurately investigated, and
            confirmed by new experiments. In the third book the moon's theory
            and the praecession of the equinoxes were more fully deduced from
            their principles ; and the theory of the comets was confirmed by
            more examples of the calculation of their orbits, done also with
            greater accuracy.
        


    

    
        
            In this third edition the resistance of mediums is somewhat more
            largely handled than before; and new experiments of the resistance
            of heavy bodies falling in air are added. In the third book, the
            argument to prove that the moon is retained in its orbit by the
            force of gravity is enlarged on ; and there are added new
            observations of Mr. Pound's of the proportion of the diameters of
            Jupiter to each other : there are, besides, added Mr. Kirk's
            observations of the comet in 1680 ; the orbit of that comet computed
            in an ellipsis by Dr. Halley ; and the orbit of the comet in 1723
            computed by Mr. Bradley.
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Book 3.4




    General Scholium.



    
        The hypothesis of vortices is pressed with many difficulties. That
        every planet by a radius drawn to the sun may describe areas
        proportional to the times of description, the periodic times of the
        several parts of the vortices should observe the duplicate proportion of
        their distances from the sun; but that the periodic times of the planets
        may obtain the sesquiplicate proportion of their distances from the sun,
        the periodic times of the parts of the vortex ought to be in the
        sesquiplicate proportion of their distances. That the smaller vortices
        may maintain their lesser revolutions about Saturn, Jupiter,
        and other planets, and swim quietly and undisturbed in the greater
        vortex of the sun, the periodic times of the parts of the sun's vortex
        should be equal; but the rotation of the sun and planets about their
        axes, which ought to correspond with the motions of their vortices,
        recede far from all these proportions. The motions of the comets are
        exceedingly regular, are governed by the same laws with the motions of
        the planets, and can by no means be accounted for by the hypothesis of
        vortices; for comets are carried with very eccentric motions through all
        parts of the heavens indifferently, with a
        freedom that is incompatible with the notion of a vortex.
    


    
        Bodies projected in our air suffer no resistance but from the air.
        Withdraw the air, as is done in Mr. Boyle's vacuum, and the
        resistance ceases; for in this void a bit of line down and a piece of
        solid gold descend with equal velocity. And the parity of reason must
        take place in the celestial spaces above the earth's atmosphere; in
        which spaces, where there is no air to resist their motions, all bodies
        will move with the greatest freedom; and the planets and comets will
        constantly pursue their revolutions in orbits given in kind and
        position, according to the laws above explained; but though these bodies
        may, indeed, persevere in their orbits by the mere laws of gravity, yet
        they could by no means have at first derived the regular position of the
        orbits themselves from those laws.
    


    
        The six primary planets are revolved about the sun in circles
        concentric with the sun, and with motions directed towards the same
        parts, and almost in the same plane. Ten moons are revolved about the
        earth, Jupiter and Saturn, in circles concentric with them, with the
        same direction of motion, and nearly in the planes of the orbits of
        those planets; but it is not to be conceived that mere mechanical causes
        could give birth to so many regular motions, since the comets range over
        all parts of the heavens in very eccentric orbits; for by that kind of
        motion they pass easily through the orbs of the planets, and with great
        rapidity; and in their aphelions, where they move the slowest, and are
        detained the longest, they recede to the greatest distances from each
        other, and thence suffer the least disturbance from their mutual
        attractions. This most beautiful system of the sun, planets, and comets,
        could only proceed from the counsel and dominion of an intelligent and
        powerful Being. And if the fixed stars are the centres of other like
        systems, these, being formed by the like wise counsel, must be all
        subject to the dominion of One; especially since the light of the fixed
        stars is of the same nature with the light of the sun, and from every
        system light passes into all the other systems: and lest the systems of
        the fixed stars should, by their gravity, fall on each other mutually,
        he hath placed those systems at immense distances one from another.
    


    
        This Being governs all things, not as the soul of the world, but as
        Lord over all; and on account of his dominion he is wont to be called
        Lord God παντοκράτωρ, or Universal Ruler; for God
        is a relative word, and has a respect to servants; and Deity
        is the dominion of God not over his own body, as those imagine who fancy
        God to be the soul of the world, but over servants. The Supreme God is a
        Being eternal, infinite, absolutely perfect; but a being, however
        perfect, without dominion, cannot be said to be Lord God; for we say, my
        God, your God, the God of Israel, the God of Gods, and Lord of
        Lords; but we do not say, my Eternal, your Eternal, the Eternal of Israel,
        the Eternal of Gods; we do not say, my Infinite, or 
        my Perfect: these are titles which have no respect to servants.
        The word God
        [1] usually
        signifies Lord; but every lord is not a God. It is the
        dominion of a spiritual being which constitutes a God: a true, supreme,
        or imaginary dominion makes a true, supreme, or imaginary God. And from
        his true dominion it follows that the true God is a living, intelligent,
        and powerful Being; and, from his other perfections, that he is supreme,
        or most perfect. He is eternal and infinite, omnipotent and omniscient;
        that is, his duration reaches from eternity to eternity; his presence
        from infinity to infinity; he governs all things, and knows all things
        that are or can be done. He is not eternity or infinity, but eternal and
        infinite; he is not duration or space, but he endures and is present. He
        endures for ever, and is every where present; and by existing always and
        every where, he constitutes duration and space. Since every particle of
        space is always, and every indivisible moment of duration is every
        where, certainly the Maker and Lord of all things cannot be never
        and no where. Every soul that has perception is, though in
        different times and in different organs of sense and motion, still the
        same indivisible person. There are given successive parts in duration,
        co-existent parts in space, but neither the one nor the other in the
        person of a man, or his thinking principle; and much less can they be
        found in the thinking substance of God. Every man, so far as he is a
        thing that has perception, is one and the same man during his whole
        life, in all and each of his organs of sense. God is the same God,
        always and every where. He is omnipresent not virtually only,
        but also substantially; for virtue cannot subsist without
        substance. In him[2]
        are all things contained and moved; yet neither affects the other: God
        suffers nothing from the motion of bodies; bodies find no resistance
        from the omnipresence of God. It is allowed by all that the Supreme God
        exists necessarily; and by the same necessity he exists always
        and every where. Whence also he is all similar, all eye, all
        ear, all brain, all arm, all power to perceive, to understand, and to
        act; but in a manner not at all human, in a manner not at all corporeal,
        in a manner utterly unknown to us. As a blind mail has no idea of
        colours, so have we no idea of the manner by 
        which the all-wise God perceives and understands all things. He is utterly
        void of all body and bodily figure, and can therefore neither be seen,
        nor heard, nor touched; nor ought he to be worshipped under the
        representation of any corporeal thing. We have ideas of his attributes,
        but what the real substance of any thing is we know not. In bodies, we
        see only their figures and colours, we hear only the sounds, we touch
        only their outward surfaces, we smell only the smells, and taste the
        savours; but their inward substances are not to be known either by our
        senses, or by any reflex act of our minds: much less, then, have we any
        idea of the substance of God. We know him only by his most wise and
        excellent contrivances of things, and final causes: we admire him for
        his perfections; but we reverence and adore him on account of his
        dominion: for we adore him as his servants; and a god without dominion,
        providence, and final causes, is nothing else but Fate and Nature. Blind
        metaphysical necessity, which is certainly the same always and every
        where, could produce no variety of things. All that diversity of natural
        things which we find suited to different times and places could arise
        from nothing but the ideas and will of a Being necessarily existing.
        But, by way of allegory, God is said to see, to speak, to laugh, to
        love, to hate, to desire, to give, to receive, to rejoice, to be angry,
        to fight, to frame, to work, to build; for all our notions of God are
        taken from the ways of mankind by a certain similitude, which, though
        not perfect, has some likeness, however. And thus much concerning God;
        to discourse of whom from the appearances of things, does certainly
        belong to Natural Philosophy.
    


    
        Hitherto we have explained the phenomena of the heavens and of our sea
        by the power of gravity, but have not yet assigned the cause of this
        power. This is certain, that it must proceed from a cause that
        penetrates to the very centres of the sun and planets, without suffering
        the least diminution of its force; that operates not according to the
        quantity of the surfaces of the particles upon which it acts (as
        mechanical causes use to do), but according to the quantity of the solid
        matter which they contain, and propagates its virtue on all sides to
        immense distances, decreasing always in the duplicate proportion of the
        distances. Gravitation towards the sun is made up out of the
        gravitations towards the several particles of which the body of the sun
        is composed; and in receding from the sun decreases accurately in the
        duplicate proportion of the distances as far as the orb of Saturn, as
        evidently appears from the quiescence of the aphelions of the planets;
        nay, and even to the remotest aphelions of the comets, if those
        aphelions are also quiescent. But hitherto I have not been able to
        discover the cause of those properties of gravity from phaenomena, and I
        frame no hypotheses; for whatever is not deduced from the phaenomena is
        to be called an hypothesis; and hypotheses, whether metaphysical or
        physical, whether of occult qualities or mechanical, have no place in
        experimental philosophy. In this philosophy
        particular propositions are inferred from the phenomena, and afterwards
        rendered general by induction. Thus it was that the impenetrability, the
        mobility, and the impulsive force of bodies, and the laws of motion and
        of gravitation, were discovered. And to us it is enough that gravity
        does really exist, and act according to the laws which we have
        explained, and abundantly serves to account for all the motions of the
        celestial bodies, and of our sea.
    


    
        And now we might add something concerning a certain most subtle Spirit
        which pervades and lies hid in all gross bodies; by the force and action
        of which Spirit the particles of bodies mutually attract one another at
        near distances, and cohere, if contiguous; and electric bodies operate
        to greater distances, as well repelling as attracting the neighbouring
        corpuscles; and light is emitted, reflected, refracted, inflected, and
        heats bodies; and all sensation is excited, and the members of animal
        bodies move at the command of the will, namely, by the vibrations of
        this Spirit, mutually propagated along the solid filaments of the
        nerves, from the outward organs of sense to the brain, and from the
        brain into the muscles. But these are things that cannot be explained in
        few words, nor are we furnished with that sufficiency of experiments
        which is required to an accurate determination and demonstration of the
        laws by which this electric and elastic Spirit operates.
    


    end of the mathematical principles.


    



    
        1 Dr. Pocock derives
        the Latin word Deus from the Arabic du (in the
        oblique case di), which signifies Lord. And in this
        sense princes are called gods, Psal. lxxxii. ver. 6;
        and John x. ver. 35. And Moses is called a god
        to his brother Aaron, and a god to Pharaoh (Exod.
        iv. ver. 16; and vii. ver. 1). And in the same sense the souls of dead
        princes were formerly, by the Heathens, culled gods, but
        falsely, because of their want of dominion.
    


    
        2 This was the opinion of the
        Ancients. So Pythagoras, in Cicer. de Nat. Deor.
        lib. i Thales, Anaxagoros, Virgil, Georg.
        lib. iv. ver. 220; and AEneid, lib. vi. ver. 721. Philo Allegor,
        at the beginning of lib. i. Aratus, in his Phaenom. at the
        beginning. So also the sacred writers; as St. Paul, Acts,
        xvii. ver 27, 28. St. John's Gosp. chap. xiv. ver. 2. Moses.
        in Deut. iv. ver. 39; and x ver. 14. David, Psal.
        cxxxix. ver. 7, 8, 9. Solomon, 1 Kings, viii. ver.
        27. Job, xxii. ver. 12, 13, 14. Jeremiah, xxiii.
        ver. 23, 24. The Idolaters opposed the sun, moon, and stars, the souls
        of men, and other parts of the world, to be parts of the Supreme God,
        and therefore to be worshipped; but erroneously.
    






    Deus (Latin pronunciation: ['deːʊs]) is Latin for God or Deity.
    Latin deus and dīvus Divine, are descended from Proto-Indo-European *deiwos,
    Celestial or Shining,
    from the same root as *Dyēus, the reconstructed chief God of the Proto-Indo-European pantheon.



    Pythagoras of Samos was an Ionian Greek Philosopher and the eponymous founder of the Pythagoreanism movement.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.11




    
        Section xi.


        Of the motions of bodies tending to each other with centripetal forces.



    

    
        
            I have hitherto been treating of the attractions of bodies towards an
            immovable centre; though very probably there is no such thing existent
            in nature. For attractions are made towards bodies, and the actions of
            the bodies attracted and attracting are always reciprocal and equal,
            by Law III; so that if there are two bodies, neither the attracted nor
            the attracting body is truly at rest, but both (by Cor. 4, of the Laws
            of Motion), being as it were mutually attracted, revolve about a
            common centre of gravity. And if there be more bodies, which are
            either attracted by one single one which is attracted by them again,
            or which all of them, attract each other mutually, these bodies will
            be so moved among themselves, as that their common centre of gravity
            will either be at rest, or move uniformly forward in a right line. I
            shall therefore at present go on to treat of the motion of bodies
            mutually attracting each other; considering the centripetal forces as
            attractions; though perhaps in a physical strictness they may more
            truly be called impulses. But these propositions are to be considered
            as purely mathematical; and therefore, laying aside all physical
            considerations, I make use of a familiar way of speaking, to make
            myself the more easily understood by a mathematical reader.
        


    

    
        Proposition lvii. Theorem xx.


            
                
                    Two bodies attracting each other mutually describe similar
                    figures about their common centre of gravity, and about each other mutually.
                
            


        

        
            For the distances of the bodies from their common centre of gravity
            are reciprocally as the bodies; and therefore in a given ratio to each
            other: and thence, by composition of ratios, in a given ratio to the
            whole distance between the bodies. Now these
            distances revolve about their common term with an equable angular
            motion, because lying in the same right line they never change their
            inclination to each other mutually. But right lines that are in a
            given ratio to each other, and revolve about their terms with an equal
            angular motion, describe upon planes, which either rest with those
            terms, or move with any motion not angular, figures entirely similar
            round those terms. Therefore the figures described by the revolution
            of these distances are similar.   Q.E.D.
        


    

    
        Proposition lviii. Theorem xxi.


            
                
                    If two bodies attract each other mutually with forces of any
                    kind, and in the mean time revolve about the common centre of
                    gravity; I say, that, by the same forces, there may be described
                    round either body unmoved a figure similar and equal to the
                    figures which the bodies so moving describe round each other mutually.
                
            


        

        
            Let the bodies S and P revolve about their common centre of gravity
            C, proceeding from S to T, and from P to Q. From the given point s let
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            there be continually drawn sp,
            sq, equal and parallel to SP, TQ; and the curve pqv,
            which the point p describes in its revolution round the
            immovable point s, will be similar and equal to the curves
            which the bodies S and P describe about each other mutually; and
            therefore, by Theor. XX, similar to the curves ST and PQV which the
            same bodies describe about their common centre of gravity C; and that
            because the proportions of the lines SC, CP, and SP or sp,
            to each other, are given.
        


        
            Case 1. The common centre of gravity C (by
            Cor. 4, of the Laws of Motion) is either at rest, or moves uniformly
            in a right line. Let us first suppose it at rest, and in s
            and p let there be placed two bodies, one immovable in s,
            the other movable in p, similar and equal to the bodies S
            and P. Then let the right lines PR and pr touch the curves
            PQ and pq in P and p, and produce CQ and sq
            to R and r. And because the figures CPRQ, sprq are
            similar, RQ will be to rq as CP to sp, and
            therefore in a given ratio. Hence if the force with which the body P
            is attracted towards the body S, and by consequence towards the
            intermediate point the centre C, were to the force with which the body
            p is attracted towards the centre s, in the same
            given ratio, these forces would in equal times attract the
            bodies from the tangents PR, pr to the arcs PQ, pq,
            through the intervals proportional to them RQ, rq; and
            therefore this last force (tending to s) would make the body
            p revolve in the curve pqv, which would become
            similar to the curve PQV, in which the first force obliges the body P
            to revolve; and their revolutions would be completed in the same
            times. But because those forces are not to each other in the ratio of
            CP to sp, but (by reason of the similarity and equality of
            the bodies S and s, P and p and the equality of
            the distances SP, sp) mutually equal, the bodies in equal
            times will be equally drawn from the tangents; and therefore that the
            body p may be attracted through the greater interval rq,
            there is required a greater time, which will be in the subduplicate
            ratio of the intervals; because, by Lemma X, the spaces described at
            the very beginning of the motion are in a duplicate ratio of the
            times. Suppose, then the velocity of the body p to be to the
            velocity of the body P in a subduplicate ratio of the distance sp
            to the distance CP, so that the arcs pq, PQ, which are in a
            simple proportion to each other, may be described in times that are in
            a subduplicate ratio of the distances; and the bodies P, p,
            always attracted by equal forces, will describe round the quiescent
            centres C and s similar figures PQV, pqv, the
            latter of which pqv is similar and equal to the figure which
            the body P describes round the movable body S.   Q.E.D.
        


        
            Case 2. Suppose now that the common centre of
            gravity, together with the space in which the bodies are moved among
            themselves, proceeds uniformly in a right line; and (by Cor. 6, of the
            Laws of Motion) all the motions in this space will be performed in the
            same manner as before; and therefore the bodies will describe mutually
            about each other the same figures as before, which will be therefore
            similar and equal to the figure pqv.   Q.E.D.
        


        
            Cor. 1. Hence two bodies attracting each
            other with forces proportional to their distance, describe (by Prop.
            X) both round their common centre of gravity, and round each other
            mutually concentrical ellipses; and, vice versa, if such
            figures are described, the forces are proportional to the distances.
        


        
            Cor. 2. And two bodies, whose forces are
            reciprocally proportional to the square of their distance, describe
            (by Prop. XI, XII, XIII), both round their common centre of gravity,
            and round each other mutually, conic sections having their focus in
            the centre about which the figures are described. And, vice versa,
            if such figures are described, the centripetal forces are reciprocally
            proportional to the squares of the distance.
        


        
            Cor. 3. Any two bodies revolving round their
            common centre of gravity describe areas proportional to the times, by
            radii drawn both to that centre and to each other mutually.
        


    

    
        
            Proposition lix. Theorem xxii.


            
                The periodic time of two bodies S and P revolving
                round their common centre of gravity C, is to the
                periodic time of one of the bodies P revolving round the
                other S remaining unmoved, and describing a figure
                similar and equal to those which the bodies describe about each
                other mutually, in a subduplicate ratio of the other body S to
                the sum of the bodies S + P.
            


        

        
            For, by the demonstration of the last Proposition, the times in which
            any similar arcs PQ, and pq are described are in a
            subduplicate ratio of the distances CP and SP, or sp, that
            is, in a subduplicate ratio of the body S to the sum of the bodies S +
            P. And by composition of ratios, the sums of the times in which all
            the similar arcs PQ and pq are described, that is, the whole
            times in which the whole similar figures are described are in the same
            subduplicate ratio.   Q.E.D.
        


    

    
        Proposition lx. Theorem xxiii.


            
                If two bodies S and P, attracting each other
                with forces reciprocally proportional to the squares of their
                distance, revolve about their common centre of gravity; I say,
                that the principal axis of the ellipsis which either of the
                bodies, as P, describes by this motion about the other
                S, will be to the principal axis of the ellipsis, which the same
                body P may describe in the same periodical time about
                the other body S quiescent, as the sum of the two bodies
                S + P to the first of two mean proportionals between that sum
                and the other body S.
            


        

        
            For if the ellipses described were equal to each other, their
            periodic times by the last Theorem would be in a subduplicate ratio of
            the body S to the sum of the bodies S + P. Let the periodic
            time in the latter ellipsis be diminished in that ratio, and the
            periodic times will become equal; but, by Prop. XV, the principal axis
            of the ellipsis will be diminished in a ratio sesquiplicate to the
            former ratio; that is, in a ratio to which the ratio of S to S + P is
            triplicate; and therefore that axis will be to the principal axis of
            the other ellipsis as the first of two mean proportionals between S +
            P and S to S + P. And inversely the principal axis of the ellipsis
            described about the movable body will be to the principal axis of that
            described round the immovable as S + P to the first of two mean
            proportionals between S + P and S.   Q.E.D.
        


    

    
        Proposition lxi. Theorem xxiv.


            
                
                    If two bodies attracting each other with any kind of forces,
                    and not otherwise agitated or obstructed, are moved in any manner
                    whatsoever, those motions will be the same as if they did not at
                    all attract each other mutually, but were both attracted with the
                    same forces by a third body placed in their common centre of
                    gravity; and the law of the attracting forces will he the same in
                    respect of the distance of the bodies from the common centre, as
                    in respect of the distance between the two bodies.
                
            


        

        
            For those forces with which the bodies
            attract each other mutually, by tending to the bodies, tend also to
            the common centre of gravity lying directly between them; and
            therefore are the same as if they proceeded from in intermediate body.
              Q.E.D.
        


        
            And because there is given the ratio of the distance of either body
            from that common centre to the distance between the two bodies, there
            is given, of course, the ratio of any power of one distance to the
            same power of the other distance; and also the ratio of any quantity
            derived in any manner from one of the distances compounded any how
            with given quantities, to another quantity derived in like manner from
            the other distance, and as many given quantities having that given
            ratio of the distances to the first. Therefore if the force with which
            one body is attracted by another be directly or inversely as the
            distance of the bodies from each other, or as any power of that
            distance; or, lastly, as any quantity derived after any manner from
            that distance compounded with given quantities; then will the same
            force with which the same body is attracted to the common centre of
            gravity be in like manner directly or inversely as the distance of the
            attracted body from the common centre, or as any power of that
            distance; or, lastly, as a quantity derived in like sort from that
            distance compounded with analogous given quantities. That is, the law
            of attracting force will be the same with respect to both distances.
              Q.E.D.
        


    

    
        Proposition lxii. Problem xxxviii.


            
                
                    To determine the motions of two bodies which attract each other
                    with forces reciprocally proportional to the squares of the
                    distance between them, and are let fall from given places.
                
            


        

        
            The bodies, by the last Theorem, will be moved in the same manner as
            if they were attracted by a third placed in the common centre of their
            gravity; and by the hypothesis that centre will be quiescent at the
            beginning of their motion, and therefore (by Cor. 4, of the Laws of
            Motion) will be always quiescent. The motions of the bodies are
            therefore to be determined (by Prob. XXV) in the same manner as if
            they were impelled by forces tending to that centre; and then we shall
            have the motions of the bodies attracting each other mutually.
              Q.E.I.
        


    

    
        Proposition lxiii. Problem xxxix.


            
                
                    To determine the motions of two bodies attracting each other
                    with forces reciprocally proportional to the squares of their
                    distance, and going off from given places in given directions with
                    given velocities.
                
            


        

        
            The motions of the bodies at the beginning being given, there is
            given also the uniform motion of the common
            centre of gravity, and the motion of the space which moves along with
            this centre uniformly in a right line, and also the very first, or
            beginning motions of the bodies in respect of this space. Then (by
            Cor. 5. of the Laws, and the last Theorem) the subsequent motions will
            be performed in the same manner in that space, as if that space
            together with the common centre of gravity were at rest, and as if the
            bodies did not attract each other, but were attracted by a third body
            placed in that centre. The motion therefore in this movable space of
            each body going off from a given place, in a given direction, with a
            given velocity, and acted upon by a centripetal force tending to that
            centre, is to be determined by Prob. IX and XXVI, and at the same time
            will be obtained the motion of the other round the same centre. With
            this motion compound the uniform progressive motion of the entire
            system of the space and the bodies revolving in it, and there will be
            obtained the absolute motion of the bodies in immovable space.
              Q.E.I.
        


    

    
        Proposition lxiv. Problem xl.


            
                
                    Supposing forces with which bodies mutually attract each other
                    to increase in a simple ratio of their distances from the centres;
                    it is required to find the motions of several bodies among
                    themselves.
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            Suppose the first two bodies T and L to have their common centre of
            gravity in D. These, by Cor. 1, Theor. XXI, will describe ellipses
            having their centres in D, the magnitudes of which ellipses are known
            by Prob. V.
        


        
            Let now a third body S attract the two former T and L with the
            accelerative forces ST, SL, and let it be attracted again by them. The
            force ST (by Cor. 2, of the Laws of Motion) is resolved into the
            forces SD, DT; and the force SL into the forces SD and DL. Now the
            forces DT, DL, which are as their sum TL, and therefore as the
            accelerative forces with which the bodies T and L attract each other
            mutually, added to the forces of the bodies T and L, the first to the
            first, and the last to the last, compose forces proportional to the
            distances DT and DL as before, but only greater than those former
            forces: and therefore (by Cor. 1, Prop. X, and Cor. 1, and 8, Prop.
            IV) they will cause those bodies to describe ellipses as before, but
            with a swifter motion. The remaining accelerative forces SD and DL, by
            the motive forces SD x T and SD x L, which are as the bodies
            attracting those bodies equally and in the direction of the lines TI,
            LK parallel to DS, do not at all change their situations with respect
            to one another, but cause them equally to approach to the line IK;
            which must be imagined drawn through the middle of the body S, and
            perpendicular to the line DS. But that approach to the line IK
            will be hindered by causing the system of the bodies T and L on one
            side, and the body S on the other, with proper velocities, to revolve
            round the common centre of gravity C. With such a motion the body S,
            because the sum of the motive forces SD x T and SD x L is proportional
            to the distance CS, tends to the centre C, will describe an ellipsis
            round the same centre C; and the point D, because the lines CS and CD
            are proportional, will describe a like ellipsis over against it. But
            the bodies T and L, attracted by the motive forces SD x T and SD x L,
            the first by the first, and the last by the last, equally and in the
            direction of the parallel lines TI and LK, as was said before, will
            (by Cor. 5 and 6, of the Laws of Motion) continue to describe their
            ellipses round the movable centre D, as before.   Q.E.I.
        


        
            Let there be added a fourth body V, and, by the like reasoning, it
            will be demonstrated that this body and the point C will describe
            ellipses about the common centre of gravity B; the motions of the
            bodies T, L, and S round the centres D and C remaining the same as
            before; but accelerated. And by the same method one may add yet more
            bodies at pleasure.   Q.E.I
        


        
            This would be the case, though the bodies T and L attract each other
            mutually with accelerative forces either greater or less than those
            with which they attract the other bodies in proportion to their
            distance. Let all the mutual accelerative attractions be to each other
            as the distances multiplied into the attracting bodies; and from what
            has gone before it will easily be concluded that all the bodies will
            describe different ellipses with equal periodical times about their
            common centre of gravity B, in an immovable plane.   Q.E.I.
        


    

    
        Proposition lxv. Theorem xxv.


            
                
                    Bodies, whose forces decrease in a duplicate ratio of their
                    distances from their centres, may move among themselves in
                    ellipses; and by radii drawn to the foci may describe areas
                    proportional to the times very nearly.
                
            


        

        
            In the last Proposition we demonstrated that case in which the
            motions will be performed exactly in ellipses. The more distant the
            law of the forces is from the law in that case, the more will the
            bodies disturb each other's motions; neither is it possible that
            bodies attracting each other mutually according to the law supposed in
            this Proposition should move exactly in ellipses, unless by keeping a
            certain proportion of distances from each other. However, in the
            following crises the orbits will not much differ from ellipses.
        


        
            Case I. Imagine several lesser bodies to
            revolve about some very great one at different distances from it, and
            suppose absolute forces tending to every one of the bodies
            proportional to each. And because (by Cor. 4, of the Laws) the common
            centre of gravity of them all is either at rest, or moves
            uniformly forward in a right line, suppose the lesser bodies so small
            that the great body may be never at a sensible distance from that
            centre; and then the great body will, without any sensible error, be
            either at rest, or move uniformly forward in a right line; and the
            lesser will revolve about that great one in ellipses, and by radii
            drawn thereto will describe areas proportional to the times; if we
            except the errors that may be introduced by the receding of the great
            body from the common centre of gravity, or by the mutual actions of
            the lesser bodies upon each other. But the lesser bodies may be so far
            diminished, as that this recess and the mutual actions of the bodies
            on each other may become less than any assignable; and therefore so as
            that the orbits may become ellipses, and the areas answer to the
            times, without any error that is not less than any assignable.
              Q.E.O.
        


        
            Case 2. Let us imagine a system of lesser
            bodies revolving about a very great one in the manner just described,
            or any other system of two bodies revolving about each other to be
            moving uniformly forward in a right line, and in the mean time to be
            impelled sideways by the force of another vastly greater body situate
            at a great distance. And because the equal accelerative forces with
            which the bodies are impelled in parallel directions do not change the
            situation of the bodies with respect to each other, but only oblige
            the whole system to change its place while the parts still retain
            their motions among themselves, it is manifest that no change in those
            motions of the attracted bodies can arise from their attractions
            towards the greater, unless by the inequality of the accelerative
            attractions, or by the inclinations of the lines towards each other,
            in whose directions the attractions are made. Suppose, therefore, all
            the accelerative attractions made towards the great body to be among
            themselves as the squares of the distances reciprocally; and then, by
            increasing the distance of the great body till the differences of the
            right lines drawn from that to the others in respect of their length,
            and the inclinations of those lines to each other, be less than any
            given, the motions of the parts of the system will continue without
            errors that are not less than any given. And because, by the small
            distance of those parts from each other, the whole system is attracted
            as if it were but one body, it will therefore be moved by this
            attraction as if it were one body; that is, its centre of gravity will
            describe about the great body one of the conic sections (that is, a
            parabola or hyperbola when the attraction is but languid and an
            ellipsis when it is more vigorous); and by radii drawn thereto, it
            will describe areas proportional to the times, without any errors but
            those which arise from the distances of the parts, which are by the
            supposition exceedingly small, and may be diminished at pleasure.
              Q.E.O.
        


        
            By a like reasoning one may proceed to more compounded cases in
            infinitum.
        


        
            Cor. 1. In the second Case, the nearer the
            very great body approaches to the system of
            two or more revolving bodies, the greater will the perturbation be of
            the motions of the parts of the system among themselves; because the
            inclinations of the lines drawn from that great body to those parts
            become greater; and the inequality of the proportion is also greater.
        


        
            Cor. 2. But the perturbation will be greatest
            of all, if we suppose the accelerative attractions of the parts of the
            system towards the greatest body of all are not to each other
            reciprocally as the squares of the distances from that great body;
            especially if the inequality of this proportion be greater than the
            inequality of the proportion of the distances from the great body. For
            if the accelerative force, acting in parallel directions and equally,
            causes no perturbation in the motions of the parts of the system, it
            must of course, when it acts unequally, cause a perturbation
            somewhere, which will be greater or less as the inequality is greater
            or less. The excess of the greater impulses acting upon some bodies,
            and not acting upon others, must necessarily change their situation
            among themselves. And this perturbation, added to the perturbation
            arising from the inequality and inclination of the lines, makes the
            whole perturbation greater.
        


        
            Cor. 3. Hence if the parts of this system
            move in ellipses or circles without any remarkable perturbation, it is
            manifest that, if they are at all impelled by accelerative forces
            tending to any other bodies, the impulse is very weak, or else is
            impressed very near equally and in parallel directions upon all of
            them.
        


    

    
        Proposition lxvi. Theorem xxvi.


            
                
                    If three bodies whose forces decrease in a duplicate ratio of
                    the distances attract each other mutually; and the accelerative
                    attractions of any two towards the third be between themselves
                    reciprocally as the squares of the distances; and the two least
                    revolve about the greatest; I say, that the interior of the two
                    revolving bodies will, by radii drawn to the innermost and
                    greatest, describe round that body areas more proportional to the
                    times, and a figure more approaching to that of an ellipsis having
                    its focus in the point of concourse of the radii, if that great
                    body be agitated by those attractions, than it would do if that
                    great body were not attracted at all by the lesser, but remained
                    at rest; or than, it would if that great body were very much more
                    or very much less attracted, or very much more or very much less
                    agitated, by the attractions.
                
            


        

        
            This appears plainly enough from the demonstration of the second
            Corollary of the foregoing Proposition; but it maybe made out after
            this manner by a way of reasoning more distinct and more universally
            convincing.
        


        
            Case 1. Let the lesser bodies P and S revolve
            in the same plane about the greatest body T, the body P describing the
            interior orbit PAB, and S the exterior orbit
            ESE. Let SK be the mean distance of the bodies P and S; and let the
            accelerative attraction of the body P towards S, at that mean
            distance, be expressed by that line SK. Make SL to SK as the
            [image: Mathematical Principles of Natural Philosophy figure: 203]
            square of SK to the square of SP, and SL will be the accelerative
            attraction of the body P towards S at any distance SP. Join PT, and
            draw LM parallel to it meeting ST in M; and the attraction SL will be
            resolved (by Cor. 2, of the Laws of Motion) into the attractions SM,
            LM. And so the body P will be urged with a threefold accelerative
            force. One of these forces tends towards T, and arises from the mutual
            attraction of the bodies T and P. By this force alone the body P would
            describe round the body T, by the radius PT, areas proportional to the
            times, and an ellipsis whose focus is in the centre of the body T; and
            this it would do whether the body T remained unmoved, or whether it
            were agitated by that attraction. This appears from Prop. XI, and Cor.
            2 and 3 of Theor. XXI. The other force is that of the attraction LM,
            which, because it tends from P to T, will be superadded to and
            coincide with the former force; and cause the areas to be still
            proportional to the times, by Cor. 3, Theor. XXI. But because it is
            not reciprocally proportional to the square of the distance PT, it
            will compose, when added to the former, a force varying from that
            proportion; which variation will be the greater by how much the
            proportion of this force to the former is greater, caeteris
            paribus. Therefore, since by Prop. XI, and by Cor. 2, Theor.
            XXI, the force with which the ellipsis is described about the focus T
            ought to be directed to that focus, and to be reciprocally
            proportional to the square of the distance PT, that compounded force
            varying from that proportion will make the orbit PAB vary from the
            figure of an ellipsis that has its focus in the point T; and so much
            the more by how much the variation from that proportion is greater;
            and by consequence by how much the proportion of the second force LM
            to the first force is greater, caeteris paribus. But now the
            third force SM, attracting the body P in a direction parallel to ST,
            composes with the other forces a new force which is no longer directed
            from P to T; and which varies so much more from this direction by how
            much the proportion of this third force to the other forces is
            greater, caeteris paribus; and therefore causes the body P
            to describe, by the radius TP, areas no longer proportional to the
            times; and therefore makes the variation from that proportionality so
            much greater by how much the proportion of this force to the others is
            greater. But this third force will increase the variation of the orbit
            PAB from the elliptical figure
            before-mentioned upon two accounts; first because that force is not
            directed from P to T; and, secondly, because it is not reciprocally
            proportional to the square of the distance PT. These things being
            premised, it is manifest that the areas are then most nearly
            proportional to the times, when that third force is the least
            possible, the rest preserving their former quantity; and that the
            orbit PAB does then approach nearest to the elliptical figure
            above-mentioned, when both the second and third, but especially the
            third force, is the least possible; the first force remaining in its
            former quantity.
        


        
            Let the accelerative attraction of the body T towards S be expressed
            by the line SN; then if the accelerative attractions SM and SN were
            equal, these, attracting the bodies T and P equally and in parallel
            directions would not at all change their situation with respect to
            each other. The motions of the bodies between themselves would be the
            same in that case as if those attractions did not act at all, by Cor.
            6, of the Laws of Motion. And, by a like reasoning, if the attraction
            SN is less than the attraction SM, it will take away out of the
            attraction SM the part SN, so that there will remain only the part (of
            the attraction) MN to disturb the proportionality of the areas and
            times, and the elliptical figure of the orbit. And in like manner if
            the attraction SN be greater than the attraction SM, the perturbation
            of the orbit and proportion will be produced by the difference MN
            alone. After this manner the attraction SN reduces always the
            attraction SM to the attraction MN, the first and second attractions
            remaining perfectly unchanged; and therefore the areas and times come
            then nearest to proportionality, and the orbit PAB to the
            above-mentioned elliptical figure, when the attraction MN is either
            none, or the least that is possible; that is, when the accelerative
            attractions of the bodies P and T approach as near as possible to
            equality; that is, when the attraction SN is neither none at all, nor
            less than the least of all the attractions SM, but is, as it were; a
            mean between the greatest and least of all those attractions SM, that
            is, not much greater nor much less than the attraction SK.
              Q.E.D.
        


        
            Case 2. Let now the lesser bodies P, S,
            revolve about a greater T in different planes; and the force LM,
            acting in the direction of the line PT situate in the plane of the
            orbit PAB, will have the same effect as before; neither will it draw
            the body P from the plane of its orbit. But the other force NM acting
            in the direction of a line parallel to ST (and which, therefore, when
            the body S is without the line of the nodes is inclined to the plane
            of the orbit PAB), besides the perturbation of the motion just now
            spoken of as to longitude, introduces another perturbation also as to
            latitude, attracting the body P out of the plane of its orbit. And
            this perturbation, in any given situation of the bodies P and T to
            each other, will be as the generating force MN; and therefore becomes
            least when the force MN is least, that is (as was just now shewn),
            where the attraction SN is not much greater nor much less than the
            attraction SK.   Q.E.D.
        


        
            Cor. 1. Hence it may
            be easily collected, that if several less bodies P, S, R, &c.,
            revolve about a very great body T, the motion of the innermost
            revolving body P will be least disturbed by the attractions of the
            others, when the great body is as well attracted and agitated by the
            rest (according to the ratio of the accelerative forces) as the rest
            are by each other mutually.
        


        
            Cor. 2. In a system of three bodies, T, P, S,
            if the accelerative attractions of any two of them towards a third be
            to each other reciprocally as the squares of the distances, the body
            P, by the radius PT, will describe its area about the body T swifter
            near the conjunction A and the opposition B than it will near the
            quadratures C and D. For every force with which the body P is acted on
            and the body T is not, and which does not act in the direction of the
            line PT, does either accelerate or retard the description of the area,
            according as it is directed, whether in consequentia or in
            antecedentia. Such is the force NM. This force in the passage
            of the body P from C to A is directed in consequentia to its
            motion, and therefore accelerates it; then as far as D in
            antecedentia, and retards the motion; then in consequentia
            as far as B; and lastly in antecedentia as it moves from B
            to C.
        


        
            Cor. 3. And from the same reasoning it
            appears that the body P caeteris paribus, moves more swiftly
            in the conjunction and opposition than in the quadratures.
        


        
            Cor. 4. The orbit of the body P, caeteris
            paribus, is more curve at the quadratures than at the
            conjunction and opposition. For the swifter bodies move, the less they
            deflect from a rectilinear path. And besides the force KL, or NM, at
            the conjunction and opposition, is contrary to the force with which
            the body T attracts the body P, and therefore diminishes that force;
            but the body P will deflect the less from a rectilinear path the less
            it is impelled towards the body T.
        


        
            Cor. 5. Hence the body P, caeteris
            paribus, goes farther from the body T at the quadratures than
            at the conjunction and opposition. This is said,
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            however, supposing no regard had to the motion of eccentricity. For if
            the orbit of the body P be eccentrical, its eccentricity (as will be
            shewn presently by Cor. 9) will be greatest when the apsides are in
            the syzygies; and thence it may sometimes come to pass that the body
            P, in its near approach to the farther apsis, may go farther from the
            body T at the syzygies than at the quadratures.
        


        
            Cor. 6. Because the centripetal force of the
            central body T, by which the body P is
            retained in its orbit, is increased at the quadratures by the addition
            caused by the force LM, and diminished at the syzygies by the
            subduction caused by the force KL, and, because the force KL is
            greater than LM, it is more diminished than increased; and, moreover,
            since that centripetal force (by Cor. 2, Prop. IV) is in a ratio
            compounded of the simple ratio of the radius TP directly, and the
            duplicate ratio of the periodical time inversely; it is plain that
            this compounded ratio is diminished by the action of the force KL; and
            therefore that the periodical time, supposing the radius of the orbit
            PT to remain the same, will be increased, and that in the subduplicate
            of that ratio in which the centripetal force is diminished; and,
            therefore, supposing this radius increased or diminished, the
            periodical time will be increased more or diminished less than in the
            sesquiplicate ratio of this radius, by Cor. 6, Prop. IV. If that force
            of the central body should gradually decay, the body P being less and
            less attracted would go farther and farther from the centre T; and, on
            the contrary, if it were increased, it would draw nearer to it.
            Therefore if the action of the distant body S, by which that force is
            diminished, were to increase and decrease by turns, the radius TP will
            be also increased and diminished by turns; and the periodical time
            will be increased and diminished in a ratio compounded of the
            sesquiplicate ratio of the radius, and of the subduplicate of that
            ratio in which the centripetal force of the central body T is
            diminished or increased, by the increase or decrease of the action of
            the distant body S.
        


        
            Cor. 7. It also follows, from what was before
            laid down, that the axis of the ellipsis described by the body P, or
            the line of the apsides, does as to its angular motion go forwards and
            backwards by turns, but more forwards than backwards, and by the
            excess of its direct motion is in the whole carried forwards. For the
            force with which the body P is urged to the body T at the quadratures,
            where the force MN vanishes, is compounded of the force LM and the
            centripetal force with which the body T attracts the body P. The first
            force LM, if the distance PT be increased, is increased in nearly the
            same proportion with that distance, and the other force decreases in
            the duplicate ratio of the distance; and therefore the sum of these
            two forces decreases in a less than the duplicate ratio of the
            distance PT; and therefore, by Cor. 1, Prop. XLV, will make the line
            of the apsides, or, which is the same thing, the upper apsis, to go
            backward. But at the conjunction and opposition the force with which
            the body P is urged towards the body T is the difference of the force
            KL, and of the force with which the body T attracts the body P; and
            that difference, because the force KL is very nearly increased in the
            ratio of the distance PT, decreases in more than the duplicate ratio
            of the distance PT; and therefore, by Cor. 1, Prop. XLV, causes the
            line of the apsides to go forwards. In the places between the syzygies
            and the quadratures, the motion of the line
            of the apsides depends upon both of these causes conjunctly, so that
            it either goes forwards or backwards in proportion to the excess of
            one of these causes above the other. Therefore since the force KL in
            the syzygies is almost twice as great as the force LM in the
            quadratures, the excess will be on the side of the force KL, and by
            consequence the line of the apsides will be carried forwards. The
            truth of this and the foregoing
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            Corollary will be more easily understood by conceiving the system of the two
            bodies T and P to be surrounded on every side by several bodies S, S,
            S, &c., disposed about the orbit ESE. For by the actions of these
            bodies the action of the body T will be diminished on every side, and
            decrease in more than a duplicate ratio of the distance.
        


        
            Cor. 8. But since the progress or regress of
            the apsides depends upon the decrease of the centripetal force, that
            is, upon its being in a greater or less ratio than the duplicate ratio
            of the distance TP, in the passage of the body from the lower apsis to
            the upper; and upon a like increase in its return to the lower apsis
            again; and therefore becomes greatest where the proportion of the
            force at the upper apsis to the force at the lower apsis recedes
            farthest from the duplicate ratio of the distances inversely; it is
            plain, that, when the apsides are in the syzygies, they will, by
            reason of the subducting force KL or NM − LM, go forward more swiftly;
            and in the quadratures by the additional force LM go backward more
            slowly. Because the velocity of the progress or slowness of the
            regress is continued for a long time; this inequality becomes
            exceedingly great.
        


        
            Cor. 9. If a body is obliged, by a force
            reciprocally proportional to the square of its distance from any
            centre, to revolve in an ellipsis round that centre; and afterwards in
            its descent from the upper apsis to the lower apsis, that force by a
            perpetual accession of new force is increased in more than a duplicate
            ratio of the diminished distance; it is manifest that the body, being
            impelled always towards the centre by the perpetual accession of this
            new force, will incline more towards that centre than if it were urged
            by that force alone which decreases in a duplicate ratio of the
            diminished distance, and therefore will describe an orbit interior to
            that elliptical orbit, and at the lower apsis approaching nearer to
            the centre than before. Therefore the orbit by the accession of this
            new force will become more eccentrical. If now, while the body is
            returning from the lower to the upper apsis, it should decrease by the
            same degrees by which it increases before the body would return to its
            first distance; and therefore if the force
            decreases in a yet greater ratio, the body, being now less attracted
            than before, will ascend to a still greater distance, and so the
            eccentricity of the orbit will be increased still more. Therefore if
            the ratio of the increase and decrease of the centripetal force be
            augmented each revolution, the eccentricity will be augmented also;
            and, on the contrary, if that ratio decrease, it will be diminished.
        


        
            Now, therefore, in the system of the bodies T, P, S, when the apsides
            of the orbit PAB are in the quadratures, the ratio of that increase
            and decrease is least of all, and becomes greatest when the apsides
            are in the syzygies. If the apsides are placed in the quadratures, the
            ratio near the apsides is less, and near the syzygies greater, than
            the duplicate ratio of the distances; and from that greater ratio
            arises a direct motion of the line of the apsides, as was just now
            said. But if we consider the ratio of the whole increase or decrease
            in the progress between the apsides, this is less than the duplicate
            ratio of the distances. The force in the lower is to the force in the
            upper apsis in less than a duplicate ratio of the distance of the
            upper apsis from the focus of the ellipsis to the distance of the
            lower apsis from the same focus; and, contrariwise, when the apsides
            are placed in the syzygies, the force in the lower apsis is to the
            force in the upper apsis in a greater than a duplicate ratio of the
            distances. For the forces LM in the quadratures added to the forces of
            the body T compose forces in a less ratio; and the forces KL in the
            syzygies subducted from the forces of the body T, leave the forces in
            a greater ratio. Therefore the ratio of the whole increase and
            decrease in the passage between the apsides is least at the
            quadratures and greatest at the syzygies; and therefore in the passage
            of the apsides from the quadratures to the syzygies it is continually
            augmented, and increases the eccentricity of the ellipsis; and in the
            passage from the syzygies to the quadratures it is perpetually
            decreasing, and diminishes the eccentricity.
        


        
            Cor. 10. That we may give an account of the
            errors as to latitude, let us suppose the plane of the orbit EST to
            remain immovable; and from the cause of the errors above explained, it
            is manifest, that, of the two forces NM, ML, which are the only and
            entire cause of them, the force ML acting always in the plane of the
            orbit PAB never disturbs the motions as to latitude; and that the
            force NM, when the nodes are in the syzygies, acting also in the same
            plane of the orbit, does not at that time affect those motions. But
            when the nodes are in the quadratures, it disturbs them very much,
            and, attracting the body P perpetually out of the plane of its orbit,
            it diminishes the inclination of the plane in the passage of the body
            from the quadratures to the syzygies, and again increases the same in
            the passage from the syzygies to the quadratures. Hence it comes to
            pass that when the body is in the syzygies, the inclination is then
            least of all, and returns to the first magnitude nearly, when the body
            arrives at the next node. But if the nodes are
            situate at the octants after the quadratures, that is, between C and
            A, D and B, it will appear, from
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            what was just now shewn, that in the passage of the body P from either node to
            the ninetieth degree from thence, the inclination of the plane is
            perpetually diminished; then, in the passage through the next 45
            degrees to the next quadrature, the inclination is increased; and
            afterwards, again, in its passage through another 45 degrees to the
            next node, it is diminished. Therefore the inclination is more
            diminished than increased, and is therefore always less in the
            subsequent node than in the preceding one. And, by a like reasoning,
            the inclination is more increased than diminished when the nodes are
            in the other octants between A and D, B and C. The inclination,
            therefore, is the greatest of all when the nodes are in the syzygies.
            In their passage from the syzygies to the quadratures the inclination
            is diminished at each appulse of the body to the nodes: and be comes
            least of all when the nodes are in the quadratures, and the body in
            the syzygies; then it increases by the same degrees by which it
            decreased before; and, when the nodes come to the next syzygies,
            returns to its former magnitude.
        


        
            Cor. 11. Because when the nodes are in the
            quadratures the body P is perpetually attracted from the plane of its
            orbit; and because this attraction is made towards S in its passage
            from, the node C through the conjunction A to the node D; and to the
            contrary part in its passage from the node D through the opposition B
            to the node C; it is manifest that, in its motion from the node C, the
            body recedes continually from the former plane CD of its orbit till it
            comes to the next node; and therefore at that node, being now at its
            greatest distance from the first plane CD, it will pass through the
            plane of the orbit EST not in D, the other node of that plane, but in
            a point that lies nearer to the body S, which therefore be comes a new
            place of the node in antecedentia to its former place. And,
            by a like reasoning, the nodes will continue to recede in their
            passage from this node to the next. The nodes, therefore, when situate
            in the quadratures, recede perpetually; and at the syzygies, where no
            perturbation can be produced in the motion as to latitude, are
            quiescent: in the intermediate places they partake of both conditions,
            and recede more slowly; and, therefore, being always either retrograde
            or stationary, they will be carried backwards, or in antecedentia,
            each revolution.
        


        
            Cor. 12. All the errors described in these
            corrollaries are a little greater at the
            conjunction of the bodies P, S, than at their opposition; because the
            generating forces NM and ML are greater.
        


        
            Cor. 13. And since the causes and proportions
            of the errors and variations mentioned in these Corollaries do not
            depend upon the magnitude of the body S, it follows that all things
            before demonstrated will happen, if the magnitude of the body S be
            imagined so great as that the system of the two bodies P and T may
            revolve about it. And from this increase of the body S, and the
            consequent increase of its centripetal force, from which the errors of
            the body P arise, it will follow that all these errors, at equal
            distances, will be greater in this case, than in the other where the
            body S revolves about the system of the bodies P and T.
        


        
            Cor. 14. But since the forces NM, ML, when
            the body S is exceedingly distant, are very nearly as the force SK and
            the ratio PT to ST conjunctly; that is, if both the distance PT, and
            the absolute force of the body S be given, as ST³ reciprocally; and
            since those forces NM, ML are the causes of all the errors and effects
            treated of in the foregoing Corollaries; it is manifest that all those
            effects, if the system of bodies T and P continue as before, and only
            the distance ST and the absolute force of the body S be changed, will
            be very nearly in a ratio compounded of the direct ratio of the
            absolute force of the body S, and the triplicate inverse ratio of the
            distance ST. Hence if the system of bodies T and P revolve about a
            distant body S, those forces NM, ML, and their effects, will be (by
            Cor. 2 and 6, Prop IV) reciprocally in a duplicate ratio of the
            periodical time. And thence, also, if the magnitude of the body S be
            proportional to its absolute force, those forces NM, ML, and their
            effects, will be directly as the cube of the apparent diameter of the
            distant body S viewed from T, and so vice versa. For these
            ratios are the same as the compounded ratio above mentioned.
        


        
            Cor. 15. And because if the orbits ESE and
            PAB, retaining their figure, proportions, and inclination to each
            other, should alter their magnitude; and the forces of the bodies S
            and T should either remain, or be changed in any given ratio; these
            forces (that is, the force of the body T, which obliges the body P to
            deflect from a rectilinear course into the orbit PAB, and the force of
            the body S, which causes the body P to deviate from that orbit) would
            act always in the same manner, and in the same proportion; it follows,
            that all the effects will be similar and proportional, and the times
            of those effects proportional also; that is, that all the linear
            errors will be as the diameters of the orbits, the angular errors the
            same as before; and the times of similar linear errors, or equal
            angular errors, as the periodical times of the orbits.
        


        
            Cor. 16. Therefore if the figures of the
            orbits and their inclination to each other be given, and the
            magnitudes, forces, and distances of the bodies be any how changed, we
            may, from the errors and times of those errors in one
            case, collect very nearly the errors and times of the errors in any
            other case. But this may be done more expeditiously by the following
            method. The forces NM, ML, other things remaining unaltered, are as
            the radius TP; and their periodical effects (by Cor. 2, Lem. X) are as
            the forces and the square of the periodical time of the body P
            conjunctly. These are the linear errors of the body P; and hence the
            angular errors as they appear from the centre T (that is, the motion
            of the apsides and of the nodes, and all the apparent errors as to
            longitude and latitude) are in each revolution of the body P as the
            square of the time of the revolution, very nearly. Let these ratios be
            compounded with the ratios in Cor. 14, and in any system of bodies T,
            P, S, where P revolves about T very near to it, and T revolves about S
            at a great distance, the angular errors of the body P, observed from
            the centre T, will be in each revolution of the body P as the square
            of the periodical time of the body P directly, and the square of the
            periodical time of the body T inversely. And therefore the mean motion
            of the line of the apsides will be in a given ratio to the mean motion
            of the nodes; and both those motions will be as the periodical time of
            the body P directly, and the square of the periodical time of the body
            T inversely. The increase or diminution of the eccentricity and
            inclination of the orbit PAB makes no sensible variation in the
            motions of the apsides and nodes, unless that increase or diminution
            be very great indeed.
        


        
            Cor. 17. Since the line LM becomes sometimes
            greater and sometimes less than the radius PT, let the mean quantity
            of the force LM be expressed
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            by that radius PT; and then that mean force will be to the mean force SK or SN
            (which may be also expressed by ST) as the length PT to the length ST.
            But the mean force SN or ST, by which the body T is retained in the
            orbit it describes about S, is to the force with which the body P is
            retained in its orbit about T in a ratio compounded of the ratio of
            the radius ST to the radius PT, and the duplicate ratio of the
            periodical time of the body P about T to the periodical time of the
            body T about S. And, ex aequo, the mean force LM is to the
            force by which the body P is retained in its orbit about T (or by
            which the same body P might revolve at the distance PT in the same
            periodical time about any immovable point T) in the same duplicate
            ratio of the periodical times. The periodical times therefore being
            given, together with the distance PT, the mean force LM is also given;
            and that force being given, there is given also the force MN, very
            nearly, by the analogy of the lines PT and MN.
        


        
            Cor. 18. By the same
            laws by which the body P revolves about the body T, let us suppose
            many fluid bodies to move round T at equal distances from it; and to
            be so numerous, that they may all become contiguous to each other, so
            as to form a fluid annulus, or ring, of a round figure, and
            concentrical to the body T; and the several parts of this annulus,
            performing their motions by the same law as the body P, will draw
            nearer to the body T, and move swifter in the conjunction and
            opposition of themselves and the body S, than in the quadratures. And
            the nodes of this annulus, or its intersections with the plane of the
            orbit of the body S or T, will rest at the syzygies; but out of the
            syzygies they will be carried backward, or in antecedentia;
            with the greatest swiftness in the quadratures, and more slowly in
            other places. The inclination of this annulus also will vary, and its
            axis will oscillate each revolution, and when the revolution is
            completed will return to its former situation, except only that it
            will be carried round a little by the precession of the nodes.
        


        
            Cor. 19. Suppose now the sphaerical body T,
            consisting of some matter not fluid, to be enlarged, and to extend
            itself on every side as far as that annulus, and that a channel were
            cut all round its circumference containing water; and that this sphere
            revolves uniformly about its own axis in the same periodical time.
            This water being accelerated and retarded by turns (as in the last
            Corollary), will be swifter at the syzygies, and slower at the
            quadratures, than the surface of the globe, and so will ebb and flow
            in its channel after the manner of the sea. If the attraction of the
            body's were taken away, the water would acquire no motion of flux and
            reflux by revolving round the quiescent centre of the globe. The case
            is the same of a globe moving uniformly forwards in a right line, and
            in the mean time revolving about its centre (by Cor. 5 of the Laws of
            Motion), and of a globe uniformly attracted from its rectilinear
            course (by Cor. 6, of the same Laws). But let the body S come to act
            upon it, and by its unequable attraction the water will receive this
            new motion; for there will be a stronger attraction upon that part of
            the water that is nearest to the body, and a weaker upon that part
            which is more remote. And the force LM will attract the water
            downwards at the quadratures, and depress it as far as the syzygies;
            and the force KL will attract it upwards in the syzygies, and withhold
            its descent, and make it rise as far as the quadratures; except only
            in so far as the motion of flux and reflux may be directed by the
            channel of the water, and be a little retarded by friction.
        


        
            Cor. 20. If, now, the annulus becomes hard,
            and the globe is diminished, the motion of flux and reflux will cease;
            but the oscillating motion of the inclination and the praecession of
            the nodes will remain. Let the globe have the same axis with the
            annulus, and perform its revolutions in the same times, and at its
            surface touch the annulus within, and adhere to it; then the globe
            partaking of the motion of the annulus, this whole compages will
            oscillate, and the nodes will go backward, for the globe, as we shall
            shew presently, is perfectly indifferent to the receiving of all
            impressions. The greatest angle of the inclination of the annulus
            single is when the nodes are in the syzygies. Thence in the progress
            of the nodes to the quadratures, it endeavours to diminish its
            inclination, arid by that endeavour impresses a motion upon the whole
            globe. The globe retains this motion impressed, till the annulus by a
            contrary endeavour destroys that motion, and impresses a new motion in
            a contrary direction. And by this means the greatest motion of the
            decreasing inclination happens when the nodes are in the quadratures;
            and the least angle of inclination in the octants
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            after the quadratures; and, again, the greatest motion of reclination
            happens when the nodes are in the syzygies; and the greatest angle of
            reclination in the octants following. And the case is the same of a
            globe without this annulus, if it be a little higher or a little
            denser in the equatorial than in the polar regions; for the excess of
            that matter in the regions near the equator supplies the place of the
            annulus. And though we should suppose the centripetal force of this
            globe to be any how increased, so that all its parts were to tend
            downwards, as the parts of our earth gravitate to the centre, yet the
            phenomena of this and the preceding Corollary would scarce be altered;
            except that the places of the greatest and least height of the water
            will be different: for the water is now no longer sustained and kept
            in its orbit by its centrifugal force, but by the channel in which it
            flows. And, besides, the force LM attracts the water downwards most in
            the quadratures, and the force KL or NM − LM attracts it upwards most
            in the syzygies. And these forces conjoined cease to attract the water
            downwards, and begin to attract it upwards in the octants before the
            syzygies; and cease to attract the water upwards, and begin to attract
            the water downwards in the octants after the syzygies. And thence the
            greatest height of the water may happen about the octants after the
            syzygies; and the least height about the octants after the
            quadratures; excepting only so far as the motion of ascent or descent
            impressed by these forces may by the vis insita of the water
            continue a little longer, or be stopped a little sooner by impediments
            in its channel.
        


        
            Cor. 21. For the same reason that redundant
            matter in the equatorial regions of a globe causes the nodes to go
            backwards, and therefore by the increase of that matter that
            retrogradation is increased, by the diminution is diminished, and by
            the removal quite ceases: it follows, that, if more than that
            redundant matter be taken away, that is, if the globe be either more
            depressed, or of a more rare consistence near the equator than near
            the poles, there will arise a motion of the nodes in consequentia.
        


        
            Cor. 22. And thence from the motion of the
            nodes is known the constitution of the globe. That is, if the globe
            retains unalterably the same poles, and the motion (of the nodes) be in
            antecedentia, there is a redundance of the matter near the
            equator; but if in consequentia, a deficiency. Suppose a
            uniform and exactly spherical globe to be first at rest in a free
            space: then by some impulse made obliquely upon its superficies to be
            driven from its place, and to receive a motion partly circular and
            partly right forward. Because this globe is perfectly indifferent to
            all the axes that pass through its centre, nor has a greater
            propensity to one axis or to one situation of the axis than to any
            other, it is manifest that by its own force it will never change its
            axis, or the inclination of it. Let now this globe be impelled
            obliquely by a new impulse in the same part of its superficies as
            before, and since the effect of an impulse is not at all changed by
            its coming sooner or later, it is manifest that these two impulses,
            successively impressed, will produce the same motion as if they were
            impressed at the same time: that, is, the same motion as if the globe
            had been impelled by a simple force compounded of them both (by Cor.
            2, of the Laws), that is, a simple motion about an axis of a given
            inclination. And the case is the same if the second impulse were made
            upon any other place of the equator of the first motion; and also if
            the first impulse were made upon any place in the equator of the
            motion which would be generated by the second impulse alone; and
            therefore, also, when both impulses are made in any places whatsoever;
            for these impulses will generate the same circular motion as if they
            were impressed together, and at once, in the place of the
            intersections of the equators of those motions, which would be
            generated by each of them separately. Therefore, a homogeneous and
            perfect globe will not retain several distinct motions, but will unite
            all those that are impressed on it, and reduce them into one;
            revolving, as far as in it lies, always with a simple and uniform
            motion about one single given axis, with an inclination perpetually
            invariable. And the inclination of the axis, or the velocity of the
            rotation, will not be changed by centripetal force. For if the globe
            be supposed to be divided into two hemispheres, by any plane
            whatsoever passing through its own centre, and the centre to which the
            force is directed, that force will always urge each hemisphere
            equally; and therefore will not incline the globe any way as to its
            motion round its own axis. But let there be added any where between
            the pole and the equator a heap of new matter like a mountain, and
            this, by its perpetual endeavour to recede from the centre of its
            motion, will disturb the motion of the globe, and cause its poles to
            wander about its superficies, describing circles about themselves and
            their opposite points. Neither can this enormous evagation of
            the poles be corrected, unless by placing that mountain either in one
            of the poles; in which case, by Cor. 21, the nodes of the equator will
            go forwards; or in the equatorial regions, in which case, by Cor. 20,
            the nodes will go backwards; or, lastly, by adding on the other side
            of the axis a new quantity of matter, by which the mountain may be
            balanced in its motion; and then the nodes will either go forwards or
            backwards, as the mountain and this newly added matter happen to be
            nearer to the pole or to the equator.
        


    

    
        Proposition lxvii. Theorem xxvii.


            
                The same laws of attraction being supposed, I say, that the
                exterior body S does, by radii drawn to the point O,
                the common centre of gravity of the interior bodies P and
                T, describe round that centre areas more proportional to the
                times, and an orbit more approaching to the form of an ellipsis
                having its focus in that centre, than it can describe round the
                innermost and greatest body T by radii drawn to that body.
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            For the attractions of the body S towards T and P compose its
            absolute attraction, which is more directed towards O, the common
            centre of gravity of the bodies T and P, than it is to the greatest
            body T; and which is more in a reciprocal proportion to the square of
            the distance SO, than it is to the square of the distance ST; as will
            easily appear by a little consideration.
        


    

    
        Proposition lxviii. Theorem xxviii.


            
                The same laws of attraction supposed, I say, that the exterior
                body S will, by radii drawn to O, the common
                centre of gravity of the interior bodies P and T,
                describe round that centre areas more proportional to the times,
                and an orbit more approaching to the form of an ellipsis having
                its focus in that centre, if the innermost and greatest body be
                agitated by these attractions as well as the rest, than it would
                do if that body were either at rest as not attracted, or were much
                more or much less attracted, or much more or much less agitated.
            


        

        
            This may be demonstrated after the same manner as Prop. LXVI, but by
            a more prolix reasoning, which I therefore pass over. It will be
            sufficient to consider it after this manner. From the demonstration of
            the last Proposition it is plain, that the centre, towards which the
            body S is urged by the two forces conjunctly, is very near to the
            common centre of gravity of those two other bodies. If this centre
            were to coincide with that common centre, and moreover the common
            centre of gravity of all the three bodies were at rest, the body S on
            one side, and the common centre of gravity of the other two bodies on
            the other side, would describe true ellipses about
            that quiescent common centre. This appears from Cor. 2, Prop LVIII,
            compared with what was demonstrated in Prop. LXIV, and LXV. Now this
            accurate elliptical motion will be disturbed a little by the distance
            of the centre of the two bodies from the centre towards which the
            third body S is attracted. Let there be added, moreover, a motion to
            the common centre of the three, and the perturbation will be increased
            yet more.
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            Therefore the perturbation is least when the common centre of the three bodies is at rest;
            that is, when the innermost and greatest body T is attracted according to the
            same law as the rest are; and is always greatest when the common
            centre of the three, by the diminution of the motion of the body T,
            begins to be moved, and is more and more agitated.
        


        
            Cor. And hence if more lesser bodies revolve
            about the great one, it may easily be inferred that the orbits
            described will approach nearer to ellipses; and the descriptions of
            areas will be more nearly equable, if all the bodies mutually attract
            and agitate each other with accelerative forces that are as their
            absolute forces directly, and the squares of the distances inversely;
            and if the focus of each orbit be placed in the common centre of
            gravity of all the interior bodies (that is, if the focus of the first
            and innermost orbit be placed in the centre of gravity of the greatest
            and inner most body; the focus of the second orbit in the common
            centre of gravity of the two innermost bodies; the focus of the third
            orbit in the common centre of gravity of the three innermost; and so
            on), than if the innermost body were at rest, and was made the common
            focus of all the orbits.
        


    

    
        Proposition lxix. Theorem xxix.


            
                In a system of several bodies A, B, C, D, &c., if
                any one of those bodies, as A, attract all the rest,
                B, C, D, &c., with accelerative forces that are
                reciprocally as the squares of the distances from the attracting
                body; and another body, as B, attracts also the rest.
                A, C, D, &c., with forces that are reciprocally as the
                squares of the distances from the attracting body; the absolute
                forces of the attracting bodies A and B will
                be to each other as those very bodies A and B to which those forces belong.
            


        

        
            For the accelerative attractions of all the bodies B, C, D, towards
            A, are by the supposition equal to each other at equal distances; and
            in like manner the accelerative attractions of all the bodies towards
            B are also equal to each other at equal distances. But the absolute
            attractive force of the body A is to the absolute attractive force of
            the body B as the accelerative attraction of all the bodies towards A
            to the accelerative attraction of all the bodies towards B at equal
            distances; and so is also the accelerative attraction of the body B
            towards A to the accelerative attraction of
            the body A towards B. But the accelerative attraction of the body B
            towards A is to the accelerative attraction of the body A towards B as
            the mass of the body A to the mass of the body B; because the motive
            forces which (by the 2d, 7th, and 8th Definition) are as the
            accelerative forces and the bodies attracted conjunctly are here equal
            to one another by the third Law. Therefore the absolute attractive
            force of the body A is to the absolute attractive force of the body B
            as the mass of the body A to the mass of the body B.
              Q.E.D.
        


        
            Cor. 1. Therefore if each of the bodies of
            the system A, B, C, D, &c. does singly attract all the rest with
            accelerative forces that are reciprocally as the squares of the
            distances from the attracting body, the absolute forces of all those
            bodies will be to each other as the bodies themselves.
        


        
            Cor. 2. By a like reasoning, if each of the
            bodies of the system A, B, C, D, &c., do singly attract all the
            rest with accelerative forces, which are either reciprocally or
            directly in the ratio of any power whatever of the distances from the
            attracting body; or which are defined by the distances from each of
            the attracting bodies according to any common law; it is plain that
            the absolute forces of those bodies are as the bodies themselves.
        


        
            Cor. 3. In a system of bodies whose forces
            decrease in the duplicate ratio of the distances, if the lesser
            revolve about one very great one in ellipses, having their common
            focus in the centre of that great body, and of a figure exceedingly
            accurate; and moreover by radii drawn to that great body describe
            areas proportional to the times exactly; the absolute forces of those
            bodies to each other will be either accurately or very nearly in the
            ratio of the bodies. And so on the contrary. This appears from Cor. of
            Prop. XLVIII, compared with the first Corollary of this Prop.
        


    

    
        Scholium.



        
            These Propositions naturally lead us to the analogy there is between
            centripetal forces, and the central bodies to which those forces used
            to be directed; for it is reasonable to suppose that forces which are
            directed to bodies should depend upon the nature and quantity of those
            bodies, as we see they do in magnetical experiments. And when such
            cases occur, we are to compute the attractions of the bodies by
            assigning to each of their particles its proper force, and then
            collecting the sum of them all. I here use the word attraction in
            general for any endeavour, of what kind soever, made by bodies to
            approach to each other; whether that endeavour arise from the action
            of the bodies themselves, as tending mutually to or agitating each
            other by spirits emitted; or whether it arises from the action of the
            aether or of the air, or of any medium whatsoever, whether corporeal
            or incorporeal, any how impelling bodies placed therein towards each
            other. In the same general sense I use the word impulse, not defining
            in this treatise the species or physical qualities of forces, but
            investigating the quantities and mathematical
            proportions of them; as I observed before in the Definitions. In
            mathematics we are to investigate the quantities of forces with their
            proportions consequent upon any conditions supposed; then, when we
            enter upon physics, we compare those proportions with the phenomena of
            Nature, that we may know what conditions of those forces answer to the
            several kinds of attractive bodies. And this preparation being made,
            we argue more safely concerning the physical species, causes, and
            proportions of the forces. Let us see, then, with what forces
            sphaerical bodies consisting of particles endued with attractive
            powers in the manner above spoken of must act mutually upon one
            another: and what kind of motions will follow from thence.
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Book 2.3




    
        Section iii.


        
            
                Of the motions of bodies which are resisted partly in the ratio
                of the velocities, and partly in the duplicate of the same ratio.
            

        


    

    
        Proposition xi. Theorem viii.


            
                
                    If a body be resisted partly in the ratio and partly in the
                    duplicate ratio of its velocity, and moves in a similar medium by
                    its innate force only; and the times be taken in arithmetical
                    progression; then quantities reciprocally proportional to the
                    velocities, increased by a certain given quantity, will be in
                    geometrical progression.
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            With the centre C, and the rectangular asymptotes CADd and
            CH, describe an hyperbola BEe, and let AB, DE, de,
            be parallel to the asymptote CH. In the asymptote CD let A, G be given
            points; and if the time be expounded by the hyperbolic area ABED
            uniformly increasing, I say, that the velocity may be expressed by the
            length DF, whose reciprocal GD, together with the given line CG,
            compose the length CD increasing in a geometrical progression.
        


        
            For let the areola DEed be the least given increment of the
            time, and Dd will be reciprocally as DE, and therefore
            directly as CD. Therefore the decrement of 1

            GD, which (by Lem. II. Book II) is
            Dd

            GD2, will be also as
            CD

            GD2 or 
            CG+GD

            GD2, that is, as 
            1

            GD + CG

            GD2 . Therefore the
            time ABED uniformly increasing by the addition of the given particles
            EDde, it follows that 1

            GD decreases in the same ratio with
            the velocity. For the decrement of the velocity is as the resistance,
            that is (by the supposition), as the sum of two quantities, whereof
            one is as the velocity, and the other as the square of the velocity;
            and the decrement of 1

            GD is as the sum of the quantities
            1

            GD and CG

            GD2, whereof the first is
            1

            GD itself, and the last 
            CG

            GD2 is as 
            1

            GD2 : therefore 
            1

            GD is as the velocity, the decrements
            of both being analogous. And if the quantity GD reciprocally
            proportional to 1

            GD, be augmented by the given
            quantity CG; the sum CD, the time ABED uniformly increasing, will
            increase in a geometrical progression.   Q.E.D.
        


        
            Cor. 1. Therefore,
            if, having the points A and G given, the time be expounded by the
            hyperbolic area ABED, the velocity may be expounded by 
            1

            GD the reciprocal of GD.
        


        
            Cor. 2. And by taking GA to GD as the
            reciprocal of the velocity at the beginning to the reciprocal of the
            velocity at the end of any time ABED, the point G will be found. And
            that point being found the velocity may be found from any other time
            given.
        


    

    
        Proposition xii. Theorem ix.


            
                
                    The same things being supposed, I say, that if the spaces
                    described are taken in arithmetical progression, the velocities
                    augmented by a certain given quantity will be in geometrical progression.
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            In the asymptote CD let there be given the point R, and, erecting the
            perpendicular RS meeting the hyperbola in S, let the space described
            be expounded by the hyperbolic area RSED; and the velocity will be as
            the length GD, which, together with the given line CG, composes a
            length CD decreasing in a geometrical progression, while the space
            RSED increases in an arithmetical progression.
        


        
            For, because the increment EDde of the space is given, the
            lineola Dd, which is the decrement of GD, will be
            reciprocally as ED, and therefore directly as CD; that is, as the sum
            of the same GD and the given length CG. But the decrement of the
            velocity, in a time reciprocally proportional thereto, in which the
            given particle of space DdeE is described, is as the
            resistance and the time conjunctly, that is, directly as the sum of
            two quantities, whereof one is as the velocity, the other as the
            square of the velocity, and inversely as the velocity; and therefore
            directly as the sum of two quantities, one of which is given, the
            other is as the velocity. Therefore the decrement both of the velocity
            and the line GD is as a given quantity and a decreasing quantity
            conjunctly; and, because the decrements are analogous, the decreasing
            quantities will always be analogous; viz., the velocity, and the line
            GD.   Q.E.D.
        


        
            Cor. 1. If the velocity be expounded by the
            length GD, the space described will be as the hyperbolic area DESR.
        


        
            Cor. 2. And if the point R be assumed any
            how, the point G will be found, by taking GR to GD as the velocity at
            the beginning to the velocity after any space RSED is described. The
            point G being given, the space is given from the given velocity: and
            the contrary.
        


        
            Cor. 3. Whence since (by Prop. XI) the
            velocity is given from the given time, and
            (by this Prop.) the space is given from the given velocity; the space
            will be given from the given time: and the contrary.
        


    

    
        Proposition xiii. Theorem X.


            
                
                    Supposing that a body attracted downwards by an uniform gravity
                    ascends or descends in a right line; and that the same is resisted
                    partly in the ratio of its velocity, and partly in the duplicate
                    ratio thereof: I say, that, if right lines parallel to the
                    diameters of a circle and an hyperbola, be drawn through the ends
                    of the conjugate diameters, and the velocities be as some segments
                    of those parallels drawn from a given point, the times will be as
                    the sectors of the areas cut off by right lines drawn from the
                    centre to the ends of the segments; and the contrary.
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            Case 1. Suppose first that the body is
            ascending, and from the centre D, with any semi-diameter DB, describe
            a quadrant BETF of a circle, and through the end B of the
            semi-diameter DB draw the indefinite line BAP, parallel to the
            semi-diameter DF. In that line let there be given the point A, and
            take the segment AP proportional to the velocity. And since one part
            of the resistance is as the velocity, and another part as the square
            of the velocity, let the whole resistance be as AP² + 2BAP. Join DA,
            DP, cutting the circle in E and T, and let the gravity be expounded by
            DA², so that the gravity shall be to the resistance in P as DA² to AP²
            + 2BAP; and the time of the whole ascent will be as the sector EDT of
            the circle.
        


        
            For draw DVQ, cutting off the moment PQ of the velocity AP, and the
            moment DTV of the sector DET answering to a given moment of time; and
            that decrement PQ of the velocity will be as the sum of the forces of
            gravity DA² and of resistance AP² + 2BAP, that is (by Prop. XII Book
            II, Elem.), as DP². Then the area DPQ, which is proportional to PQ, is
            as DP², and the area DTV, which is to the area DPQ as DT² to DP², is
            as the given quantity DT². Therefore the area EDT decreases uniformly
            according to the rate of the future time, by subduction of given
            particles DTV, and is therefore proportional to the time of the whole
            ascent.   Q.E.D.
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            Case 2. If the velocity in the ascent of the
            body be expounded by the length AP as before, and the resistance be
            made as AP² + 2BAP, and if the force of
            gravity be less than can be expressed by DA²; take BD of such a
            length, that AB² − BD² maybe proportional
            to the gravity, and let DF be perpendicular and equal to
            DB, and through the vertex F describe the hyperbola FTVE, whose
            conjugate semi-diameters are DB and DF, and which cuts DA in E, and
            DP, DQ in T and V; and the time of the whole ascent will be as the
            hyperbolic sector TDE.
        


        
            For the decrement PQ of the velocity, produced in a given particle of
            time, is as the sum of the resistance AP² + 2BAP and of the gravity
            AB² − BD², that is, as BP² −
            BD². But the area DTV is to the area DPQ as DT² to DP²; and,
            therefore, if GT be drawn perpendicular to DF, as GT² or GD²
            − DF² to BD², and as GD² to BP², and, by division, as DF² to
            BP² − BD². Therefore since the area DPQ is
            as PQ, that is, as BP² − BD², the area DTV
            will be as the given quantity DF². Therefore the area EDT decreases
            uniformly in each of the equal particles of time, by the subduction of
            so many given particles DTV, and therefore is proportional to the
            time.   Q.E.D.
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            Case 3. Let AP be the velocity in the descent
            of the body, and AP² + 2BAP the force of
            resistance, and BD² − AB² the force of
            gravity, the angle DBA being a right one. And if with the centre D,
            and the principal vertex B, there be described a rectangular hyperbola
            BETV cutting DA, DP, and DQ produced in E, T, and V; the sector DET of
            this hyperbola will be as the whole time of descent.
        


        
            For the increment PQ of the velocity, and the area DPQ proportional
            to it, is as the excess of the gravity above the resistance, that is,
            as BD² − AB² − 2BAxAP − AP² or BD²
            − BP². And the area DTV is to the area DPQ as DT² to DP²; and
            therefore as GT² or GD² − BD² to BP², and
            as GD² to BD², and, by division, as BD² to BD² −
            BP². Therefore since the area DPQ is as BD²
            − BP², the area DTV will be as the given quantity BD².
            Therefore the area EDT increases uniformly in the several equal
            particles of time by the addition of as many given particles DTV, and
            therefore is proportional to the time of the descent.
              Q.E.D.
        


        
            Cor. If with the centre D and the
            semi-diameter DA there be drawn through the vertex A an arc At
            similar to the arc ET, and similarly subtending the angle ADT, the
            velocity AP will be to the velocity which the body in the time EDT, in
            a non−resisting space, can lose in its ascent, or acquire in its
            descent, as the area of the triangle DAP to the area of the sector DAt;
            and therefore is given from the time given. For the velocity in a
            non-resisting medium is proportional to the time, and therefore to
            this sector; in a resisting medium, it is as the triangle; and in both
            mediums, where it is least, it approaches to the ratio of equality, as
            the sector and triangle do.
        



        


    

    
        Scholium



        
            One may demonstrate also that case in the ascent of the body, where
            the force of gravity is less than can be expressed by DA² or AB² +
            BD², and greater than can be expressed by AB² − DB², and must be
            expressed by AB². But I hasten to other things.
        


    

    
        Proposition xiv. Theorem xi.


            
                
                    The same things being supposed, I say, that the space described
                   in the ascent or descent is as the difference of the area by which
                   the time is expressed, and of some other area which is augmented
                   or diminished in an arithmetical progression; if the forces
                   compounded of the resistance and the gravity be taken, in a
                   geometrical progression.
                
            


        

        
            Take AC (in these three figures) proportional to the gravity, and AK
            to the resistance; but take them on the same side of the point A, if the
            [image: Mathematical Principles of Natural Philosophy figure: 283]
            body is descending, otherwise on the
            contrary. Erect Ab, which make to DB as DB² to 4BAC: and to
            the rectangular asymptotes CK, CH, describe the hyperbola bN;
            and, erecting KN perpendicular to CK, the area AbNK will be
            augmented or diminished in an arithmetical progression, while the
            forces CK are taken in a geometrical progression. I say, therefore,
            that the distance of the body from its greatest altitude is as the
            excess of the area AbNK above the area DET.
        


        
            For since AK is as the resistance, that is, as AP² x 2BAP; assume any
            given quantity Z, and put AK equal to AP2+2BAP

            Z; then (by
            Lem. II of this Book) the moment KL of AK will be equal to 
            2APQ + 2BA x PQ

            Z or 2BPQ

            Z, and the moment KLON of the area AbNK
            will be equal to 2BPQ x LO

            Z or BPQ
            x BD3

            2Z x CK x AB.
        


        
            Case 1. Now if the body ascends, and the
            gravity be as AB² + BD², BET being a circle, the line AC, which is
            proportional to the gravity, will be AB2+BD2

            Z, and DP² or AP² + 2BAP + AB² + BD²
            will be AK x Z + AC x Z or CK x Z; and therefore the area DTV will be
            to the area DPQ as DT² or DB² to CK x Z.
        


        
            Case 2. If the body ascends, and the gravity
            be as AB² − BD², the line AC will be AB2+BD2

            Z, and DT² will be to DP² as DF² or DB²
            to BP² − BD² or AP² + 2BAP + AB² − BD², that is, to AK x Z + AC x Z or CK x Z.
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            And therefore the area DTV will be to the area DPQ as DB² to CK x Z.
        


        
            Case 3. And by the same reasoning, if the
            body descends, and therefore the gravity is as BD² - AB², and the line
            AC becomes equal to BD2-AB2

            Z; the area DTV will be to the area
            DPQ, as DB² to CK x Z: as above.
        


        
            Since, therefore, these areas are always in this ratio, if for the
            area DTV, by which the moment of the time,
            always equal to itself, is expressed, there be put any determinate
            rectangle, as BD x m, the area DPQ, that is, ½BD x PQ, will
            be to BD x m as CK x Z to BD². And thence PQ x BD³ becomes
            equal to 2BD x m x CK x Z, and the moment KLON of the area AbNK,
            found before, becomes BP x BD x m

            AB. From the area DET subduct its
            moment DTV or BD x m, and there will remain 
            AP x BD x m

            AB. Therefore the difference of the
            moments, that is, the moment of the difference of the areas, is equal
            to AP x BD x m

            AB; and therefore (because of the given
            quantity BD x m

            AB ) as the velocity AP; that is, as
            the moment of the space which the body describes in its ascent or
            descent. And therefore the difference of the areas, and that space,
            increasing or decreasing by proportional moments, and beginning
            together or vanishing together, are proportional.   Q.E.D.
        


        
            Cor. If the length, which arises by applying
            the area DET to the line BD, be called M; and another length V be
            taken in that ratio to the length M, which the line DA has to the line
            DE; the space which a body, in a resisting medium, describes in its
            whole ascent or descent, will be to the space which a body, in a
            non-resisting medium, falling from rest, can describe in the same
            time, as the difference of the aforesaid areas to 
            BD x V2

            AB; and therefore is given from the
            time given. For the space in a non-resisting medium is in a duplicate
            ratio of the time, or as V²; and, because BD and AB are given, as
            BD x V2

            AB. This area is equal to the area
            DA2 x BD x M2

            DE2 x AB and the moment of M
            is m; and therefore the moment ot this area is 
            DA2 x BD x 2M x m

            DE2 x AB. But this moment is
            to the moment of the difference of the aforesaid areas DET and AbNK,
            viz., to AB x BD x m

            AB, as DA2
            x BD x M

            DE2 to ½BD x AP, or as
            DA2

            DE2 into DET to DAP; and,
            therefore, when the areas DET and DAP are least, in the ratio of
            equality. Therefore the area BD x
            V2

            AB and the difference of the areas DET
            and AbNK, when all these areas are least, have equal moments;
            and are therefore equal. Therefore since the velocities, and therefore
            also the spaces in both mediums described together, in the beginning
            of the descent, or the end of the ascent, approach to equality, and
            therefore are then one to another as the area
            BD x V2

            AB, and the difference of the areas DET
            and AbNK; and moreover since the space, in a non-resisting
            medium, is perpetually as BD x V2

            AB, and the space, in a resisting
            medium, is perpetually as the difference of the areas DET and AbNK;
            it necessarily follows, that the spaces, in both mediums, described in
            any equal times, are one to another as that area 
            BD x V2

            AB, and the difference of the areas DET
            and AbNK.   Q.E.D.
        


    

    
        Scholium.



        
            The resistance of spherical bodies in fluids arises partly from the
            tenacity, partly from the attrition, and partly from the density of
            the medium. And that part of the resistance which arises from the
            density of the fluid is, as I said, in a duplicate ratio of the
            velocity; the other part, which arises from the tenacity of the fluid,
            is uniform, or as the moment of the time; and, therefore, we might now
            proceed to the motion of bodies, which are resisted partly by an
            uniform force, or in the ratio of the moments of the time, and partly
            in the duplicate ratio of the velocity. But it is sufficient to have
            cleared the way to this speculation in Prop. VIII and IX foregoing,
            and their Corollaries. For in those Propositions, instead of the
            uniform resistance made to an ascending body arising from its gravity,
            one may substitute the uniform resistance which arises from the
            tenacity of the medium, when the body moves by its vis insita
            alone; and when the body ascends in a right line, add this uniform
            resistance to the force of gravity, and subduct it when the body
            descends in a right line. One might also go on to the motion of bodies
            which are resisted in part uniformly, in part in the ratio of the
            velocity, and in part in the duplicate ratio of the same velocity. And
            I have opened a way to this in Prop. XIII and XIV foregoing, in which
            the uniform resistance arising from the tenacity of the medium may be
            substituted for the force of gravity, or be compounded with it as
            before. But I hasten to other things.
        


        


    







    
        


        
            < Book 2.2


            > Book 2.4


            Table of Contents

            Index
        
        


    
     







oebps/cover.html


    
        
    



oebps/images/fig330.png


oebps/images/fig328.png


oebps/images/fig333.png


oebps/images/fig331.png


oebps/images/fig339.png


oebps/images/fig337.png



oebps/images/fig342.png


oebps/images/fig310.png


oebps/images/fig327.png


oebps/book.2.02.html





    
        The Mathematical Principles
of
Natural Philosophy



        Book 2.2



        C®pyRight & C©pyLeft
by



        Sir Isaac Newton



        Translated into English by Andrew Motte



        Last Update: 14 January 1666



        Table of Contents



         


    







The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 2.2




    
        Section ii.


        Of the motion of bodies that are resisted in the duplicate ratio of their velocities.



    

    
        Proposition v. Theorem iii.


            
                
                    If a body is resisted in the duplicate ratio of its velocity,
                    and moves by its innate force only through a similar medium; and
                    the times be taken in a geometrical progression, proceeding from
                    less to greater terms: I say, that the velocities at the beginning
                    of each of the times are in the same geometrical progression
                    inversely; and that the spaces are equal, which are described in
                    each of the times.
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            For since the resistance of the medium is proportional to the square
            of the velocity, and the decrement of the velocity is proportional to
            the resistance: if the time be divided into innumerable equal
            particles, the squares of the velocities at the beginning of each of
            the times will be proportional to the differences of the same
            velocities. Let those particles of time be AK, KL, LM, &c., taken
            in the right line CD; and erect the perpendiculars AB, Kk, Ll,
            Mm, &c., meeting the hyperbola BklmG, described
            with the centre C, and the rectangular asymptotes CD, CH, in B, k,
            l, m, &c.; then AB will be to Kk as CK to CA, and,
            by division, AB − Kk to Kk as AK to CA, and
            alternately, AB − Kk to AK as Kk to CA; and
            therefore as AB x Kk to AB x CA. Therefore since AK and AB x
            CA are given, AB − Kk will be as AB x KA; and, lastly, when
            AB and Kk coincide, as AB². And, by the like reasoning, Kk
            − Ll, Ll − Mm, &c., will be as Kk²,
            Ll², &c. Therefore the squares of the lines AB, Kk,
            Ll, Mm, &c., are as their differences; and,
            therefore, since the squares of the velocities were shewn above to be
            as their differences, the progression of both will be alike. This
            being demonstrated it follows also that the areas described by these
            lines are in a like progression with the spaces described by these
            velocities. Therefore if the velocity at the beginning of the first
            time AK be expounded by the line AB, and the
            velocity at the beginning of the second time KL by the line Kk
            and the length described in the first time by the area AKkB,
            all the following velocities will be expounded by the following lines
            Ll, Mm, &c. and the lengths described, by the
            areas Kl, Lm. &c. And, by composition, if the
            whole time be expounded by AM, the sum of its parts, the whole length
            described will be expounded by AMmB the sum of its parts. Now
            conceive the time AM to be divided into the parts AK, KL, LM, &c.
            so that CA, CK, CL, CM, &c. may be in a geometrical progression;
            and those parts will be in the same progression, and the velocities
            AB, Kk, Ll, Mm, &c., will be in the
            same progression inversely, and the spaces described Ak, Kl,
            Lm, &c., will be equal.   Q.E.D.
        


        
            Cor. 1. Hence it appears, that if the time be
            expounded by any part AD of the asymptote, and the velocity in the
            beginning of the time by the ordinate AB, the velocity at the end of
            the time will be expounded by the ordinate DG; and the whole space
            described by the adjacent hyperbolic area ABGD; and the space which
            any body can describe in the same time AD, with the first velocity AB,
            in a non-resisting medium, by the rectangle AB x AD.
        


        
            Cor 2. Hence the space described in a
            resisting medium is given, by taking it to the space described with
            the uniform velocity AB in a nonresisting medium, as the hyperbolic
            area ABGD to the rectangle AB x AD.
        


        
            Cor. 3. The resistance of the medium is also
            given, by making it equal, in the very beginning of the motion, to an
            uniform centripetal force, which could generate, in a body falling
            through a non-resisting medium, the velocity AB in the time AC. For if
            BT be drawn touching the hyperbola in B, and meeting the asymptote in
            T, the right line AT will be equal to AC, and will express the time in
            which the first resistance, uniformly continued, may take away the
            whole velocity AB
        


        
            Cor. 4. And thence is also given the
            proportion of this resistance to the force of gravity, or any other
            given centripetal force.
        


        
            Cor. 5. And, vice versa, if there
            is given the proportion of the resistance to any given centripetal
            force, the time AC is also given, in which a centripetal force equal
            to the resistance may generate any velocity as AB; and thence is given
            the point B, through which the hyperbola, having CH, CD for its
            asymptotes, is to be described; as also the space ABGD, which a body,
            by beginning its motion with that velocity AB, can describe in any
            time AD, in a similar resisting medium.
        


    

    
        Proposition vi. Theorem iv.


            
                
                    Homogeneous and equal spherical bodies, opposed by resistances
                    that are in the duplicate ratio of the velocities, and moving on
                    by their innate force only, will, in times which are reciprocally
                    as the velocities at the beginning, describe equal spaces, and
                    lose parts of their velocities proportional to the wholes.
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            To the rectangular asymptotes CD, CH describe any hyperbola BbEe,
            cutting the perpendiculars AB, ab, DE, de in B, b,
            E, e; let the initial velocities be expounded by the
            perpendiculars AB, DE, and the times by the lines Aa, Dd.
            Therefore as Aa is to Dd, so (by the hypothesis) is
            DE to AB, and so (from the nature of the hyperbola) is CA to CD; and,
            by composition, so is Ca to Cd. Therefore the areas
            ABba, DEed, that is, the spaces described, are equal
            among themselves, and the first velocities AB, DE are proportional to
            the last ab, de; and therefore, by division, proportional to
            the parts of the velocities lost, AB − ab, DE − de.
              Q.E.D.
        


    

    
        Proposition vii. Theorem V.


            
                
                    If spherical bodies are resisted in the duplicate ratio of
                    their velocities, in times which are as the first motions
                    directly, and the first resistances inversely, they will lose
                    parts of their motions proportional to the wholes, and will
                    describe spaces proportional to those times and the first
                    velocities conjunctly.
                
            


        

        
            For the parts of the motions lost are as the resistances and times
            conjunctly. Therefore, that those parts may be proportional to the
            wholes, the resistance and time conjunctly ought to be as the motion.
            Therefore the time will be as the motion directly and the resistance
            inversely. Wherefore the particles of the times being taken in that
            ratio, the bodies will always lose parts of their motions proportional
            to the wholes, and therefore will retain velocities always
            proportional to their first velocities. And because of the given ratio
            of the velocities, they will always describe spaces which are as the
            first velocities and the times conjunctly.   Q.E.D.
        


        
            Cor. 1. Therefore if bodies equally swift are
            resisted in a duplicate ratio of their diameters, homogeneous globes
            moving with any velocities whatsoever, by describing spaces
            proportional to their diameters, will lose parts of their motions
            proportional to the wholes. For the motion of each globe will be as
            its velocity and mass conjunctly, that is, as the velocity and the
            cube of its diameter; the resistance (by supposition) will be as the
            square of the diameter and the square of the velocity conjunctly; and
            the time (by this proposition) is in the former ratio directly, and in
            the latter inversely, that is, as the diameter directly and the
            velocity inversely; and therefore the space, which is proportional to
            the time and velocity is as the diameter.
        


        
            Cor. 2. If bodies equally swift are resisted
            in a sesquiplicate ratio of their diameters, homogeneous globes,
            moving with any velocities whatsoever, by
            describing spaces that are in a sesquiplicate ratio of the diameters,
            will lose parts of their motions proportional to the wholes.
        


        
            Cor. 3. And universally; if equally swift
            bodies are resisted in the ratio of any power of the diameters, the
            spaces, in which homogeneous globes, moving with any velocity
            whatsoever, will lose parts of their motions proportional to the
            wholes, will be as the cubes of the diameters applied to that power.
            Let those diameters be D and E; and if the resistances, where the
            velocities are supposed equal, are as Dn and En;
            the spaces in which the globes, moving with any velocities whatsoever,
            will lose parts of their motions proportional to the wholes, will be
            as D3−n and E3−n. And therefore homogeneous
            globes, in describing spaces proportional to D3−n and E3−n,
            will retain their velocities in the same ratio to one another as at
            the beginning.
        


        
            Cor. 4. Now if the globes are not
            homogeneous, the space described by the denser globe must be augmented
            in the ratio of the density. For the motion, with an equal velocity,
            is greater in the ratio of the density, and the time (by this Prop.)
            is augmented in the ratio of motion directly, and the space described
            in the ratio of the time.
        


        
            Cor. 5. And if the globes move in different
            mediums, the space, in a medium which, caeteris paribus,
            resists the most, must be diminished in the ratio of the greater
            resistance. For the time (by this Prop.) will be diminished in the
            ratio of the augmented resistance, and the space in the ratio of the
            time.
        


    

    
        Lemma ii.


            
                
                    The moment of any genitum is equal to the moments of each of
                    the generating sides drawn into the indices of the powers of those
                    sides, and into their co-efficients continually.
                
            


        

        
            I call any quantity a genitum which is not made by addition
            or subduction of divers parts, but is generated or produced in
            arithmetic by the multiplication, division, or extraction of the root
            of any terms whatsoever; in geometry by the invention of contents and
            sides, or of the extremes and means of proportionals. Quantities of
            this kind are products, quotients, roots, rectangles, squares, cubes,
            square and cubic sides, and the like. These quantities I here consider
            as variable and indetermined, and increasing or decreasing, as it
            were, by a perpetual motion or flux; and I understand their
            momentaneous increments or decrements by the name of moments; so that
            the increments may be esteemed as added or affirmative moments; and
            the decrements as subducted or negative ones. But take care not to
            look upon finite particles as such. Finite particles are not moments,
            but the very quantities generated by the moments. We are to conceive
            them as the just nascent principles of finite magnitudes. Nor do we in
            this Lemma regard the magnitude of the moments, but their first
            proportion, as nascent. It will be the same thing,
            if, instead of moments, we use either the velocities of the increments
            and decrements (which may also be called the motions, mutations, and
            fluxions of quantities), or any finite quantities proportional to
            those velocities. The co-efficient of any generating side is the
            quantity which arises by applying the genitum to that side.
        


        
            Wherefore the sense of the Lemma is, that if the moments of any
            quantities A, B, C, &c., increasing or decreasing by a perpetual
            flux, or the velocities of the mutations which are proportional to
            them, be called a, b, c, &c., the moment or mutation of
            the generated rectangle AB will be aB + bA; the
            moment of the generated content ABC will be aBC + bAC
            + cAB; and the moments of the generated powers A², A³, A4,
            A½, A3/2, A⅓, A⅔,
            A−1, A−2, A−½ will be 2aA, 3aA²,
            4aA³, ½aA−½, 3/2aA½,
            ⅓aA−⅔, ⅔aA−⅓, −aA−2,
            −2aA−3, −½aA−3/2
            respectively; and in general, that the moment of any power A 
            n

            m, will be n

            m aA 
            n−m

            m. Also, that the moment of the
            generated quantity A²B bill be 2aAB + bA²; the moment of the
            generated quantity A³ B4 C² will be 3aA² B4
            C² + 4bA³B³C² + 2cA³B4C; and the moment
            of the generated quantity A3

            B2 or A³B−2 will
            be 3aA²B−2−2bA³B−3; and so on.
            The Lemma is thus demonstrated.
        


        
            Case 1. Any rectangle, as AB, augmented by a
            perpetual flux, when, as yet, there wanted of the sides A and B half
            their moments ½a and ½b, was A−½a into B−½b,
            or AB − ½a B − ½b A + ¼ab; but as soon as
            the sides A and B are augmented by the other half moments, the
            rectangle becomes A + ½a into B + ½b, or AB + ½a
            B + ½b A + ¼ab. From this rectangle subduct the
            former rectangle, and there will remain the excess aB + bA.
            Therefore with the whole increments a and b of the
            sides, the increment aB + bA of the rectangle is
            generated.   Q.E.D.
        


        
            Case 2. Suppose AB always equal to G, and
            then the moment of the content ABC or GC (by Case 1) will be gC
            + cG, that is (putting AB and aB + bA
            for G and g), aBC + bAC + cAB.
            And the reasoning is the same for contents under ever so many sides.
              Q.E.D.
        


        
            Case 3. Suppose the sides A, B, and C, to be
            always equal among themselves; and the moment aB + bA,
            of A², that is, of the rectangle AB, will be 2aA; and the
            moment aBC + bAC + cAB of A³, that is,
            of the content ABC, will be 3aA². And by the same reasoning
            the moment of any power An is naAn−1.
              Q.E.D
        


        
            Case 4. Therefore since 
            1

            A into A is 1, the moment of 
            1

            A drawn into A,
            together with 1

            A drawn into a, will be the
            moment of 1, that is, nothing. Therefore the moment of 
            1

            A, or of A−1, is 
            −a

            A2. And generally since
            1

            An into An is
            1, the moment of 1

            An drawn into An
            together with 1

            An into naAn−1
            will be nothing. And, therefore, the moment of 
            1

            An or A−n will
            be −na

            An+1.   Q.E.D.
        


        
            Case 5. And since A½ into A½
            is A, the moment of A½ drawn into 2A½ will be a
            (by Case 3); and, therefore, the moment of A½ will be
            a

            2A1/2 or ½aA−½.
            And, generally, putting A
            m

            n equal to B, then Am
            will be equal to Bn, and therefore maAm−1
            equal to nbBn−1, and maA−1
            equal to nbB−1, or nbA−
            m

            n; and therefore
            m

            naAm−n

            n is equal to b,
            that is, equal to the moment of A
            m

            n.   Q.E.D.
        


        
            Case 6. Therefore the moment of any generated
            quantity AmBn is the moment of Am
            drawn into Bn, together with the moment of Bn
            drawn into Am, that is, maAm−1 Bn
            + nbBn−1 Am; and that whether the
            indices m and n of the powers be whole numbers or
            fractions, affirmative or negative. And the reasoning is the same for
            contents under more powers.   Q.E.D.
        


        
            Cor. 1. Hence in quantities continually
            proportional, if one term is given, the moments of the rest of the
            terms will be as the same terms multiplied by the number of intervals
            between them nd the given term. Let A, B, C, D, E, F, be continually
            proportional; then if the term C is given, the moments of the rest of
            the terms will be among themselves as −2A, −B, D, 2E, 3F.
        


        
            Cor. 2. And if in four proportionals the two
            means are given, the moments of the extremes will be as those
            extremes. The same is to be understood of the sides of any given
            rectangle.
        


        
            Cor. 3. And if the sum or difference of two
            squares is given, the moments of the sides will be reciprocally as the
            sides.
        


    

    
        Scholium.



        
            In a letter of mine to Mr. J. Collins, dated December
            10, 1672, having described a method of tangents, which I suspected to
            be the same with Slusius's method, which at that time was
            not made public, I subjoined these words: This is one particular,
            or rather a Corollary, of a general method, which
            extends itself, without any troublesome calculation, not only to the
            drawing of tangents to any curve lines, whether geometrical or
            mechanical, or any how respecting right lines or other curves, but
            also to the resolving other abstruser kinds of problems about the
            crookedness, areas, lengths, centres of gravity of curves, &c.;
            nor is it (as Hudden's method de Maximis &
            Minimis) limited to equations which are free from surd quantities.
            This method I have interwoven with that other of working in
            equations, by reducing them to infinite series.
                 So far that
            letter. And these last words relate to a treatise I composed on that
            subject in the year 1671. The foundation of that general method is
            contained in the preceding Lemma.
        


    

    
        Proposition viii. Theorem vi.


            
                
                    If a body in an uniform medium, being uniformly acted upon by
                    the force of gravity, ascends or descends in a right line; and the
                    whole space described be distinguished into equal parts, and in
                    the beginning of each of the parts (by adding or subducting the
                    resisting force of the medium to or from the force of gravity,
                    when the body ascends or descends] you collect the absolute
                    forces; I say, that those absolute forces are in a geometrical progression.
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            For let the force of gravity be expounded by the given line AC; the
            force of resistance by the indefinite line AK; the absolute force in
            the descent of the body by the difference KC: the velocity of the body
            by a line AP, which shall be a mean proportional between AK and AC,
            and therefore in a subduplicate ratio of the resistance; the increment
            of the resistance made in a given particle of time by the lineola KL,
            and the contemporaneous increment of the velocity by the lineola PQ;
            and with the centre C, and rectangular asymptotes CA, CH, describe any
            hyperbola BNS meeting the erected perpendiculars AB, KN, LO in B, N
            and O. Because AK is as AP², the moment KL of the one will be as the
            moment 2APQ of the other, that is, as AP x KC; for the increment PQ of
            the velocity is (by Law II) proportional to the generating force KC.
            Let the ratio of KL be compounded with the ratio KN, and the rectangle
            KL x KN will become as AP x KC x KN; that is (because the rectangle KC
            x KN is given), as AP. But the ultimate ratio of the hyperbolic area
            KNOL to the rectangle KL x KN becomes, when the points K and L
            coincide, the ratio of equality. Therefore that hyperbolic evanescent
            area is as AP. Therefore the whole hyperbolic area ABOL is composed of
            particles KNOL which are always proportional to the velocity AP; and
            therefore is itself proportional to the space described with that
            velocity. Let that area be now divided into equal parts as
            ABMI, IMNK, KNOL, &c., and the absolute forces AC, IC, KC, LC,
            &c., will be in a geometrical progression.   Q.E.D.
              And by a like reasoning, in the ascent of the body,
            taking, on the contrary side of the point A, the equal areas ABmi,
            imnk, knol, &c., it will appear that the absolute forces
            AC, iC, kC, lC, &c., are continually
            proportional. Therefore if all the spaces in the ascent and descent
            are taken equal, all the absolute forces lC, kC, iC,
            AC, IC, KC, LC, &c., will be continually proportional.
              Q.E.D.
        


        
            Cor. 1. Hence if the space described be
            expounded by the hyperbolic area ABNK, the force of gravity, the
            velocity of the body, and the resistance of the medium, may be
            expounded by the lines AC, AP, and AK respectively; and vice
            versa.
        


        
            Cor. 2. And the greatest velocity which the
            body can ever acquire in an infinite descent will be expounded by the
            line AC.
        


        
            Cor. 3. Therefore if the resistance of the
            medium answering to any given velocity be known, the greatest velocity
            will be found, by taking it to that given velocity in a ratio
            subduplicate of the ratio which the force of gravity bears to that
            known resistance of the medium.
        


    

    
        Proposition ix. Theorem vii.


            
                
                    Supposing what is above demonstrated, I say, that if the
                    tangents of the angles of the sector of a circle, and of an
                    hyperbola, be taken proportional to the velocities, the radius
                    being of a fit magnitude, all the time of the ascent to the
                    highest place will be as the sector of the circle, and all the
                    time of descending from the highest place as the sector of the hyperbola.
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            To the right line AC, which expresses the force of gravity, let AD be
            drawn perpendicular and equal. From the centre D with the
            semi-diameter AD describe as well the quadrant AtE of a
            circle, as the rectangular hyperbola AVZ, whose axis is AK, principal
            vertex A, and asymptote DC. Let Dp, DP be drawn; and the
            circular sector AtD will be as all the time of the ascent to
            the highest place; and the hyperbolic sector ATD as all the time of
            descent from the highest place; if so be that the tangents Ap,
            AP of those sectors be as the velocities.
        


        
            Case 1. Draw Dvq cutting off the
            moments or least particles tDv and qDp,
            described in the same time, of the sector ADt and of the
            triangle ADp. Since those particles (because of the common
            angle D) are in a duplicate ratio of the sides, the particle tDv
            will be as qDp x tD2

            pD2, that is (because
            tD is given), as qDp

            pD2. But pD² is
            AD² + Ap², that is, AD² + AD x Ak, or AD x Ck;
            and qDp is ½AD x pq. Therefore tDv,
            the particle of the sector, is as pq

            Ck; that is, as the least decrement pq
            of the velocity directly, and the force Ck which diminishes
            the velocity, inversely; and therefore as the particle of time
            answering to the decrement of the velocity. And, by composition, the
            sum of all the particles tDv in the sector ADt
            will be as the sum of the particles of time answering to each of the
            lost particles pq of the decreasing velocity Ap,
            till that velocity, being diminished into nothing, vanishes; that is,
            the whole sector ADt is as the whole time of ascent to the
            highest place.   Q.E.D.
        


        
            Case 2. Draw DQV cutting off the least
            particles TDV and PDQ of the sector DAV, and of the triangle DAQ; and
            these particles will be to each other as DT² to DP², that is (if TX
            and AP are parallel), as DX² to DA² or TX² to AP²; and, by division,
            as DX² − TX² to DA² − AP² . But, from the nature of the hyperbola, DX²
            − TX² is AD²; and, by the supposition, AP² is AD x AK. Therefore the
            particles are to each other as AD² to AD² − AD x AK; that is, as AD to
            AD − AK or AC to CK: and therefore the particle TDV of the sector is
            PDQ x AC

            CK; and therefore (because AC and AD
            are given) as PQ

            CK; that is, as the increment of the
            velocity directly, and as the force generating the increment
            inversely; and therefore as the particle of the time answering to the
            increment. And, by composition, the sum of the particles of time, in
            which all the particles PQ of the velocity AP are generated, will be
            as the sum of the particles of the sector ATD; that is, the whole time
            will be as the whole sector.   Q.E.D.
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            Cor. 1. Hence if AB be equal to a fourth part
            of AC, the space which a body will describe by falling in any time
            will be to the space which the body could describe, by moving
            uniformly on in the same time with its greatest velocity AC, as the
            area ABNK, which expresses the space described in falling to the area
            ATD, which expresses the time. For since AC is to AP as AP to AK, then
            (by Cor. 1, Lem. II, of this Book) LK is to PQ as 2AK to AP, that is,
            as 2AP to AC, and thence LK is to ½PQ as AP to ¼AG or AB; and KN is to
            AC or AD as AB to CK; and therefore, ex
            aequo, LKNO to DPQ as AP to CK. But DPQ was to DTV as CK to AC.
            Therefore, ex aequo, LKNO is to DTV as AP to AC; that is, as
            the velocity of the falling body to the greatest velocity which the
            body by falling can acquire. Since, therefore, the moments LKNO and
            DTV of the areas ABNK and ATD are as the velocities, all the parts of
            those areas generated in the same time will be as the spaces described
            in the same time; and therefore the whole areas ABNK and ADT,
            generated from the beginning, will be as the whole spaces described
            from the beginning of the descent.   Q.E.D.
        


        
            Cor. 2. The same is true also of the space
            described in the ascent. That is to say, that all that space is to the
            space described in the same time, with the uniform velocity AC, as the
            area ABuk is to the sector ADt.
        


        
            Cor. 3. The velocity of the body, falling in
            the time ATD, is to the velocity which it would acquire in the same
            time in a non-resisting space, as the triangle APD to the hyperbolic
            sector ATD. For the velocity in a non-resisting medium would be as the
            time ATD, and in a resisting medium is as AP, that is, as the triangle
            APD. And those velocities, at the beginning of the descent, are equal
            among themselves, as well as those areas ATD, APD.
        


        
            Cor. 4. By the same argument, the velocity in
            the ascent is to the velocity with which the body in the same time, in
            a non-resisting space, would lose all its motion of ascent, as the
            triangle ApD to the circular sector AtD; or as the
            right line Ap to the arc At.
        


        
            Cor. 5. Therefore the time in which a body,
            by falling in a resisting medium, would acquire the velocity AP, is to
            the time in which it would acquire its greatest velocity AC, by
            falling in a non-resisting space, as the sector ADT to the triangle
            ADC: and the time in which it would lose its velocity Ap, by
            ascending in a resisting medium, is to the time in which it would lose
            the same velocity by ascending in a non-resisting space, as the arc At
            if to its tangent Ap.
        


        
            Cor. 6. Hence from the given time there is
            given the space described in the ascent or descent. For the greatest
            velocity of a body descending in infinitum is given (by
            Corol. 2 and 3, Theor. VI, of this Book); and thence the time is given
            in which a body would acquire that velocity by falling in a
            non-resisting space. And taking the sector ADT or ADt to the
            triangle ADC in the ratio of the given time to the time just now
            found, there will be given both the velocity AP or Ap, and
            the area ABNK or ABnk, which is to the sector ADT, or ADt,
            as the space sought to the space which would, in the given time, be
            uniformly described with that greatest velocity found just before.
        



        
            Cor. 7. And by going backward, from the given
            space of ascent or descent ABnk or ABNK, there will be given
            the time ADt or ADT.
        



        


    

    
        Proposition x. Problem iii.


            
                
                    Suppose the uniform force of gravity to tend directly to the
                    plane of the horizon, and the resistance to be as the density of
                    the medium and the square of the velocity conjunctly: it is
                    proposed to find the density of the medium in each place, which
                    shall make the body move in any given curve line; the velocity of
                    the body and the resistance of the medium in each place.
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            Let PQ, be a plane perpendicular to the plane of the scheme itself;
            PFHQ a curve line meeting that plane in the points P and Q; G, H, I, K
            four places of the body going on in this curve from F to Q; and GB,
            HC, ID, KE four parallel ordinates let fall from these points to the
            horizon, and standing on the horizontal line PQ, at the points B, C,
            D, E; and let the distances BC, CD, DE, of the ordinates be equal
            among themselves. From the points G and H let the right lines GL, HN,
            be drawn touching the curve in G and H, and meeting the ordinates CH,
            DI, produced upwards, in L and N: and complete the parallelogram HCDM.
            And the times in which the body describes the arcs GH, HI, will be in
            a subduplicate ratio of the altitudes LH, NI, which the bodies would
            describe in those times, by falling from the tangents; and the
            velocities will be as the lengths described GH, HI directly, and the
            times inversely. Let the times be expounded by T and t, and
            the velocities by GH

            T and HI

            t; and the decrement of the velocity
            produced in the time t will be expounded by 
            GH

            T − HI

            t . This decrement arises from
            the resistance which retards the body, and from the gravity which
            accelerates it. Gravity, in a falling body, which in its fall
            describes the space NI, produces a velocity with which it would be
            able to describe twice that space in the same time, as Galileo
            has demonstrated; that is, the velocity 2NI

            t : but if the body describes the arc
            HI, it augments that arc only by the length HI − HN or 
            MI x NI

            HI; and therefore generates only the
            velocity 2MI x NI

            t x HI. Let this velocity be added to
            the beforementioned decrement, and we shall have the decrement of the
            velocity arising from the resistance alone, that is, 
            GH

            T − HI

            t + 2MI
            x NI

            t x HI . Therefore
            since, in the same time, the action of gravity generates, in a falling
            body, the velocity 2NI

            t, the resistance will be to the
            gravity as GH

            T − HI

            t + 2MI
            x NI

            t x HI or as 
            t x GH

            T − HI + 2MI
            x NI

            HI to 2NI.
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            Now for the abscissas CB, CD, CE, put −o, o, 2o. For the
            ordinate CH put P; and for MI put any series Qo + Ro²
            + So³ +, &c. And all the terms of the series after the
            first, that is, Ro² + So³ +, &c., will be NI;
            and the ordinates DI, EK, and BG will be P − Qo − Ro²
            − So³ −, &c., P − 2Qo − 4Ro² − 8So³ −,
            &c., and P + Qo − Ro² + So³ −, &c.,
            respectively. And by squaring the differences of the ordinates BG − CH
            and CH − DI, and to the squares thence produced adding the squares of
            BC and CD themselves, you will have oo + QQoo − 2QRo³
            +, &c., and oo + QQoo + 2QRo³ +,
            &c., the squares of the arcs GH, HI; whose roots o√(1+QQ)
            − QRoo

            √(1+QQ) , and o√(1+QQ)
            + QRoo

            √(1+QQ) are the arcs GH and
            HI. Moreover, if from the ordinate CH there be subducted half the sum
            of the ordinates BG and DI, and from the ordinate DI there be
            subducted half the sum of the ordinates CH and EK, there will remain Roo
            and Roo + 3So³, the versed sines of the arcs GI and
            HK. And these are proportional to the lineolae LH and NI, and
            therefore in the duplicate ratio of the infinitely small times T and t:
            and thence the ratio t

            T is √(
            R + 3So

            R) or 
            R + 3/2So

            R ; and t
            x GH

            T − HI + 2MI
            x NI

            HI , by substituting the
            values of t

            T, GH, HI, MI and NI just found,
            becomes 3Soo

            2R √(1+QQ). And since 2NI is
            2Roo, the resistance will be now to the gravity as 
            3Soo

            2R √(1+QQ), that is, as
            3S√(1+qq) to 4RR.
        


        
            And the velocity will be such, that a body going off therewith from
            any place H, in the direction of the tangent HN, would describe, in
            vacuo, a parabola, whose diameter is HC, and its latus rectum
            HN2

            NI or 1+QQ

            R.
        


        
            And the resistance is as the density of the medium and the square of
            the velocity conjunctly; and therefore the density of the medium is as
            the resistance directly, and the square of the velocity inversely;
            that is, as  3S√(1+QQ)

            4RR directly and 
            1+QQ

            R inversely; that is, as 
            S

            R√(1+QQ).   Q.E.I.
        


        
            Cor. 1. If the tangent HN be produced both
            ways, so as to meet any ordinate AF in T HT

            AC will be equal to √(1+QQ);
            and therefore in what has gone before may be put for √(1+QQ).
            By this means the resistance will be to the gravity as 3S x HT to 4RR
            x AC; the velocity will be as HT

            AC√R, and the density of the medium
            will be as S x AC

            R x HT.
        


        
            Cor. 2. And hence, if the curve line PFHQ be
            defined by the relation between the base or abscissa AC and the
            ordinate CH, as is usual, and the value of the ordinate be resolved
            into a converging series, the Problem will be expeditiously solved by
            the first terms of the series; as in the following examples.
        


        
            Example 1. Let the line PFHQ be a semi-circle
            described upon the diameter PQ, to find the density of the medium that
            shall make a projectile move in that line.
        


        
            Bisect the diameter PQ in A; and call AQ, n; AC, a;
            CH, e; and CD, o; then DI² or AQ² − AD² = nn
            − aa − 2ao − oo, or ee − 2ao − oo; and the root being
            extracted by our method, will give DI = e −
            ao

            e − oo

            2e − aaoo

            2e3 − 
            ao3

            2e3 − 
            a3o3

            2e5 − , &c.
            Here put nn for ee + aa, and DI will become
            = e − ao

            e − nnoo

            2e3 − 
            anno3

            2e5 −, &c
        


        
            Such series I distinguish into successive terms after this manner: I
            call that the first term in which the infinitely small quantity o
            is not found; the second, in which that quantity is of one dimension
            only; the third, in which it arises to two dimensions; the fourth, in
            which it is of three; and so ad infinitum. And the first
            term, which here is e, will always denote the length of the
            ordinate CH, standing at the beginning of the indefinite quantity o.
            The second term, which here is ao

            e, will denote the difference between
            CH and DN; that is, the lineola MN which is cut off by completing the
            parallelogram HCDM; and therefore always determines the position of
            the tangent HN; as, in this case, by taking MN to HM as 
            ao

            e to o, or a to e.
            The third term, which here is nnoo

            2e3, will represent the
            lineola IN, which lies between the tangent and the curve; and
            therefore determines the angle of contact IHN, or the curvature which
            the curve line 
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            has in H. If that lineola IN is of a finite magnitude, it will be expressed by
            the third term, together with those that follow in infinitum.
            But if that lineola be diminished in infinitum, the terms
            following become in finitely less than the third term, and therefore
            may be neglected. The fourth term determines the variation of the
            curvature; the fifth, the variation of the variation; and so on.
            Whence, by the way, appears no contemptible use of these series in the
            solution of problems that depend upon tangents, and the curvature of
            curves.
        


        
            Now compare the series e − 
            ao

            e − nnoo

            2e3 − 
            anno3

            2e5 − &c., with
            the series P − Qo − Roo − So³
            − &c., and for P, Q, R and S, put e, 
            a

            e, nn

            2e3 and 
            ann

            2e5, and for √(1
            + QQ) put √(1 + 
            aa

            ee ) or 
            n

            e : and the density of the medium will
            come out as a

            ne; that is (because n is
            given), as a

            e or AC

            CH, that is, as that length of the
            tangent HT, which is terminated at the semi-diameter AF standing
            perpendicularly on PQ: and the resistance will be to the gravity as 3a
            to 2n, that is, as 3AC to the diameter PQ of the circle; and
            the velocity will be as √(CH). Therefore if
            the body goes from the place F, with a due velocity, in the direction
            of a line parallel to PQ, and the density of the medium in each of the
            places H is as the length of the tangent HT, and the resistance also
            in any place H is to the force of gravity as 3AC to PQ, that body will
            describe the quadrant FHQ of a circle.   Q.E.I.
        


        
            But if the same body should go from the place P, in the direction of
            a line perpendicular to PQ, and should begin to move in an arc of the
            semi circle PFQ, we must take AC or a on the contrary side
            of the centre A; and therefore its sign must be changed, and we must
            put −a for +a. Then the density of the medium would
            come out as −a

            e. But nature does not admit of a
            negative density, that is, a density which accelerates the motion of
            bodies; and therefore it cannot naturally come to pass that a body by
            ascending from P should describe the quadrant PF of a circle. To
            produce such an effect, a body ought to be accelerated by an impelling
            medium, and not impeded by a resisting one.
        


        
            Example 2. Let the line PFQ be a parabola,
            having its axis AF perpendicular to the
            horizon PQ, to find the density of the medium, which will make a
            projectile move in that line.
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            From the nature of the parabola, the rectangle PDQ is equal to the
            rectangle under the ordinate DI and some given right line; that is, if
            that right line be called b; PC, a; PQ, c;
            CH, e; and CD, o; the rectangle a + o
            into c − a − o or ac − aa − 2ao + co − oo, is
            equal to the rectangle b into DI, and therefore DI is equal
            to ac − aa

            b + c
            − 2a

            bo − oo

            b . Now the second term
            c−2a

            bo of this series is to be put
            for Qo, and the third term oo

            b for Roo. But since there are
            no more terms, the co-efficient S of the fourth term will vanish; and
            therefore the quantity S

            R√(1+QQ), to which the density of the
            medium is proportional, will be nothing. Therefore, where the medium
            is of no density, the projectile will move in a parabola; as Galileo
            hath heretofore demonstrated.   Q.E.I.
        


        
            Example 3. Let the line AGK be an hyperbola,
            having its asymptote NX perpendicular to the horizontal plane AK, to
            find the density of the medium that will make a projectile move in
            that line.
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            Let MX be the other asymptote, meeting the ordinate DG produced in V;
            and from the nature of the hyperbola, the rectangle of XV into VG will
            be given. There is also given the ratio of DN to VX, and therefore the
            rectangle of DN into VG is given. Let that be bb: and,
            completing the parallelogram DNXZ, let BN be called a; BD, o;
            NX, c; and let the given ratio of VZ to ZX or DN be 
            m

            n. Then DN will be equal to a − o,
            VG equal to bb

            a − o, VZ equal to 
            m

            n x (a − o), and GD or
            NX − VZ − VG equal to c −
            m

            n a + m

            no − bb

            a−o . Let the term 
            bb

            a−o be resolved into the converging
            series bb

            a + bb

            aao + bb

            a3oo + 
            bb

            a4o3 ,
            &c., and GD will become equal to c − 
            m

            na − bb

            a + m

            no − bb

            aao − bb

            a3o2 − 
            bb

            a4o3 ,
            &c. The second term 
            m

            no − bb

            aao of this series is to be
            used for Qo; the third 
            bb

            a3o2 ,
            with its sign changed for Ro²; and the fourth 
            bb

            a4o3 ,
            with its sign changed also for So³, and their coefficients
            m

            n − bb

            aa , 
            bb

            a3 and 
            bb

            a4 are to be put for Q, R,
            and S in the former rule. Which being done, the density of the medium
            will come out as bb

            a4

            bb

            a3 √(1 + 
            mm

            nn − 2mbb

            naa + b4

            a4) or
            1

            √(aa + mm

            nnaa − 2mbb

            n + b4

            aa) , that is, if in
            VZ you take VY equal to VG, as 1

            XY. For aa and
            m2

            n2a2 − 
            2mbb

            n + b4

            aa are the squares of XZ and
            ZY. But the ratio of the resistance to gravity is found to be that of
            3XY to 2YG; and the velocity is that with which the body would
            describe a parabola, whose vertex is G, diameter DG, latus rectum
            XY2

            VG. Suppose, therefore, that the
            densities of the medium in each of the places G are reciprocally as
            the distances XY, and that the resistance in any place G is to the
            gravity as 3XY to 2YG; and a body let go from the place A, with a due
            velocity, will describe that hyperbola AGK.   Q.E.I.
        


        
            Example 4. Suppose, indefinitely, the line
            AGK to be an hyperbola described with the centre
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            X, and the asymptotes MX, NX, so that, having constructed the
            rectangle XZDN, whose side ZD cuts the hyperbola in G and its
            asymptote in V, VG may be reciprocally as any power DNn of
            the line ZX or DN, whose index is the number n: to find the
            density of the medium in which a projected body will describe this
            curve.
        


        
            For BN, BD, NX, put A, O, C, respectively, and let VZ be to XZ or DN
            as d to e, and VG be equal to 
            bb

            DNn; then DN will be equal
            to A − O, VG = bb

            (A − O)n ,
            VZ = d

            e (A − O), and GD or NX − VZ −
            VG equal to
        


        C − d

            eA + d

            eO − bb

            (A − O)n .
        

        
            Let the term bb

            (A − O)n be resolved into
            an infinite series
        


        bb

            An + 
            nbb

            An + 1 x O + 
            nn + n

            2An + 2 x bb O2
            + n3 + 3nn + 2n

            6An + 3 x bb O3,&c.,
        

        
            And GD will be equal to


        C − d

            eA + bb

            An + 
            d

            e O − nbb

            An + 1 O − 
            + nn + n

            2An + 2bb O2 −
            + n3 + 3nn + 2n

            6An + 3 bbO3,
            &c.
        

        
            The second term d

            e O − nbb

            An+1 O of this
            series is to be used for Qo, the third 
            nn+n

            2An+2bb O2
            for Roo, the fourth 
            n3+3nn+2n

            6An+3bbO3
            for So³. And thence the density of the medium 
            S

            R√(1+QQ), in any place G, will be
        


        n+2

            3√(A2 + dd

            eeA2− 
            2dnbb

            eAnA+ 
            nnb4

            A2n ),
        

        
            and therefore if in VZ you take VY equal to n x VG, that
            density is reciprocally as XY. For A² and 
            dd

            eeA2 − 
            2dnbb

            eAnA + 
            nnb4

            A2n are the squares
            of XZ and ZY. But the resistance in the same place G is to the force
            of gravity as 3S x XY

            A to 4RR, that is, as XY to
            2nn + 2n

            n + 2 VG. And the velocity there is the
            same wherewith the projected body would move in a parabola, whose
            vertex is G, diameter GD, and latus rectum 1
            + QQ

            R or 2XY2

            (nn + n) x VG.   Q.E.I.
        


    

    
        Scholium.
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            In the same manner that the density of the medium comes out to be as
            S x AC

            R x HT, in Cor. 1, if the resistance is
            put as any power Vn of the velocity V, the density of the
            medium will come out to be as 
            S

            R4−n/2
            x ( AC

            HT)n−1
        


        
            And therefore if a curve can be found, such that the ratio of
            S

            R4−n/2
            to  ( 
            HT

            AC )n−1, or of
            S2

            R4−n to (1+QQ)n−1
            may be given; the body, in an uniform medium, whose resistance is as
            the power Vn of the velocity V, will move in this curve.
            But let us return to more simple curves.
        


        
            Because there can be no motion in a parabola except in a
            non-resisting medium, but in the hyperbolas here described it is
            produced by a perpetual resistance; it is evident that the line which
            a projectile describes in an uniformly
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            resisting medium approaches nearer to these hyperbolas than to a
            parabola. That line is certainly of the hyperbolic kind, but about the
            vertex it is more distant from the asymptotes, and in the parts remote
            from the vertex draws nearer to them than these hyperbolas here
            described. The difference, however, is not so great between the one
            and the other but that these latter may be commodiously enough used in
            practice instead of the former. And perhaps these may prove more
            useful than an hyperbola that is more accurate, and at the same time
            more compounded. They may be made use of, then, in this manner.
        


        
            Complete the parallelogram XYGT, and the right line GT will touch the
            hyperbola in G, and therefore the density of the medium in G is
            reciprocally as the tangent GT, and the velocity there as √
            (GT2

            GV); and the resistance is to
            the force of gravity as GT to 
            2nn + 2n

            n + 2 x GV.
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            Therefore if a body projected from the place A, in the direction of
            the right line AH, describes the hyperbola AGK and AH produced meets
            the asymptote NX in H, and AI drawn parallel to it meets the other
            asymptote MX in I; the density of the medium in A will be reciprocally
            as AH, and the velocity of the body as √(
            AH2

            AI), and the resistance there
            to the force of gravity as AH to 
            2nn + 2n

            n + 2 x AI. Hence the
            following rules are deduced.
        


        
            Rule 1. If the density of the medium at A,
            and the velocity with which the body is projected remain the same, and
            the angle NAH be changed, the lengths AH, AI, HX will remain.
            Therefore if those lengths, in any one case,
            are found, the hyperbola may afterwards be easily determined from any
            given angle NAH.
        


        
            Rule 2. If the angle NAH, and the density of
            the medium at A, re main the same, and the velocity with which the
            body is projected be changed, the length AH will continue the same;
            and AI will be changed in a duplicate ratio of the velocity
            reciprocally.
        


        
            Rule 3. If the angle NAH, the velocity of the
            body at A, and the accelerative gravity remain the same, and the
            proportion of the resistance at A to the motive gravity be augmented
            in any ratio; the proportion of AH to AI will be augmented in the same
            ratio, the latus rectum of the abovementioned parabola remaining the
            same, and also the length AH2

            AI proportional to it; and therefore AH
            will be diminished in the same ratio, and AI will be diminished in the
            duplicate of that ratio. But the proportion of the resistance to the
            weight is augmented, when either the specific gravity is made less,
            the magnitude remaining equal, or when the density of the medium is
            made greater, or when, by diminishing the magnitude, the resistance
            becomes diminished in a less ratio than the weight.
        


        
            Rule 4. Because the density of the medium is
            greater near the vertex of the hyperbola than it is in the place A,
            that a mean density may be preserved, the ratio of the least of the
            tangents GT to the tangent AH ought to be found, and the density in A
            augmented in a ratio a little greater than that of half the sum of
            those tangents to the least of the tangents GT.
        


        
            Rule 5. If the lengths AH, AI are given, and
            the figure AGK is to be described, produce HN to X, so that HX may be
            to AI as n + 1 to 1; and with the centre X, and the
            asymptotes MX, NX, describe an hyperbola through the point A, such
            that AI may be to any of the lines VG as XVn to XIn.
        


        
            Rule 6. By how much the greater the number n
            is, so much the more accurate are these hyperbolas in the ascent of
            the body from A, and less accurate in its descent to K; and the
            contrary. The conic hyperbola keeps a mean ratio between these, and is
            more simple than the rest. Therefore if the hyperbola be of this kind,
            and you are to find the point K, where the projected body falls upon
            any right line AN passing through the point A, let AN produced meet
            the asymptotes MX, NX in M and N, and take NK equal to AM.
        


        
            Rule 7. And hence appears an expeditious
            method of determining this hyperbola from the phenomena. Let two
            similar and equal bodies be projected with the same velocity, in
            different angles HAK, hAk, and let them fall upon
            the plane of the horizon in K and k; and note the proportion
            of AK to Ak. Let it be as d to e. Then
            erecting a perpendicular AI of any length, assume any how the length
            AH or Ah, and thence graphically, or
            by scale and compass, collect the lengths AK, Ak (by Rule 6).
            If the ratio of AK to Ak be the same with that of d
            to e, the length of AH was
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            rightly assumed. If not, take on the indefinite right line SM, the
            length SM equal to the assumed AH; and erect a perpendicular MN equal
            to the difference AK

            Ak − d

            e of the ratios drawn into any
            given right line. By the like method, from several assumed lengths AH,
            you may find several points N; and draw through them all a regular
            curve NNXN, cutting the right line SMMM in X. Lastly, assume AH equal
            to the abscissa SX, and thence find again the length AK; and the
            lengths, which are to the assumed length AI, and this last AH, as the
            length AK known by experiment, to the length AK last found, will be
            the true lengths AI and AH, which were to be found. But these being
            given, there will be given also the resisting force of the medium in
            the place A, it being to the force of gravity as AH to 4/3AI.
            Let the density of the medium be increased by Rule 4, and if the
            resisting force just found be increased in the same ratio, it will
            become still more accurate.
        


        
            Rule 8. The lengths AH, HX being found; let
            there be now required the position of the line AH, according to which
            a projectile thrown with that given velocity shall fall upon any point
            K. At the joints A and K, erect the lines AC, KF perpendicular to the
            horizon; whereof let AC be drawn downwards, and be equal to AI or ½HX.
            With the asymptotes AK, KF, describe an hyperbola, whose conjugate
            shall pass through the point C; and from the centre A, with the
            interval AH, describe a circle cutting that hyperbola in the point H;
            then the projectile thrown in the direction of the right line AH will
            fall upon the point K.   Q.E.I.   For the point H,
            because of the given length AH, must be somewhere in the circumference
            of the described circle. Draw CH meeting AK and KF in E and F; and
            because CH, MX are parallel, and AC, AI equal, AE will be equal to AM,
            and therefore also equal to KN. But CE is to AE as FH to KN, and
            therefore CE and FH are equal. Therefore the point H falls upon the
            hyperbolic curve described with the asymptotes AK, KF whose conjugate
            passes through the point C; and is therefore found in the
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            common intersection of this hyperbolic curve
            and the circumference of the described circle.   Q.E.D. It
            is to be observed that this operation is the same, whether the right
            line AKN be parallel to the horizon, or inclined thereto in any angle;
            and that from two intersections H, h, there arise two angles
            NAH, NAh; and that in mechanical practice it is sufficient
            once to describe a circle, then to apply a ruler CH, of an
            indeterminate length, so to the point C, that its part FH, intercepted
            between the circle and the right line FK, may be equal to its part CE
            placed between the point C and the right line AK
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            What has been said of hyperbolas may be easily applied to parabolas.
            For if a parabola be represented by XAGK, touched by a right line XV
            in the vertex X, and the ordinates IA, VG be as any powers XIn,
            XVn, of the abscissas XI, XV; draw XT, GT, AH, whereof let
            XT be parallel to VG, and let GT, AH touch the parabola in G and A:
            and a body projected from any place A, in the direction of the right
            line AH, with a due velocity, will describe this parabola, if the
            density of the medium in each of the places G be reciprocally as the
            tangent GT. In that case the velocity in G will be the same as would
            cause a body, moving in a nonresisting space, to describe a conic
            parabola, having G for its vertex, VG produced downwards for its
            diameter, and 2GT2

            (nn − n) x VG for its latus
            rectum. And the resisting force in G will be to the force of gravity
            as GT to 2nn −
            2n

            n − 2VG. Therefore if NAK
            represent an horizontal line, and both the density of the medium at A,
            and the velocity with which the body is projected, remaining the same,
            the angle NAH be any how altered, the lengths AH, AI, HX will remain;
            and thence will be given the vertex X of the parabola, and the
            position of the right line XI; and by taking VG to IA as XVn
            to XIn, there will be given all the points G of the
            parabola, through which the projectile will pass.
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The Mathematical Principles of Natural Philosophy
by Isaac Newton




Book 1.10




    
        Section X.


        Of the motion of bodies in given superficies, and of the reciprocal motion of funependulous bodies.



    

    
        Proposition xlvi. Problem xxxii.


            
                
                    Any kind of centripetal force being supposed, and the centre of
                    force, and any plane whatsoever in which the body revolves, being
                    given, and the quadratures of curvilinear figures being allowed;
                    it is required to determine the motion of a body going off from a
                    given place, with a given velocity, in the direction of a given
                    right line in that plane.
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            Let S be the centre of force, SC the least distance of that centre
            from the given plane, P a body issuing from the place P in the
            direction of the right line PZ, Q the same body revolving in its
            trajectory, and PQR the trajectory itself which is required to be
            found, described in that given plane. Join CQ, QS, and if in QS we
            take SV proportional to the centripetal force with which the body is
            attracted towards the centre S, and draw VT parallel to CQ, and
            meeting SC in T; then will the force SV be resolved into two (by Cor.
            2, of the Laws of Motion), the force ST, and the force TV; of which ST
            attracting the body in the direction of a line perpendicular to that
            plane, does not at all change its motion in that plane. But the action
            of the other force TV, coinciding with the position of the plane
            itself, attracts the body directly towards the given point C in that
            plane; and therefore causes the body to move in this plane in the same
            manner as if the force ST were taken away, and the body were to
            revolve in free space about the centre C by means of the force TV
            alone. But there being given the centripetal force TV with which the
            body Q revolves in free space about the given centre C, there is given
            (by Prop. XLII) the trajectory PQR which the body describes; the place
            Q, in which the body will be found at any given time; and, lastly, the
            velocity of the body in that place Q. And so è contra.
              Q.E.I.
        


    

    
        Proposition xlvii. Theorem xv.


            
                
                    Supposing the centripetal force to be proportional to the
                    distance of the body from the centre; all bodies revolving in any
                    planes whatsoever will describe ellipses, and complete their
                    revolutions in equal times; and those which move in right lines,
                    running backwards and forwards alternately, will complete their
                    several periods of going and returning in the same times.
                
            


        

        
            For letting all things stand as in the foregoing Proposition, the
            force SV, with which the body Q revolving in any plane PQR is
            attracted towards the centre S, is as the distance SQ; and therefore
            because SV and SQ, TV and CQ are proportional, the force TV with which
            the body is attracted towards the given point C in the plane of the
            orbit is as the distance CQ. Therefore the forces with which bodies
            found in the plane PQR are attracted towards the point C, are in
            proportion to the distances equal to the forces with which the same
            bodies are attracted every way towards the centre S; and therefore the
            bodies will move in the same times, and in the same figures, in any
            plane PQR about the point C, as they would do
            in free spaces about the centre S; and therefore (by Cor. 2, Prop. X,
            and Cor. 2, Prop. XXXVIII.) they will in equal times either describe
            ellipses in that plane about the centre C, or move to and fro in right
            lines passing through the centre C in that plane; completing the same
            periods of time in all cases.   Q.E.D.
        


    

    
        Scholium.



        
            The ascent and descent of bodies in curve superficies has a near
            relation to these motions we have been speaking of. Imagine curve
            lines to be described on any plane, and to revolve about any given
            axes passing through the centre of force, and by that revolution to
            describe curve superficies; and that the bodies move in such sort that
            their centres may be always found in those superficies. If those
            bodies reciprocate to and fro with an oblique ascent and descent,
            their motions will be performed in planes passing through the axis,
            and therefore in the curve lines, by whose revolution those curve
            superficies were generated. In those cases, therefore, it will be
            sufficient to consider the motion in those curve lines.
        


    

    
        Proposition xlviii. Theorem xvi.


            
                
                    If a wheel stands upon the outside of a globe at right angles
                    thereto, and revolving about its own axis goes forward in a great
                    circle, the length of the curvilinear path which any point, given
                    in the perimeter of the wheel, hath described since the time that
                    it touched the globe (which curvilinear path we may call the
                    cycloid or epicycloid), will be to double the versed sine of half
                    the arc which since that time has touched the globe in passing
                    over it, as the sum of the diameters of the globe and the wheel to
                    the semi-diameter of the globe.
                
            


        

    

    
        Proposition xlix. Theorem xvii.


            
                
                    If a wheel stand upon the inside of a concave globe at right
                    angles thereto, and revolving about its own axis go forward in one
                    of the great circles of the globe, the length of the curvilinear
                    path which any point, given in the perimeter of the wheel, hath
                    described since it touched the globe, will be to the double of the
                    versed sine of half the arc which in all that time has touched the
                    globe in passing over it, as the difference of the diameters of
                    the globe and the wheel to the semi-diameter of the globe.
                
            


        

        
            Let ABL be the globe, C its centre, BPV the wheel insisting thereon,
            E the centre of the wheel, B the point of contact, and P the given
            point in the perimeter of the wheel. Imagine this wheel to proceed in
            the great circle ABL from A through B towards L, and in its progress
            to revolve in such a manner that the arcs AB, PB may be always equal
            one to the other, and the given point P in the perimeter of the wheel
            may describe in the 
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            mean time the curvilinear path AP. Let AP be the whole curvilinear
            path described since the wheel touched the globe in A, and the length
            of this path AP will be to twice the versed sine of the arc ½PB as 2CE
            to CB. For let the right line CE (produced if need be) meet the wheel
            in V, and join CP, BP, EP, VP; produce CP, and let fall thereon the
            perpendicular VF. Let PH, VH, meeting in H, touch the circle in P and
            V, and let PH cut VF in G, and to VP let fall the perpendiculars GI,
            HK. From the centre C with any interval let there be described the
            circle nom, cutting the right line CP in n, the
            perimeter of the wheel BP in o, and the curvilinear path AP
            in m; and from the centre V with the interval Vo
            let there be described a circle cutting VP produced in q.
        


        
            Because the wheel in its progress always revolves about the point of
            contact B, it is manifest that the right line BP is perpendicular to
            that curve line AP which the point P of the wheel describes, and
            therefore that the right line VP will touch this curve in the point P.
            Let the radius of the circle nom be gradually increased or
            diminished so that at last it become equal to the distance CP; and by
            reason of the similitude of the evanescent figure Pnomq, and
            the figure PFGVI, the ultimate ratio of the evanescent lineolae Pm,
            Pn, Po, Pq, that is, the ratio of the
            momentary mutations of the curve AP, the right line CP, the circular
            arc BP, and the right line VP, will be the
            same as of the lines PV, PF, PG, PI, respectively. But since VF is
            perpendicular to CF, and VH to CV, and therefore the angles HVG, VCF
            equal; and the angle VHG (because the angles of the quadrilateral
            figure HVEP are right in V and P) is equal to the angle CEP, the
            triangles VHG, CEP will be similar; and thence it will come to pass
            that as EP is to CE so is HG to HV or HP, and so KI to KP, and by
            composition or division as CB to CE so is PI to PK, and doubling the
            consequents as CB to 2CE so PI to PV, and so is Pq to Pm.
            Therefore the decrement of the line VP, that is, the increment of the
            line BV − VP to the increment of the curve line AP is in a given ratio
            of CB to 2CE, and therefore (by Cor. Lem. IV) the lengths BV − VP and
            AP, generated by those increments, are in the same ratio. But if BV be
            radius, VP is the cosine of the angle BVP or ½BEP, and therefore BV −
            VP is the versed sine of the same angle, and therefore in this wheel,
            whose radius is ½BV, BV − VP will be double the versed sine of the arc
            ½BP. Therefore AP is to double the versed sine of the arc ½BP as 2CE
            to CB.   Q.E.D.
        


        
            The line AP in the former of these Propositions we shall name the
            cycloid without the globe, the other in the latter Proposition the
            cycloid within the globe, for distinction sake.
        


        
            Cor. 1. Hence if there be described the
            entire cycloid ASL, and the same be bisected in S, the length of the
            part PS will be to the length PV (which is the double of the sine of
            the angle VBP, when EB is radius) as 2CE to CB, and therefore in a
            given ratio.
        


        
            Cor. 2. And the length of the semi-perimeter
            of the cycloid AS will be equal to a right line which is to the
            diameter of the wheel BV as 2CE to CB.
        


    

    
        
            Proposition l. Problem xxxiii.


            To cause a pendulous body to oscillate in a given cycloid.
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            Let there be given within the globe QVS described with the centre C,
            the cycloid QRS, bisected in R, and meeting the superficies of the
            globe with its extreme points Q and S on either hand. Let there be
            drawn CR bisecting the arc QS in O, and let it be produced to A in
            such sort that CA may be to CO as CO to CR. About the centre C, with
            the interval CA, let there be described an exterior globe DAF; and
            within this globe, by a wheel whose diameter is AO, let there be
            described two semi-cycloids AQ, AS, touching the interior globe in Q
            and S, and meeting the exterior globe in A. From that point A, with a
            thread APT in length equal to the line AR, let the body T depend, and
            oscillate in such manner between the two semi-cycloids
            AQ, AS, that, as often as the pendulum parts from the perpendicular
            AR, the upper part of the thread AP may be applied to that
            semi-cycloid APS towards which the motion tends, and fold itself round
            that curve line, as if it were some solid obstacle, the remaining part
            of the same thread PT which has not yet touched the semi-cycloid
            continuing straight. Then will the weight T oscillate in the given
            cycloid QRS.   Q.E.F.
        


        
            For let the thread PT meet the cycloid QRS in T, and the circle QOS
            in V, and let CV be drawn; and to the rectilinear part of the thread
            PT from the extreme points P and T let there be erected the
            perpendiculars BP, TW, meeting the right line CV in B and W. It is
            evident, from the construction and generation of the similar figures
            AS, SR, that those perpendiculars PB, TW, cut off from CV the lengths
            VB, VW equal the diameters of the wheels OA, OR. Therefore TP is to VP
            (which is double the sine of the angle VBP when ½BV is radius) as BW
            to BV, or AO + OR to AO, that is (since CA and CO, CO and CR, and by
            division AO and OR are proportional), as CA + CO to CA, or, if BV be
            bisected in E, as 2CE to CB. Therefore (by Cor. 1, Prop. XLIX), the
            length of the rectilinear part of the thread PT is always equal to the
            arc of the cycloid PS, and the whole thread APT is always equal to the
            half of the cycloid APS, that is (by Cor. 2, Prop. XLIX), to the
            length AR. And therefore contrariwise, if the string remain always
            equal to the length AR, the point T will always move in the given
            cycloid QRS.   Q.E.D.
        


        
            Cor. The string AR is equal to the
            semi-cycloid AS, and therefore has the same ratio to AC the
            semi-diameter of the exterior globe as the like semi-cycloid SR has to
            CO the semi-diameter of the interior globe.
        


    

    
        Proposition li. Theorem xviii.


            
                If a centripetal force tending on all sides to the centre
                C of a globe, be in all places as the distance of the place
                from the centre, and by this force alone acting upon it, the body
                T oscillate (in the manner above described) in the perimeter of
                the cycloid QRS; I say, that all the oscillations, how
                unequal soever in themselves, will be performed in equal times.
            


        

        
            For upon the tangent TW infinitely produced let fall the
            perpendicular CX, and join CT. Because the centripetal force with
            which the body T is impelled towards C is as the distance CT, let this
            (by Cor. 2, of the Laws) be resolved into the parts CX, TX, of which
            CX impelling the body directly from P stretches the thread PT, and by
            the resistance the thread makes to it is totally employed, producing
            no other effect; but the other part TX, impelling the body
            transversely or towards X, directly accelerates the motion in the
            cycloid. Then it is plain that the acceleration of the body,
            proportional to this accelerating force, will be every
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            moment as the length TX, that is (because CV,
            WV, and TX, TW proportional to them are given), as the length TW, that
            is (by Cor. 1, Prop. XLIX) as the length of the arc of the cycloid TR.
            If therefore two pendulums APT, Apt, be unequally drawn aside
            from the perpendicular AR, and let fall together, their accelerations
            will be always as the arcs to be described TR, tR. But the
            parts described at the beginning of the motion are as the
            accelerations, that is, as the wholes that are to be described at the
            beginning, and therefore the parts which remain to be described, and
            the subsequent accelerations proportional to those parts, are also as
            the wholes, and so on. Therefore the accelerations, and consequently
            the velocities generated, and the parts described with those
            velocities; and the parts to be described, are always as the wholes;
            and therefore the parts to be described preserving a given ratio to
            each other will vanish together, that is, the two bodies oscillating
            will arrive together at the perpendicular AR. And since on the other
            hand the ascent of the pendulums from the lowest place R through the
            same cycloidal arcs with a retrograde motion, is retarded in the
            several places they pass through by the same forces by which their
            descent was accelerated; it is plain that the velocities of their
            ascent and descent through the same arcs are equal, and consequently
            performed in equal times; and, therefore, since the two parts of the
            cycloid RS and RQ lying on either side of the perpendicular are
            similar and equal, the two pendulums will perform as well the wholes
            as the halves of their oscillations in the same times.
              Q.E.D.
        


        
            Cor. The force with which the body T is
            accelerated or retarded in any place T of the cycloid, is to the whole
            weight of the same body in the highest place S or Q as the arc of the
            cycloid TR is to the arc SR or QR.
        


    

    
        Proposition lii. Problem xxxiv.


            
                
                    To define the velocities of the pendulums in the several
                    places, and the times in which both the entire oscillations, and
                    the several parts of them are performed.
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            About any centre G, with the interval GH equal to the arc of the
            cycloid RS, describe a semi-circle HKM bisected by the semi-diameter
            GK. And if a centripetal force proportional to the distance of the
            places from the centre tend to the centre G, and it be in the
            perimeter HIK equal to the centripetal force in the perimeter of the
            globe QOS tending towards its centre, and at the same time that the
            pendulum T is let fall from the highest place S, a body, as L, is let
            fall from H to G; then because the 
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            forces which act upon the bodies are equal at the beginning, and
            always proportional to the spaces to be described TR, LG, and
            therefore if TR and LG are equal, are also equal in the places T and
            L, it is plain that those bodies describe at the beginning equal
            spaces ST, HL, and therefore are still acted upon equally, and
            continue to describe equal spaces. Therefore by Prop. XXXVIII, the
            time in which the body describes the arc ST is to the time of one
            oscillation, as the arc HI the time in which the body H arrives at L,
            to the semi-periphery HKM, the time in which the body H will come to
            M. And the velocity of the pendulous body in the place T is to its
            velocity in the lowest place R, that is, the velocity of the body H in
            the place L to its velocity in the place G; or the momentary increment
            of the line HL to the momentary increment of the line HG (the arcs HI,
            HK increasing with an equable flux) as the ordinate LI to the radius
            GK, or as √(SR2 − TR2)
            to SR. Hence, since in unequal oscillations there are described in
            equal time arcs proportional to the entire arcs of the oscillations,
            there are obtained from the times given, both the velocities and the
            arcs described in all the oscillations universally. Which was first
            required.
        


        
            Let now any pendulous bodies oscillate in different cycloids
            described within different globes, whose absolute forces are also
            different; and if the absolute force of any globe QOS be called V, the
            accelerative force with which the pendulum is acted on in the
            circumference of this globe, when it begins to move directly towards
            its centre, will be as the distance of the pendulous body from that
            centre and the absolute force of the globe conjunctly, that is, as CO
            x V. Therefore the lineola HY, which is as this accelerated force CO x
            V, will be described in a given time; and if there be erected the
            perpendicular YZ meeting the circumference in Z, the nascent arc HZ
            will denote that given time. But that nascent arc HZ is in the
            subduplicate ratio of the rectangle GHY, and therefore as √(GH
            x CO x V). Whence the time of an entire oscillation in the
            cycloid QRS (it being as the semi-periphery HKM, which denotes that
            entire oscillation, directly; and as the arc HZ which in like manner
            denotes a given time inversely) will be as GH directly and √(GH
            x CO x V) inversely; that is, because GH and SR are equal, as
            √(SR

            CO x V), or (by Cor. Prop.
            L,) as √(AR

            AC x V). Therefore the
            oscillations in all globes and cycloids, performed with what absolute
            forces soever, are in a ratio compounded of the subduplicate ratio of
            the length of the string directly, and the subduplicate ratio of the
            distance between the point of suspension and the centre of the globe
            inversely, and the subduplicate ratio of the absolute force of the
            globe inversely also.   Q.E.I.
        


        
            Cor. 1. Hence also
            the times of oscillating, falling, and revolving bodies may be
            compared among themselves. For if the diameter of the wheel with which
            the cycloid is described within the globe is supposed equal to the
            semi-diameter of the globe, the cycloid will become a right line
            passing through the centre of the globe, and the oscillation will be
            changed into a descent and subsequent ascent in that right line.
            Whence there is given both the time of the descent from any place to
            the centre, and the time equal to it in which the body revolving
            uniformly about the centre of the globe at any distance describes an
            arc of a quadrant. For this time (by Case 2) is to the time of half
            the oscillation in any cycloid QRS as 1 to √(
            AR

            AC).
        


        
            Cor. 2. Hence also follow what Sir Christopher
            Wren and M. Huygens have discovered concerning the
            vulgar cycloid. For if the diameter of the globe be infinitely
            increased, its sphaerical superficies will be changed into a plane,
            and the centripetal force will act uniformly in the direction of lines
            perpendicular to that plane, and this cycloid of our's will become the
            same with the common cycloid. But in that case the length of the arc
            of the cycloid between that plane and the describing point will become
            equal to four times the versed sine of half the arc of the wheel
            between the same plane and the describing point, as was discovered by
            Sir Christopher Wren. And a pendulum between two such
            cycloids will oscillate in a similar and equal cycloid in equal times,
            as M. Huygens demonstrated. The descent of heavy bodies also
            in the time of one oscillation will be the same as M. Huygens
            exhibited.
        


        
            The propositions here demonstrated are adapted to the true
            constitution of the Earth, in so far as wheels moving in any of its
            great circles will describe, by the motions of nails fixed in their
            perimeters, cycloids without the globe; and pendulums, in mines and
            deep caverns of the Earth, must oscillate in cycloids within the
            globe, that those oscillations may be performed in equal times. For
            gravity (as will be shewn in the third book) decreases in its progress
            from the superficies of the Earth; upwards in a duplicate ratio of the
            distances from the centre of the Earth; downwards in a simple ratio of
            the same.
        


    

    
        Proposition liii. Problem xxxv.


            
                
                    Granting the quadratures of curvilinear figures, it is required
                    to find the forces with which bodies moving in given curve lines
                    may always perform their oscillations in equal times.
                
            


        

        
            Let the body T oscillate in any curve line STRQ, whose axis is AR
            passing through the centre of force C. Draw TX touching that curve in
            any place of the body T, and in that tangent TX take TY equal to the
            arc TR. The length of that arc is known from the common methods used
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            for the quadratures of figures.
            From the point Y draw the right line YZ perpendicular to the tangent.
            Draw CT meeting that perpendicular in Z, and the centripetal force
            will be proportional to the right line TZ.   Q.E.I.
        


        
            For if the force with which the body is attracted from T towards C be
            expressed by the right line TZ taken proportional to it, that force
            will be resolved into two forces TY, YZ, of which YZ drawing the body
            in the direction of the length of the thread PT, does not at all
            change its motion; whereas the other force TY directly accelerates or
            retards its motion in the curve STRQ. Wherefore since that force is as
            the space to be described TR, the accelerations or retardations of the
            body in describing two proportional parts (a greater and a less) of
            two oscillations, will be always as those parts, and therefore will
            cause those parts to be described together. But bodies which
            continually describe together parts proportional to the wholes, will
            describe the wholes together also.   Q.E.D.
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            Cor. 1. Hence if the body T, hanging by a
            rectilinear thread AT from the centre A, describe the circular arc
            STRQ, and in the mean time be acted on by any force tending downwards
            with parallel directions, which is to the uniform force of gravity as
            the arc TR to its sine TN, the times of the several oscillations will
            be equal. For because TZ, AR are parallel, the triangles ATN, ZTY are
            similar; and therefore TZ will be to AT as TY to TN; that is, if the
            uniform force of gravity be expressed by the given length AT, the
            force TZ, by which the oscillations become isochronous, will be to the
            force of gravity AT, as the arc TR equal to TY is to TN the sine of
            that arc.
        


        
            Cor. 2. And therefore in clocks, if forces
            were impressed by some machine upon the pendulum which preserves the
            motion, and so compounded with the force of gravity that the whole
            force tending downwards should be always as a line produced by
            applying the rectangle under the arc TR and the radius AR to the sine
            TN, all the oscillations will become isochronous.
        


    

    
        Proposition liv. Problem xxxvi.


            
                
                    Granting the quadratures of curvilinear figures, it is required
                    to find the times in which bodies by means of any centripetal
                    force will descend or ascend in any curve lines described in a
                    plane passing through the centre of force.
                
            


        

        
            Let the body descend from any place S, and move in any curve STtR
            given in a plane passing through the centre of force C. Join CS, and let
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            it be divided into innumerable equal parts, and let Dd be one of
            those parts. From the centre C, with the intervals CD, Cd,
            let the circles DT, dt be described, meeting the curve line
            STtR in T and t. And because the law of centripetal
            force is given, and also the altitude CS from which the body at first
            fell, there will be given the velocity of the body in any other
            altitude CT (by Prop. XXXIX). But the time in which the body describes
            the lineola Tt is as the length of that lineola, that is, as
            the secant of the angle tTC directly, and the velocity
            inversely. Let the ordinate DN, proportional to this time, be made
            perpendicular to the right line CS at the point D, and because Dd
            is given, the rectangle Dd x DN, that is, the area DNnd,
            will be proportional to the same time. Therefore if PNn be a
            curve line in which the point N is perpetually found, and its
            asymptote be the right line SQ standing upon the line CS at right
            angles, the area SQPND will be proportional to the time in which the
            body in its descent hath described the line ST; and therefore that
            area being found, the time is also given.   Q.E.I.
        


    

    
        Proposition lv. Theorem xix.


            
                
                    If a body move in any curve superficies, whose axis passes
                    through the centre of force, and from the body a perpendicular be
                    let fall upon the axis; and a line parallel and equal thereto be
                    drawn from any given point of the axis; I say, that this parallel
                    line will describe an area proportional to the time.
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            Let BKL be a curve superficies, T a body revolving in it, STR a
            trajectory which the body describes in the same, S the beginning of
            the trajectory, OMK the axis of the curve superficies, TN a right line
            let fall perpendicularly from the body to the axis; OP a line parallel
            and equal thereto drawn from the given point O in the axis; AP the
            orthographic projection of the trajectory described by the point P in
            the plane AOP in which the revolving line OP is found; A the beginning
            of that projection, answering to the point S; TC a right line drawn
            from the body to the centre; TG a part thereof proportional to the
            centripetal force with which the body tends towards the centre C; TM a
            right line perpendicular to the curve superficies; TI a part thereof
            proportional to the force of pressure with which the body urges
            the superficies, and therefore with which it is
            again repelled by the superficies towards M; PTF a right line parallel
            to the axis and passing through the body, and GF, IH right lines let
            fall perpendicularly from the points G and I upon that parallel PHTF.
            I say, now. that the area AOP, described by the radius OP from the
            beginning of the motion, is proportional to the time. For the force TG
            (by Cor. 2, of the Laws of Motion) is resolved into the forces TF, FG;
            and the force TI into the forces TH, HI; but the forces TF, TH, acting
            in the direction of the line PF perpendicular to the plane AOP,
            introduce no change in the motion of the body but in a direction
            perpendicular to that plane. Therefore its motion, so far as it has
            the same direction with the position of the plane, that is, the motion
            of the point P, by which the projection AP of the trajectory is
            described in that plane, is the same as if the forces TF, TH were
            taken away, and the body were acted on by the forces FG, HI alone;
            that is, the same as if the body were to describe in the plane AOP the
            curve AP by means of a centripetal force tending to the centre O, and
            equal to the sum of the forces FG and HI. But with such a force as
            that (by Prop. 1) the area AOP will be described proportional to the
            time.   Q.E.D.
        


        
            Cor. By the same reasoning, if a body, acted
            on by forces tending to two or more centres in any the same right line
            CO, should describe in a free space any curve line ST, the area AOP
            would be always proportional to the time.
        


    

    
        Proposition lvi. Problem xxxvii.


            
                
                    Granting the quadratures of curvilinear figures, and supposing
                    that there are given both the law of centripetal force tending to
                    a given centre, and the curve superficies whose axis passes
                    through that centre; it is required to find the trajectory which a
                    body will describe in that superficies, when going off from a
                    given place with a given velocity, and in a given direction in that superficies.
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            The last construction remaining, let the body T go from the given
            place S, in the direction of a line given by position, and turn into
            the trajectory sought STR, whose orthographic projection in the plane
            BDO is AP. And from the given velocity of the body in the altitude SC,
            its velocity in any other altitude TC will be also given. With that
            velocity, in a given moment of time, let the body describe the
            particle Tt of its trajectory, and let Pp be the
            projection of that particle described in the plane AOP. Join Op,
            and a little circle being described upon the curve superficies about
            the centre T with the interval Tt
            let the projection of that little circle in the plane AOP be the
            ellipsis pQ. And because the magnitude of that little circle
            Tt, and TN or PO its distance from the axis CO is also given,
            the ellipsis pQ will be given both in kind and magnitude, as
            also its position to the right line PO. And since the area POp
            is proportional to the time, and therefore given because the time is
            given, the angle POp will be given. And thence will be given
            p the common intersection of the ellipsis and the right line
            Op, together with the angle OPp, in which the
            projection APp of the trajectory cuts the line OP. But from
            thence (by conferring Prop. XLI, with its 2d Cor.) the manner of
            determining the curve APp easily appears. Then from the
            several points P of that projection erecting to the plane AOP, the
            perpendiculars PT meeting the curve superficies in T, there will be
            given the several points T of the trajectory.   Q.E.I.
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